Some Remarks on the Analysis of Survival Data

  • D. R. Cox
Part of the Lecture Notes in Statistics book series (LNS, volume 123)


The implications for survival analysis are explored of various general criteria for statistical models. Extensions to more complex kinds of data are briefly discussed.


Explanatory Variable Survival Data Failure Time Renewal Process Baseline Hazard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1991). Statistical Models Based on Counting Processes. New York: Springer.Google Scholar
  2. Blossfeld, H.-P. and Rohwer, G. (1995). Techniques of Event History Modeling. Hillsdale, N. J.: Lawrence Erlbaum.Google Scholar
  3. Brillinger, D. R. (1983). A generalized linear model with Gaussian regressor variables. In Festschrift for Erich L. Lehmann, pp 97–114. Belmont, CA: Wadsworth.Google Scholar
  4. Brookmeyer, R. and Gail, M. H. (1994). AIDS Epidemiology: A Quantitative Approach. New York: Oxford University Press.Google Scholar
  5. Cane, V. R. (1977). A class of non-identifiable stochastic models. J.Appl. Prob. 14, 475–482.MathSciNetMATHCrossRefGoogle Scholar
  6. Cox, D. R. (1955). Some statistical methods connected with series of events, (with discussion). J. R. Statist. Soc. B 17, 129–164.MATHGoogle Scholar
  7. Cox, D. R. (1961). Tests of separate families of hypotheses. Proc. 4th Berkeley Symp. 1, 105–123.Google Scholar
  8. Cox, D. R. (1969). Some sampling problems in technology. In Recent Developments in Sampling, Eds. N. L. Johnson and H. Smith, pp. 506–527. New York: Wiley.Google Scholar
  9. Cox, D. R. (1972a). Regression models and life-tables (with discussion). J. R. Statist. Soc. B 34, 187–220.MATHGoogle Scholar
  10. Cox, D. R. (1972b). The statistical analysis of dependencies in point processes. In Stochastic Point Processes, Ed. P. A. W. Lewis, pp. 55–66. New York: Wiley.Google Scholar
  11. Cox, D. R. and Lewis, P. A. W. (1972). Multivariate point processes. Proc. 6th Berkeley Symp. 1, 401–448.MathSciNetGoogle Scholar
  12. Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. London: Chapman and Hall.Google Scholar
  13. Cox, D. R. and Wermuth, N. (1996). Multivariate Dependencies. London: Chapman and Hall.MATHGoogle Scholar
  14. Darby, S. C. and Muirhead, C. R. (1987). Modelling the relative and absolute risks of radiation-induced cancer (with discussion). J. R. Statist Soc. A 150, 83–118.MATHGoogle Scholar
  15. Lancaster, T. (1990). The econometric Analysis of Transition Data. Cambridge University Press.Google Scholar
  16. Oakes, D. and Cui, L. (1994). On semiparametric inference for modulated renewal processes. Biometrika 81, 83–90.MathSciNetMATHCrossRefGoogle Scholar
  17. Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331–342. Amendment (1986), 73, 245.MathSciNetMATHCrossRefGoogle Scholar
  18. Solomon, P. J. (1984). Effect of misspecification of regression models in the analysis of survival data. Biometrika 71, 291–298.MathSciNetMATHCrossRefGoogle Scholar
  19. Struthers, C. and Kalbfleisch, J. D. (1986). Misspecified proportional hazards models. Biometrika 73, 363–369.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • D. R. Cox

There are no affiliations available

Personalised recommendations