Advertisement

Dispersion

  • R. Jenkins
  • J. L. De Vries

Abstract

The basic function of the spectrometer is to provide a means of isolating a selected wavelength from the polychromatic beam of characteristic radiation excited in the sample, in order that individual intensity measurements can be made. Although this is normally achieved by making use of the specific diffracting property of large single crystals, this is not by any means the only way of selecting a specific wavelength range and other methods which have been employed include the use of diffraction gratings,1) balanced filters2–3) and energy resolution in the form of pulse height selection. The usual wavelength range of the conventional X-ray spectrometer is between 0.2 to 15 Å and over this region the single crystal is certainly the most efficient and versatile means of dispersion, particularly in combination with pulse height selection for the removal of harmonic overlap (See Chapter 4). However, the recent successful attempts to extend the operating range of the X-ray spectrometer into the soft X-ray and vacuum ultra-violet region have provided greater incentive for a more detailed study of the use of gratings in this region as well as the exclusive use of pulse height selection.

Keywords

Analyse Crystal Lithium Fluoride Potassium Hydrogen Phthalate Ammonium Dihydrogen Phosphate Extra Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    HOLLIDAY, J. E., 1960, Rev. Sci. Instr. 31, 891.ADSCrossRefGoogle Scholar
  2. 2.
    TANEMURA, T., 1961, Rev. Sci. Instr., 32, 364.ADSCrossRefGoogle Scholar
  3. 3.
    MECKE, P., 1963, Z. Analyt, Chem., 193, 241.CrossRefGoogle Scholar
  4. 4.
    SPIELBERG, N., PARRISH, W. and LOWITZSCH, K., 1959, Spectrochim. Acta, 13, 564.ADSCrossRefGoogle Scholar
  5. 5.
    JOHANN, H. H., 1931, Z. Physik, 69, 185.ADSCrossRefGoogle Scholar
  6. 6.
    JOHANSSON, T., 1933, Z. Physik, 82, 507.ADSCrossRefGoogle Scholar
  7. 7.
    ELION, H. A. and OGILVIE, R. E., 1962, Rev. Sci. Instr., 33, 753.ADSCrossRefGoogle Scholar
  8. 8.
    CAUCHOIS, Y., 1932, J. Phys. Radium, 3, 320.CrossRefGoogle Scholar
  9. 9.
    BIRKS, L. S. and BROOKS, E. J., 1955, Analyt. Chem., 27, 1147.CrossRefGoogle Scholar
  10. 10.
    LIEBHAFSKY, PFEIFFER, WINSLOW and ZEMANY, X-Ray Absorption and Emission inAnalytical Chemistry, Wiley, New York, 1960, Ch. 4.Google Scholar
  11. 11.
    BIRKS, X-Ray Spectrochemical Analysis, Interscience, New York, 1959, Ch. 3.Google Scholar
  12. 12.
    BIRKS, Electron Probe Microanalysis, Interscience, New York, 1963, Ch. 6.Google Scholar
  13. 13.
    WYTZES, S. A., 1961, Philips Research Reports, 16, 201.Google Scholar
  14. 14.
    SOLLER, W., 1924, Phys. Rev., 24, 158.ADSCrossRefGoogle Scholar
  15. 15.
    BUWALDA, J., 1964, Philips Serving Science and Industry, 10, 22.Google Scholar
  16. 16.
    WYTZES, S. A., Philips Technical Review, 27, 11.Google Scholar
  17. 17.
    KLUG, ALEXANDER, X-Ray Diffraction Procedures, Wiley, New York, 1954, Ch. 3.MATHGoogle Scholar
  18. 18.
    ROSE, H. J., ADLER, J. and FLANAGAN, F. J., 1963, Appl. Spectroscopy, 17, 81.ADSCrossRefGoogle Scholar
  19. 19.
    U, W., Advances in X-Ray Analysis, Plenum, New York, 1964, 118.Google Scholar
  20. 20.
    SPIELBERG, N. and LADELL, J., 1960, J. Appl. Phys., 31, 1659.ADSCrossRefGoogle Scholar
  21. 21.
    SPIELBERG, N., 1965, Rev. Sci, Instr., 36, 1377.ADSCrossRefGoogle Scholar
  22. 22.
    EBERT, F. and WAGNER, A., 1957, Z. Metalk, 48, 616.Google Scholar
  23. 23.
    MACDONALD, G. L., Proceedings of 4th M.E.L. Conference on X-Ray Analysis, (Sheffield, 1964), Philips, Eindhoven, 11.Google Scholar
  24. 24.
    BIRKS, L. S. and SIOMKAJLO, J. M., 1962, Spectrochim. Acta, 18, 363.ADSCrossRefGoogle Scholar
  25. 25.
    FISCHER, D. W. and BAUN, W. L., 1964, U.S. Technical Documentary Report, No. RTD-TDR-63–4232.Google Scholar
  26. 26.
    DINKLAGE, J. and FRERICKS, R., 1963, J. Appl. Phys., 34, 1633.CrossRefGoogle Scholar
  27. 27.
    LANGMUIR, F., 1939, Proc. Roy, Soc., 170A, 1.ADSGoogle Scholar
  28. 28.
    BAUN, W. L. and FISCHER, D. W., 1963, U.S. Technical Documentary Report, No. ASD-TDR-63–310.Google Scholar
  29. 29.
    FRANKS, Proceedings of 3rd International Symposium on X-Ray Optics and X-RayMicroanalysis, Academic Press, New York, 1963, p. 199.Google Scholar
  30. 30.
    SAYCE, L. A. and FRANKS, A., 1964, Proc. Roy. Soc, 282A, 353.ADSGoogle Scholar

Copyright information

© N.V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands 1969

Authors and Affiliations

  • R. Jenkins
  • J. L. De Vries

There are no affiliations available

Personalised recommendations