Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 4)


Dissolve Organic Matter Ocean Color Water Color Spectral Irradiance Phytoplankton Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvesen, J.C., Millard, J.P., and Weaver, E.C., 1973. ‘Remote sensing of chlorophyll and temperature in marine and fresh waters,’ Astronaut. Acta., 18, 229–239.Google Scholar
  2. Austin, R.W., 1974. ‘The remote sensing of spectral radiance from below the ocean surface, ‘In Optical Aspects of Oceanography, edited by N.G. Jerlov and E.S. Nielsen, Academic Press, London. Ch. XIV, 317–344.Google Scholar
  3. Austin, R.W., 1981. ‘Remote sensing of the diffuse attenuation coefficient of ocean water,’ The 29th Symposium of the AGARD Electromagnetic Wave Propagation Panel on Special Topics in Optical Propagation, Monterey, Calif., 6–10 April.Google Scholar
  4. Austin, R.W., and Petzold, T.J., 1981. ‘The determination of the diffuse attenuation coefficient of sea Water using the coastal zone color scanner,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, p. 239–256.Google Scholar
  5. Banse, B., 1977. Determining the carbon—to—chlorophyll ratio of natural phytoplankton, Mar. Biol., 41, 199–212.Google Scholar
  6. Barton, E.D., Buyer, A., and Smith, R.L., 1977. ‘Temporal variations observed in the hydrographic regime near Cabo Corveiro in the N.W. African upwelling region, February to April 1974.’ Deep Sea Res., 24, 7–23.CrossRefGoogle Scholar
  7. Bricaud, A. and Morel, A., 1981. ‘Possible variations in the specific absorption by phytoplankton as a result of the discretness effect and change in pigment composition,’ IAMAP Scientific Assembly (Hamburg), (extended abstract) 18–20.Google Scholar
  8. Bricaud, A., Morel, A., and Prieur, L., 1981. ‘Absorption of dissolved organic matter of the sea (’yellow substance’) in the uv and visible domains,’ Limnology and Oceanography, 26, 43–53.CrossRefGoogle Scholar
  9. Clark, D.K., Baker, E.T., and Strong, A.E., 1980. ‘Upwelled spectral radiance distribution in relation to particulate matter in sea water,’ Boundary Layer Meteorology, 18, 287–298.CrossRefGoogle Scholar
  10. Clark, D.B.,, 1981. ‘Phytoplankton algorithms for the Nimbus-7 CZCS,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, pp. 227–238.Google Scholar
  11. Clarke, G.S., Ewing, G.C., and Lorenzen, C.J., 1970. ‘Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration,’ Science, 167, 1119–1121.PubMedCrossRefGoogle Scholar
  12. Clarke, G.K., and Ewing, G.C., 1974. ‘Remote spectroscopy of the sea for biological production studies,’ in Optical Aspects of Oceanography, edited by N.G. Jerlov and E.S. Nielsen, Academic Press, London. Ch. XVII, 389–413.Google Scholar
  13. Duntley, S.Q., 1942. ‘Optical properties of diffusing materials,’ J. Opt. Soc. Am., 32, 61–70.Google Scholar
  14. Gordon, H.R., 1976. ‘Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,’ Applied Optics, 15, 1974–1979.PubMedCrossRefGoogle Scholar
  15. Gordon, H.R., 1978. ‘Removal of atmospheric effects from satellite imagery of the oceans,’ Applied Optics, 17, 1631–1636.PubMedCrossRefGoogle Scholar
  16. Gordon, H.R., 1981a. ‘A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, pp. 257–266.Google Scholar
  17. Gordon, H.R., 1981b. ‘Reduction of error introduced in the processing of coastal zone color scanner—type imagery resulting from sensor calibration and solar irradiance uncertainty,’ Applied Optics, 20, 207–210.PubMedCrossRefGoogle Scholar
  18. Gordon, H.R., 1981c. ‘Remote sensing of ocean properties at optical wavelengths,’ IAMAP Scientific Assembly (Hamburg), (extended abstract) 128–131.Google Scholar
  19. Gordon, H.R., Brown, O.B., and Jacobs, M.M., 1975. ‘Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,’ Applied Optics, 14, 417–427.PubMedCrossRefGoogle Scholar
  20. Gordon, H.R., and Clark, D.g., 198Oa. ‘Remote sensing optical properties of a stratified ocean: an improved interpretation,’ Applied Optics, 19, 3428–3430.Google Scholar
  21. Gordon, H.R., and Clark, D.B., 1980b. ‘Atmospheric effects in the remote sensing of phytoplankton pigments,’ Boundary Layer Meteorology, 18, 299–313.CrossRefGoogle Scholar
  22. Gordon, H.R., and Clark, D.B., 1981. ‘Clear water radiances for atmospheric correction of coastal zone color scanner imagery,’ Applied Optics, 20, 4175–4180.PubMedCrossRefGoogle Scholar
  23. Gordon, H.R., Clark, D.B., Brown, J.W., Brown, O.B., and Evans, R.H., 1982. ‘Satellite measurement of the phytoplankton pigment concentration in the surface waters of a warm core Gulf Stream ring,’ J. Mar. Res., 40, 491–502.Google Scholar
  24. Gordon, H.R., Clark, D.B., Brown, J.W., Brown, O.B., Evans, R.H., and Broenkow, W.W., 1983. ‘Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,’ Applied Optics, 22, 20–36.PubMedCrossRefGoogle Scholar
  25. Gordon, H.R., Clark, D.B., Mueller, J.L., and Hovis, W.A., 1980. ‘Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,’ Science, 210, 63–66.PubMedCrossRefGoogle Scholar
  26. Gordon, H.R., and McCluney, W.R., 1975. ‘Estimation of the depth of sunlight penetration in the sea for remote sensing,’ Applied Optics, 14, 413–416.PubMedCrossRefGoogle Scholar
  27. Gordon, H.R., Mueller, J.L., and Wrigley, R.C., 1979. ‘Atmospheric correction of Nimbus-7 coastal zone color scanner imagery,’ Presented at IFAORS Workshop on ‘Interpretation of Remotely Sensed Data,’ Williamsburg, Virginia, May 23–25 (also in ’Remote Sensing of Oceans and Atmospheres,’ edited by A. Deepak, Academic Press, New York, 1980 ).Google Scholar
  28. Gower, J.F.R., Denman, B.L., and Holyer, R.J., 1980. ‘Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic turbulence,’ Nature, 288, 157–159.CrossRefGoogle Scholar
  29. Gower, J.F.R., and Denman, B.L., 1981. ‘Reply to Satellite sensed turbulent ocean structure,’ Nature, 294, 693–694.CrossRefGoogle Scholar
  30. Hobson, L.A., Menzel, D.W., and Barber, R.T., 1973. ‘Primary productivity and sizes of pools of organic carbon in the mixed layer of the ocean,’ Mar. Biol., 19, 298–306.CrossRefGoogle Scholar
  31. H6jerslev, N. and Jerlov, N.G., 1977. ‘The use of the colour index for determining quanta irradiance in the sea,’ Rep. Inst. Phys. Oceanogr., Univ. Copenhagen, No. 35, 12 pp.Google Scholar
  32. Hójerslev, N., 1980. ‘Water colour and its relation to primary production,’ Boundary Layer Meteorology, 18, 203–220.CrossRefGoogle Scholar
  33. HÓjerslev, N., 1981. ‘Assessment of some suggested algorithms on sea colour and surface chlorophyll,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, p. 347–354.Google Scholar
  34. Hovis, W.A., 1981. ‘The Nimbus-7 coastal zone color scanner (CZCS) program,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, pp. 213–225.Google Scholar
  35. Hovis, W.A., and Leung, S.C., 1977. ‘Remote sensing of ocean color,’ Optical Engineering, 16, 153–166.Google Scholar
  36. Hovis, W.A., Clark, D.S., Anderson, F.,Austin, R.W. Wilson, W.H., Baker, E.T., Ball, D., Gordon, H.R., Mueller, J.L., El Sayed, S.Y., Sturm, B., Wrigley, R.C., and Yentsch, C.S., 1980. ‘Nimbus-7 coastal zone color scanner: system description and initial imagery,’ Science, 210, 60–63.PubMedCrossRefGoogle Scholar
  37. Innamorati, M., 1978. ‘Spettri della radiazione sottemarina nell’arcipelago delle Galapagos,’ in Galapagos, studi e ricerche, Gruppo di Richerche scientifiche e techniche., Florence, 1–59.Google Scholar
  38. Jain, S.C., and Miller, J.R.,, 1976. ‘Subsurface water parameters: optimization approach to their determination from remotely sensed water color data,’ Applied Optics, 15, 886–890.PubMedCrossRefGoogle Scholar
  39. Jerlov, N.G., 1974. ‘Significant relationships between optical properties of the sea,’ in ‘Optical Aspects of Oceanography,’ edited by N.G. Jerlov and E.S. Nielsen, Academic Press, London. Ch. IV, 77–94.Google Scholar
  40. Joseph, J., 1950. ‘Untersuchungen;ber Ober— und Unterlichtmessungen in Meere und;ber ihren Zusammenhang mit Durchsichtigkeits messungen,’ Deut. Hydrograph., 3, 324–335.CrossRefGoogle Scholar
  41. Kirk, J.T.O., 1976. ‘Yellow substance (Gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal southeastern Australian waters,’ Aust. J. Mar. Freshwater Res., 27, 61–71.Google Scholar
  42. Kirk, J.T.O., 1981. ‘Monte Carlo study of the nature of the underwater light field in, and relationships between optical properties of, turbid yellow waters,’ Aust. J. Mar. Freshwater Res., 32, 517–532.Google Scholar
  43. Kozlyaninov, M.V., 1972. ‘The basic relationships between the hydro—optical parameters,’ in ‘Optics of the Ocean and the Atmosphere,’ edited by S.S. Shifrin, Nauka, pp. 5–24 (in Russian).Google Scholar
  44. Kozlyaninov, M.V. and Pelevin, V.N., 1965. ‘On the application of a one—dimensional approximation in the investigation of the propagation of optical radiation in the sea,’ Tr. Inst. Okeanol. Akad. Nauk. SSSR, 77, 73–79. Also, 1966, U.S. Dept. Comm. Jt. Publ. Res. Ser. Rep., 36, (816) 54–63 (English translation).Google Scholar
  45. Lesieur, M., and Sadourny, R., 1981. ‘Satellite—sensed turbulent ocean structure,’ Nature, 294, 674.CrossRefGoogle Scholar
  46. Maul, G.A., and Gordon, H.R., 1975. ‘On the use of the Earth Resources Technology Satellite (LANDSAT—I) in optical oceanography,’ Rem. Sens. Environ., 4, 95–128.Google Scholar
  47. Morel, A., 1970. ‘Examen des resultats experimentaux concernant la diffusion de la lumiere par les eaux de mer,’ in ‘Electromagnetics of the Sea,’ AGARD Conference Proceedings, 77, 300–309.Google Scholar
  48. Morel, A., 1973a. ‘Measurements of spectral and total radiant flux,’ p. F1—F341, in SCOR—UNESCO Data Rep. Discoverer Expedition, edited by T.E. Tyler, S.I.O. Ref. 73–16.Google Scholar
  49. Morel, A., 1973b. ‘Diffusion de la lumiere par les eaux de mer; resultats experimentaux et approche theorique,’ in ‘Optics of the Sea,’ AGARD Lecture Series, 63, Sect. 3, 1–76.Google Scholar
  50. Morel, A., 1974. ‘Optical properties of pure water and sea water,’ in ‘Optical Aspects of Oceanography,’ edited by N.G. Jerlov and E.S. Nielsen, Academic Press, London. Ch. I, 1–24.Google Scholar
  51. Morel, A., 1978. ‘Available, usable, and stored radiant energy in relation to marine photosynthesis,’ Deep Sea Res., 25, 673–688.CrossRefGoogle Scholar
  52. Morel, A., 1979. ‘Depth of the euphotic zone, average pigment concentration, and primary production efficiency,’ IAPSO-UGGI XVII General Assembly ( Canberra ), Proces-verbaux, 15, 116–117.Google Scholar
  53. Morel, A., 1980. ‘In-water and remote measurement of ocean color,’ Boundary Layer Meteorology, 18, 177–201.CrossRefGoogle Scholar
  54. Morel, A., 1982. ‘Optical properties of radiant energy in the waters of the Guinea dome and the Mauritanian upwelling area in relation to primary production,’ Rapp. P-v. Reun. Cons. Int. Explor. Mer., 180, 94–107.Google Scholar
  55. Morel, A., and Bricaud A., 1981a. ‘Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, pp. 313–328.Google Scholar
  56. Morel, A., and Bricaud A., 1981b. ‘Theoretical results concerning light absorption in a discrete medium and application to the specific absorption of phytoplankton,’ Deep Sea Res., 28A, 11, 1357–1393.Google Scholar
  57. Morel, A., and Caloumenos, L., 1973. ‘Mesure d’eclairements sous marins, flux de photons et analyse spectrale,’ Centre Rech. Oceanogr., Villefranche-sur-mer, Rapp. 11, pp 242.Google Scholar
  58. Morel, A., and Gordon, H.R.,, 1980. ‘Report of the working group on water color,’ Boundary Layer Meteorology, 18, 343–355.CrossRefGoogle Scholar
  59. Morel, A., and Prieur, L., 1975a. ‘Analyse spectrale des coefficients d’attenuation diffuse, de reflexion diffuse, d’absorption, et de retrodiffusion pour diverses regions marines,’ Centre Rech. Oceanogr., Villefranche—sur—mer Rapp. 17, 157 pp.Google Scholar
  60. Morel, A., and Prieur, L., 1975b. ‘Analyse spectrale du facteur de reflexion diffuse de la mer. IAPSO—IGGU XVI General Assembly ( Grenoble ), Proces—verbaux, 14, 177–178.Google Scholar
  61. Morel, A., and Prieur, L., 1976. ‘Eclairements sous marins,’ in Resultats des Campagnes a la mer, No 10, CINECA 5—Charcot, 1–256. Publications CNEXO.Google Scholar
  62. Morel, A., and Prieur, L., 1977a. ‘Analysis of variations in ocean color,’ Limnology and Oceanography, 22, 709–722.CrossRefGoogle Scholar
  63. Morel, A., and Prieur, L., 1977b. ‘Energie radiative disponible pour la photosynthese,’ Resultats des campagnes a la mer, No 13, fasc. 2, Campagne GUIDOM—Charcot, 33–62, Publications CNEXO.Google Scholar
  64. Morel, A., Prieur, L., and Matsumoto, M., 1978. ‘Mesures d’optique marine,’ Resultats des campagnes a la mer, No 6, Campagne ANTIPROD 1, 99–141, Publications CNEXO.Google Scholar
  65. Morel, A., and Smith, R.C., 1982. Terminology and units in optical oceanography, Marine Geodesy, 5, 335–349.CrossRefGoogle Scholar
  66. Mueller, J.L., and LaViolette, P.E., 1981. ‘Signatures of ocean fronts observed with the Nimbus-7 CZCS,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, pp. 295–302.Google Scholar
  67. Neckel, H., and Labs, D., 1981. ‘Improved data of solar spectral irradiance from 0.33 to 1.25µ,’ Solar Physics, 74, 231–249.CrossRefGoogle Scholar
  68. Okami, N., Kishino, M., and Sugihara, S., 1978. ‘Measurements of spectral irradiance in the seas around the Japanese Islands,’ Tech Rep. of Phys. Oceanogr. Lab., No 2, 129 pp.Google Scholar
  69. Okami, N., Kishino, M., Sugihara, S., Unoki, S., Muneyama, K., Toyota, T., Nakajima, T., Sasaki, Y., and Emura, T., 1981 ‘Measurements of spectral irradiance in Tokyo Bay,’ Tech Rep. of Phys. Oceanogr. Lab., No 5, 75 pp.Google Scholar
  70. Parsons, T.R., and Takahashi, M., 1973. ‘Biological Oceanographic Processes,’ Pergamon Press, Oxford. 184 pp.Google Scholar
  71. Platt, T., Denman, K.L., and Jassby, A.D., 1977. ‘Modeling the productivity of phytoplankton,’ in ‘The Sea,’ Vol. 6, edited by Goldberg, E.D., McCave, I.N., O’Brien, J.J., and Steele, J.H., Ch. 21, 807–856.Google Scholar
  72. Preisendorfer, R.W., 1961. ‘Application of radiative transfer theory to light measurements in the sea,’ UGGI Monogr. No. 10 (Symposium on Radiant Energy in the Sea), 11–30Google Scholar
  73. Prieur, L., 1976. ‘Transfert radiatif dans les eaux de mer. Application a la determination de parametres optiques caracterisant leur teneur en substances dissoutes et leur contenu en particules,’ D.Sci. Thesis, Univ. Pierre et Marie Curie, 243 pp.Google Scholar
  74. Prieur, L., and Morel, A., 1975. ‘Relations theoriques entre le facteur de reflexion diffuse de l’eau de mer a diverses profondeurs et les caracteristiques optiques (absorption, diffusion),’ IAPSO-IGGU XVI General Assembly (Grenoble)Google Scholar
  75. Prieur, L., and Sathyendranath, S., 1981. ‘An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,’ Limnology and Oceanography., 26, 671–689.CrossRefGoogle Scholar
  76. Quenzel, H., and Kaestner, M., 1980. ‘Optical properties of the atmosphere: calculated variability and application to satellite remote sensing of phytoplankton,’ Applied Optics, 19, 1338–1344.PubMedCrossRefGoogle Scholar
  77. Ramsey, R.C., and White, P.G., 1973. ‘Ocean color data analysis applied to MOCS and SIS data,’ Final Report. NOAA Contract No. N62306–72—C-0037, 75 pp.Google Scholar
  78. Smith, R.C., 1973. ‘Scripps spectroradiometer data,’ pp. Gl—G160, in SCOR—UNESCO Data Rep. Discoverer Expedition, edited by J.E. Tyler, S.I.O. Ref. 73–16.Google Scholar
  79. Smith, R.C., 1974. ‘Structure of solar radiation in the upper layers of the sea,’in ‘Optical Aspects of Oceanography,’ edited by N.G. Jerlov and E.S. Nielsen, Academic Press, London. Ch. V, 95–119.Google Scholar
  80. Smith, R.C., and Baker, B.S., 1978a. ‘The bio—optical state of ocean waters and remote sensing,’ Limnology and Oceanography, 23, 247–259.CrossRefGoogle Scholar
  81. Smith, R.C., and Baker, B.S., 1978b. ‘Optical classification of natural waters,’ Limnology and Oceanography, 23, 260–267.CrossRefGoogle Scholar
  82. Smith, R.C., and Baker, B.S., 1982. ‘Oceanic chlorophyll concentrations as determined using Nimbus-7 Coastal Zone Color Scanner imagery,’ J. Mar. Biol., 66, 269–279.Google Scholar
  83. Smith, R.C., Eppley, R.W., and Baker, K.S., 1982. ‘Application of satellite CZCS chlorophyll images for the study of primary production in Southern California coastal waters’, J. Mar. Biol., 66, 281–288.Google Scholar
  84. Smith, R.C., and Wilson, W.H., 1981. ‘Ship and satellite bio—optical research in the California Bight,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, p. 281–294.Google Scholar
  85. Sturm, B., 1981. ‘Ocean color remote sensing and the retrieval of surface chlorophyll in coastal waters using the Nimbus-7 CZCS,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, p. 267–280.Google Scholar
  86. Tanre, D., Herman, M., Deschamps, P.Y., and de Leffe, A., 1979. ‘Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,’ Applied Optics, 18, 3587–3594.PubMedCrossRefGoogle Scholar
  87. Tassan, S., 1981. ‘A global sensitivity analysis for the retrieval of chlorophyll concentrations from remotely sensed radiances — the influence of wind,’ in ‘Oceanography from Space,’ edited by J.R.F. Gower, Plenum Press, New York, p. 371–376.Google Scholar
  88. Tyler, J.E., 1960. ‘Radiance distribution as a function of depth in an underwater environment,’Bulletin of the Scripps Institution of Oceanography of the University of California, La Jolla, California, 7, 363–412.Google Scholar
  89. Tyler, J.E., and Smith, R.C., 1970. ‘Measurements of Spectral Irradiance,’ Gordon and Breach, New York, 103 pp.Google Scholar
  90. Viollier, M., Deschamps, P.Y., Lecomte, P., 1978. ‘Airborne remote sensing of chlorophyll content under cloudy sky as applied to the tropical waters in the Gulf of Guinea,’ Remote Sensing of Environment, 7, 235–248.CrossRefGoogle Scholar
  91. Viollier, M.,Tanre, D., and Deschamps, P.Y., 1980. ‘An algorithm for remote sensing of water color from space,’ Boundary Layer Meteorology, 18, 247–267.CrossRefGoogle Scholar
  92. Viollier, M., 1982. ‘Radiance calibration of the Coastal Zone Color Scanner: a proposed adjustment,’ Applied Optics, 21, 1142–1145.PubMedCrossRefGoogle Scholar
  93. Wrigley, R.C., 1980. ‘Frontal activity in Northern Central Pacific via CZCS,’ Trans. Amer. Geophys. Union, 46, 1001.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MiamiCoral GablesUSA
  2. 2.Laboratoire de Physique et ChimieUniversité Pierre et Marie CurieVillefranche-sur-MerFrance

Personalised recommendations