Advertisement

Matrix Effects

  • R. Jenkins
  • J. L. De Vries

Abstract

The basis of quantitative X-ray fluorescence spectrometry is to follow the identification of a certain element in a mixture of elements (the matrix) with a measurement of the intensity of one of its characteristic lines, then to use this intensity to estimate the concentration of that element. By use of a range of standard materials a calibration curve can be constructed in which the peak response of a suitable characteristic line is correlated with the concentration of the element. Fig. 6.1 illustrates a typical case where the peak counting rates (R b ) from a range of elements (1–5) are plotted against the concentration of a certain element i. By fitting the calibration curve parameters into the equation for a straight line
$$ \eqalign{ y = mx + c \cr \left( {{R_p}} \right)i = {m_i}\left( {\% i} \right) + \left( {{R_b}} \right)i \cr \% i = \frac{{({R_p})i - ({R_b})i}} {{{m_i}}} \cr} $$
(6.1)
it will be seen that the slope of the curve “m” is equal to counts per second per percent and this can be used as a calibration factor for the element in that specific matrix. Once m has been established from standards the net peak minus background response can be divided by m to give the concentration of the element in an unknown but similar matrix. If such a curve were constructed in practice, by an experienced operator using a series of completely homogeneous standards it would be found that, on repeating each measurement a number of times, a certain degree of spread in the count data would occur.

Keywords

Matrix Effect Wavelength Shift Elemental Interaction High Alloy Steel Mass Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PANTONY, D. A., 1961, Royal Institute of Chemistry Lecture Series, No. 2.Google Scholar
  2. 2.
    BIRKS, X-Ray Spectrochemical Analysis, New York, Interscience, 1959.Google Scholar
  3. 3.
    BIRKS, L. S. and HARRIS, D. L., 1962, Analyt. Chem., 34, 943.CrossRefGoogle Scholar
  4. 4.
    MITCHELL, Encyclopedia of Spectroscopy, Reinhold, New York, 1960, 0. 736.Google Scholar
  5. 5.
    MITCHELL, B. J., 1961, Analyt. Chem., 33, 917.CrossRefGoogle Scholar
  6. 6.
    GLOCKER, R. and SCRIEBER, H., 1928, Ann. Physik., 85, 1089.ADSCrossRefGoogle Scholar
  7. 7.
    LEIBHAFSKY, H. A., 1954, Analyt. Chem., 26, 26.CrossRefGoogle Scholar
  8. 8.
    ADLER, I. and AXELROD, J. M., 1955, Spectrochim. Acta, 7, 91.ADSCrossRefGoogle Scholar
  9. 9.
    CLAISSE, F., 1957, Norelco Reporter, 3, 3.Google Scholar
  10. 10.
    CLAISSE, F. and SAMSON, C., 1962, Report S67, Province de Quebec, Service des Laboratoires.Google Scholar
  11. 11.
    BLANQUET, P., Vanalyse par spectrographie et diffraction de rayons X, (Madrid, 1962), Philips, Eindhoven, 85.Google Scholar
  12. 12.
    POOLE, A. B., 1966, Private communication.Google Scholar
  13. 13.
    GUNN, Advances in X-ray analysis, Plenum, New York, 1960, 4, 382.Google Scholar
  14. 14.
    GLOTOVA, A. N., LOEV, N. F. and GUINICHEVA, T. I., 1964, Ind. Lab., 30, 863.Google Scholar
  15. 15.
    DE VRIES, J. L., Proceedings of XII International Spectroscopy Colloquium, Hilger & Watts, London, 1965.Google Scholar
  16. 16.
    HAGSTROM, S., NORDLING, C. and SIEGBAHN, K., 1964, Z. Physik, 178, 439.ADSCrossRefGoogle Scholar
  17. 17.
    NORDLING, C., HAGSTROM, S. and SIEGBAHN, K., 1964, Z. Physik, 170, 433.ADSCrossRefGoogle Scholar
  18. 18.
    FRIPIAT, J. u., LEONARD, M. and DE KIMPE, Analyse par les rayonnements X, (Bruxelles, 1964) Philips, Eindhoven.Google Scholar
  19. 19.
    LEONARD, A., SUZUKI, SHO, FRIPIAT, J. J. and DE KIMPE, C., 1964, J. Chem. Phys., 68, 2608.CrossRefGoogle Scholar
  20. 20.
    BAUN, W. L., and FISCHER, D. W., 1964, Nature, 204, 642.ADSCrossRefGoogle Scholar
  21. 21.
    BAUN, W. L., FISCHER, D. W., 1965, Analyt. Chem., 37, 902.CrossRefGoogle Scholar
  22. 22.
    FISCHER, D. W. and BAUN, W. L., 1964, A.F. Materials Laboratory Report, No. RDT-TDR-63–4232.Google Scholar
  23. 23.
    FISCHER, D. W., and BAUN, W. L., 1965, J. Chem. Phys., 43, 2075.ADSCrossRefGoogle Scholar
  24. 24.
    WHITE, E. W., McKINSTRY, H. A. and BATES, T. F., Advances in X-ray analysis, Plenum, New York, 1958, 2, 239.Google Scholar
  25. 25.
    ZEMANY, P. D., 1960, Analyt. Chem., 32, 595.CrossRefGoogle Scholar
  26. 26.
    FLUGGE, Encyclopedia of Physics, Springer, Berlin, 1957, Vol. 30, p. 156.Google Scholar
  27. 27.
    HAGLUND, P., 1941, Arkiv. Mat. Astrom. Fysik. Ser. A28, No. 8.Google Scholar
  28. 28.
    VAN NORDSTRAND, R. A., 1960, Advances in Catalysis, 12, 149.CrossRefGoogle Scholar
  29. 29.
    LEVY, R. M., 1965, J. Chem. Phys., 43, 1946.Google Scholar

Copyright information

© N.V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands 1969

Authors and Affiliations

  • R. Jenkins
  • J. L. De Vries

There are no affiliations available

Personalised recommendations