Fourier Series

  • I. N. Bronshtein
  • K. A. Semendyayev


Fundamental concepts. In many problems (differential equations, vibration theory) it is sometimes necessary to replace, accurately or approximately, a given periodic function f(x) with period T by a trigonometric sum
$$s_{n}(x)=\frac{1}{2}\;a_{0}+a_{1}\;\textup{cos}\;\omega x+a_{2}\;\textup{cos}\;2\omega x+\cdots +a_{n}\;\textup{cos}\;n\omega x+b_{1}\;\textup{sin}\;\omega x+b_{2}\;\textup{sin}\;2\omega x+\cdots +b_{n}\;\textup{sin}\;n\omega x$$
, where \(\omega =\frac{2\pi} {T}\) (if T = 2π, then ω = 1). The sum s n (x) is the best approximation of the function f(x) (in the sense of p. 728), if we take for a k and b k the so-called Fourier coefficients defined by the following formulas due to Euler (Euler formulas):
$$a_{k}=\frac{2}{T}\int\limits_{0}^{T}f(x)\;\textup{cos}\;k\omega x\;dx=\frac{2}{T}\int\limits_{x_{0}}^{x_{0}+T}f(x)\;\textup{cos}\;k\omega x\;dx=\frac{2}{T}\int\limits_{0}^{T/2}[f(x)+f(-x)]\;\textup{cos}\;k\omega x\;dx,\;\;\;k=0,1,2,\cdots ,n$$
$$b_{k}=\frac{2}{T}\int\limits_{0}^{T}f(x)\;\textup{sin}\;k\omega x\;dx=\frac{2}{T}\int\limits_{x_{0}}^{x_{0}+T}f(x)\;\textup{sin}\;k\omega x\;dx=\frac{2}{T}\int\limits_{0}^{T/2}[f(x)+f(-x)]\;\textup{sin}\;k\omega x\;dx,\;\;\;k=1,2,\cdots ,n$$


Fourier Series Periodic Function Trigonometric Series Harmonic Vibration Vibration Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    At points of discontinuity we assume \(f(x)=\frac{f(x-0)+f(x+0)}{2}\).Google Scholar
  2. (1).
    The coefficient b6 can be discarded, for, as can easily be observed, the corresponding term of the series is immaterial for the values of the function at the considered points.Google Scholar

Copyright information

© Verlag Harri Deutsch, Zürich 1973

Authors and Affiliations

  • I. N. Bronshtein
  • K. A. Semendyayev

There are no affiliations available

Personalised recommendations