Trace Analysis

  • R. Jenkins
  • J. L. De Vries


Since X-ray fluorescence spectrometry is essentially a method which counts atoms, the question naturally arises as to what is the minimum number of atoms which are required in order to give a measurable signal above background. Analyses based on the measurement of a small number of atoms fit conveniently into two categories, the first where the number of analysed atoms is small in comparison with the total number of atoms making up the sample i.e. in the analysis of low concentrations and second, where the number of atoms is small because the total sample weight is small i.e. in the analysis of limited quantites of material. These two cases must be considered separately since, as will be seen later, they have little in common.


Atomic Number Trace Analysis Characteristic Radiation Term Drift High Atomic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GARTON, F. W. G., United Kingdom Atomic Energy Authority report A.E.R.E. R-4483.Google Scholar
  2. 2.
    KAISER, H. and SPECKER, H., 1956, Z. analyt. Chem., 149, 46.CrossRefGoogle Scholar
  3. 3.
    KAISER, H., 1966, Z. analyt. Chem., 216, 80.CrossRefGoogle Scholar
  4. 4.
    ZEMANY, P. D., PFEIFFER, H. G. and LIEBHAFSKY, H. A., 1959, Analyt. Chem., 31, 1176.CrossRefGoogle Scholar
  5. 5.
    CHAMPION, K. P. and WHITTEM, R. N., 1963, Nature, 199, 1082.ADSCrossRefGoogle Scholar
  6. 6.
    LADELL, J. and PARRISH, W., 1959, Philips Research Reports, 14, 401.Google Scholar
  7. 7.
    CHAMPION, K. P. and WHITTEM, R. N., Report AAEC/TM289, Sydney, April 1965.Google Scholar
  8. 8.
    SALMON, Advances in X-ray Analysis, Plenum, New York, 1963, 6, 301.Google Scholar
  9. 9.
    JENKINS, R., Proceedings of Exeter Conference on Limitations of Detection in Spectrochemical Analysis, Hilger and Watts, London, 1964.Google Scholar
  10. 10.
    MÜLLER, R., 1964, Spectrochim. Acta, 20, 143–151.ADSCrossRefGoogle Scholar
  11. 11.
    LUKE, C. L., 1964, Analyt. Chem., 36, 318.CrossRefGoogle Scholar
  12. 12.
    BIRKS, Electron Probe Micro-analysis, Interscience, New York, 1963.Google Scholar
  13. 13.
    STONE, R. R. and POTTS, K. T., 1963, Norelco Reporter, 10, 94.Google Scholar
  14. 14.
    SCHREIBER, T. P., OTTOLINI, A. C. and JOHNSON, J. L., 1963, Appl. Spectr., 17, 17.ADSCrossRefGoogle Scholar
  15. 15.
    SALMON, Advances in X-ray Analysis, Plenum, New York, 1962, 5, 389.Google Scholar
  16. 16.
    RHODIN, T. N., 1955, Analyt. Chem., 27, 1857.CrossRefGoogle Scholar
  17. 17.
    ADDINK, N. W. H., 1959, Rev. Universelle des Mines, 15, 530.Google Scholar
  18. 18.
    NORRISH, K. and SWEATMAN, T. R., 1962, Divisional Report 11/61, C.S.I.R.O. Division of Soils, Adelaide.Google Scholar
  19. 19.
    PFEBFFER, H. G. and ZEMANY, P. D., 1954, Nature, 174, 397.ADSCrossRefGoogle Scholar
  20. 20.
    GUNN, E. L., 1961, Analyt. Chem., 33, 921.CrossRefGoogle Scholar
  21. 21.
    JOHNSON, J. L. and NAGEL, B. E., 1963, Microchemica Acta, 3, 525.CrossRefGoogle Scholar
  22. 22.
    CAMPBELL, W. J. and THATCHER, J. W., 1962, U.S. Bur. Mines Rept. Invest 5966.Google Scholar
  23. 23.
    MACDONALD, G. L., Proceedings of 4th M.E.L. Conference on X-ray Analysis, (Sheffield, 1964) Philips, Eindhoven.Google Scholar

Copyright information

© N.V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands 1969

Authors and Affiliations

  • R. Jenkins
  • J. L. De Vries

There are no affiliations available

Personalised recommendations