Advertisement

Radionuclide and Nuclear Magnetic Resonance Methods of Evaluating Atherosclerosis

  • Thomas F. Budinger
  • Edward Ganz
  • David C. Price
  • Martin Lipton
  • Brian R. Moyer
  • Yukio Yano
  • James B. Bassingthwaighte

Abstract

Radionuclide techniques devoted to the evaluation of the atherosclerotic process have focused on measurements of function and metabolism of the heart and brain that might be affected by atherosclerosis, as well as on detection of thrombus formation in major arteries within and leading to these organs. This approach has more recently been joined by efforts to study the biochemical behavior of the arterial wall itself as well as the interaction of blood constituents with the components of the arteries. There is now sufficient basis to predict that we will be able to study facets of the atherosclerotic process in man using not only labeled platelets, labeled fibrin, and labeled lipoproteins, but labeled monoclonal antibodies to arterial wall constituents, fibrin, and lipoprotein receptor sites.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Method Residue Function Positron Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freeman LM, Blaufox MD (eds) (1979) Cardiovascular nuclear medicine. I. Semin Nucl Med 9 (4)Google Scholar
  2. 2.
    Freeman LM, Blaufox MD (eds) (1980) Cardiovascular nuclear medicine. II. Semin Nucl Med 10 (1)Google Scholar
  3. 3.
    Freeman LM, Blaufox MD (eds) (1980) Cardiovascular nuclear medicine. III. Semin Nucl Med 10 (2)Google Scholar
  4. 4.
    Budinger TF (1979) Physiology and physics of nuclear cardiology. In: Willerson JT (ed) Nuclear cardiology. FA Davis Company, Philadelphia, pp 9–78Google Scholar
  5. 5.
    Strauss W (1982) Nuclear medicine methods for noninvasive studies of atherosclerosis. In: Budinger TF, Berson AS, Ringqvist I, Mock MB, Watson JT, Powell RS (eds) Noninvasive techniques for assessment of atherosclerosis in peripheral, carotid, and coronary arteries. Raven Press, New YorkGoogle Scholar
  6. 6.
    Willerson JT, Parkey RW, Bonte FJ, Lewis SE, Corbett J, Buja LM (1980) Pathophysiologic considerations and clinico- pathological correlates of technetium-99m stannous pyro- phosphate myocardial scintigraphy. Semin Nucl Med 10: 54–69PubMedCrossRefGoogle Scholar
  7. 7.
    Kinlough-Rathbone RL, Mustard JF (1981) Atherosclerosis. Current concepts. Am J Surg 141: 638–643PubMedCrossRefGoogle Scholar
  8. 8.
    Fuster V, Chesebro JH (1981) Antithrombotic therapy: role of platelet-inhibitor drugs. I. Current concepts of thrombogenesis: role of platelets. III. Management of arterial thromboembolic and atherosclerotic disease. Mayo Clinic Proc 56:102–112, 265–273Google Scholar
  9. 9.
    DeNardo SJ, DeNardo GL (1977) Iodine-123-fibronogen scintigraphy. Semin Nucl Med 7: 245–251PubMedCrossRefGoogle Scholar
  10. 10.
    Coleman RE, Harwig SL, Harwig JF, Siegel BA, Welch MJ (1975) Fibrinogen uptake by thrombi: Effect of thrombus age. J Nucl Med 16: 370–373PubMedGoogle Scholar
  11. 11.
    Thakur ML, Welch MJ, Joist JH, Coleman RE (1976) Indium-111 labeled platelets: Studies on preparation and evaluation of in vitro and in vivo functions. Thromb Res 9: 345–357PubMedCrossRefGoogle Scholar
  12. 12.
    Scheffel U, McIntyre PA, Evatt B, Dvornicky JA Jr, Natarajan TK, Bolling DR, Murphy EA (1977) Evaluation of indium-111 as a new high photon yield gamma-emitting “physiological” platelet label. The Johns Hopkins Med J 140: 285–293Google Scholar
  13. 13.
    Price DC, Hartmeyer JA, Prager RJ, Lipton MJ (1980) Evaluation of in vivo thrombus formation in dogs, using indium111-oxide labeled autologous platelets. In: Thakur ML, Gottschalk A (eds) Indium-111 labeled neutrophils, platelets, and lymphocytes. Trivirum Publishing Company, New York, pp 183–186Google Scholar
  14. 14.
    Davis HH II, Siegel BA, Sherman LA, Heaton WA, Naidich TP, Joist JH, Welch MJ (1980) Scintigraphic detection of carotid atherosclerosis with indium-111-labeled autologous platelets. Circulation 61: 982–988PubMedGoogle Scholar
  15. 15.
    Mustard JF (1979) Thrombosis and arterial disease. In: Joist JH, Sherman LA (ed) Venous and arterial thrombosis. Grune and Stratton, New York, pp 205–221Google Scholar
  16. 16.
    Harker LA, Ross R, Glomset JA (1978) The role of endothelial cell injury and platelet response in atherogenesis. Thromb Haemost 39: 312–321PubMedGoogle Scholar
  17. 17.
    Harker LA (1978) Platelet survival time: its measurement and use. In: Spaet TH (ed) Progress in hemostasis and thrombosis, vol 4. Grupe and Stratton, New York, pp 321–347Google Scholar
  18. 18.
    Kaplan KL (1978) Proteins secreted by platelets. Significance in detecting thrombosis. Adv Exp Med Biol 102: 105–120PubMedGoogle Scholar
  19. 19.
    Roberts AB, Lees AM, Fallon JT, Strauss HW, Lees RS (1982) Determinants of O-density (LDL) accumulation in the healing arterial wall. Circulation IV - 45Google Scholar
  20. 20.
    Lees RS, Lees AM, Strauss HW (1982) Extracorporeal imaging of human atherosclerosis. Clin Res 30: 398A (abstr)Google Scholar
  21. 21.
    Brown MS, Kovanen PT, Goldstein JL (1981) Regulation of plasma cholesterol by lipoprotein receptors. Science 212: 628–635PubMedCrossRefGoogle Scholar
  22. 22.
    DiCorleto PE, McAuliffe JB, Ross R (1982) Isolation of monoclonal antibodies that are specific for vascular smooth muscle cells. FASEB Mini-symposium No. 4013.Google Scholar
  23. 23.
    Ross R, Whight TN, Strandness E, Thiele BL (1982) Human atherosclerosis. I. Fine structure and cell culture. Circulation IV-45 (abstr)Google Scholar
  24. 24.
    DeLand FH, Kim EE, Simmons G, Goldenberg DM (1980) Imaging approach in radioimmunodetection. Cancer Res 40: 3046–3049PubMedGoogle Scholar
  25. 25.
    Vogel RA, Kirch D, LeFree M, Steele P (1978) A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 19: 648–654PubMedGoogle Scholar
  26. 26.
    Koral KF, Rogers WL, Knoll GF (1975) Digital tomographic imaging with time-modulated pseudorandum coded aperture and an Anger camera. J Nucl Med 16: 402–413PubMedGoogle Scholar
  27. 27.
    Koral KF, Rogers WL (1979) Application of ART to time-coded emission tomography. Phys Med Biol 24: 879–894PubMedCrossRefGoogle Scholar
  28. 28.
    Gottschalk SC, Smith KA, Wake RH (1980) Comparison of seven pinhole and rotating slant tomography of a cardiac phantom. J Nucl Med 21: P27 (abstr)Google Scholar
  29. 29.
    Chang W, Lin SL, Henkin RE (1980) A rotatable quadrant slant hole collimator for tomography (QSH): a stationary scintillation camera based SPECT system. In: Sorenson JA (ed) Single photon emission computed tomography and other selected computer topics. Society of Nuclear Medicine, New York, pp 81–94Google Scholar
  30. 30.
    Budinger TF (1980) Physical attributes of single-photon tomography. J Nucl Med 21: 579–592PubMedGoogle Scholar
  31. 31.
    Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In vivo simulation of thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828PubMedGoogle Scholar
  32. 32.
    Rizi HR, Kline RC, Thrall JH, Besozzi MC, Keyes JW Jr, Rogers WL, Clare J, Pitt B (1981) Thallium-201 myocardial scintigraphy: A critical comparison of seven-pinhole tomography and conventional planar imaging. J Nucl Med 22: 493–499PubMedGoogle Scholar
  33. 33.
    Stokely EM, Tipton DM, Buja LM, Lewis SE, DeVous MD Sr, Bonte FJ, Parkey RW, Willerson JT (1981) Quantitation of experimental canine infarct size using multipinhole single-photon tomography. J Nucl Med 22: 55–61PubMedGoogle Scholar
  34. 34.
    Tamaki N, Mukai T, Ishii Y, Yonekura Y, Kambara H, Kawai C, Torizuka K (1981) Clinical evaluation of thallium-201 emission myocardial tomography using a rotating gamma camera: Comparison with seven-pinhole tomography. J Nucl Med 22: 849–855PubMedGoogle Scholar
  35. 35.
    Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133-Xenon inhalation and emission tomography. Stroke 12: 284–288PubMedCrossRefGoogle Scholar
  36. 36.
    Bonte FJ, Stokely EM (1981) Single-photon tomographic study of regional cerebral blood flow in stroke. J Nucl Med 22: 1049–1053PubMedGoogle Scholar
  37. 37.
    Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, Wu JL, Lin TH, Phelps ME (1n?i) Quantifying local cerebral blood flow by n-isopropyl-p- I-iodoamphetamine (IMP) tomog- raphy. J Nucl Med 23: 196–203Google Scholar
  38. 38.
    Hill TC, Holman BL, Lovett R, O’Leary DH, Front D, Magistretti P, Zimmerman RE, Moore S, Clouse ME, Wu JL, Lin TH, Baldwin RM (1982) Initial experience with SPECT (single photon computerized tomography) of the brain using n-isopropyl I-123-p-iodoamphetamine. J Nucl Med 23: 191–195PubMedGoogle Scholar
  39. 39.
    Budinger TF (1982) Positron emission tomography: Limitation and potentials for studying atherosclerosis. In: Budinger TF, Berson AS, Ringqvist I, Mock MB, Watson JT, Powell RS (eds) Noninvasive techniques for assessment of atherosclerosis in peripheral, carotid, and coronary arteries. Raven Press, New YorkGoogle Scholar
  40. 40.
    Deutsch E, Bushong W, Glavan KA, Elder RC, Sodd VJ, Scholz KL, Fortman DL, Lukes SJ (1981) Heart imaging with cationic complexes of technetium. Science 214: 85–86PubMedCrossRefGoogle Scholar
  41. 41.
    Brownell GL, Budinger TF, Lauterbur PC, McGeer PL (1982) Positron tomography and nuclear magnetic resonance imaging. Science 215: 619PubMedCrossRefGoogle Scholar
  42. 42.
    Ter-Pogossian MM, Klein MS, Markham J, Roberts R, Sobel BE (1980) Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with C-labeled palmitate. Circulation 61: 242–255PubMedGoogle Scholar
  43. 43.
    Bassingthwaighte JB (1977) Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: Flow estimation from tracer washout. Cardiovasc Dis 20: 165–189CrossRefGoogle Scholar
  44. 44.
    Derenzo SE, Budinger TF, Huesman RH, Cahoon JL, Vuletich T (1981) Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci NS-28: 81–89CrossRefGoogle Scholar
  45. 45.
    Yano Y, Budinger TF, Chiang G, O’Brien HA, Cent PM (1979) Evaluation and application of alumina-based Rb generators charged with high levels of Sr-82/85. J Nucl Med 20: 961–966PubMedGoogle Scholar
  46. 46.
    Gould KL, Schelbert HR, Phelps ME, Hoffman EJ (1979) Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. Am J Cardiol 43: 200–208PubMedCrossRefGoogle Scholar
  47. 47.
    Sobel BE, Weiss ES, Welch MJ, Siegel BA, Ter-Pogossian MM (1977) Detection of remote myocardial infarction in patients 1}th positron emission transaxial tomography and intravenous C-palmitate. Circulation 55: 853–857PubMedGoogle Scholar
  48. 48.
    Ter-Pogossian MM, Klein MS, Markham J, Roberts R, Sobel B (1980) Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with C-labeled palmitate. Circulation 61: 242–255PubMedGoogle Scholar
  49. 49.
    Phelps ME, Hoffman EJ, Selin C, Huang SC, Robinson G, MacDonald N, Schelbert H, Kuhl DE (1978) Investigation of [F] 2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 19: 1311–1319PubMedGoogle Scholar
  50. 50.
    Goldstein RA, Klein MS, Welch MJ, Sobel BE (1980) External assessment of myocardial metabolism with C-11 palmitate in vivo. J Nucl Med 21: 342–348PubMedGoogle Scholar
  51. 51.
    Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR (1982) Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23: 577–586PubMedGoogle Scholar
  52. 52.
    Schelbert HR, Henze E, Phelps ME (1980) Emission tomography of the heart. Semin Nucl Med 10: 355–375PubMedCrossRefGoogle Scholar
  53. 53.
    Kobayashi K, Neely JR (1979) Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44: 166–179PubMedGoogle Scholar
  54. 54.
    Bergmann SR, Hack S, Tweson T, Velch MJ, Sobel BE (1980) The dependence of accumulation of NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61: 34–43Google Scholar
  55. 55.
    Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63: 1259–1272PubMedCrossRefGoogle Scholar
  56. 56.
    Gelbard AS Clarke LP, Laughlin JS (1974) Enzymatic synthesis and use of N-labeled L-asparagine for myocardial imaging. J Nucl Med 15: 1223–1225PubMedGoogle Scholar
  57. 57.
    Majumdar C, Stark V, Lathrop K, Harper PV (1978) Species differences in the myocardial localization of N-13-L-asparagine. J Nucl Med 19: 701 (abstr)Google Scholar
  58. 58.
    Mudge GH, Mills RM, Taegtmeyer H, Gorlin R, Lesch M (1976) Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 58: 1185–1192PubMedCrossRefGoogle Scholar
  59. 59.
    Gelbard AS, Benua RS, Reiman RE, McDonald JM, Vomero JJ, Laughlin JS (1980) Imaging of the human heart after administration of L-(N-13)glutamate. J Nucl Med 21: 988–991PubMedGoogle Scholar
  60. 60.
    Buse MG, Biggers JF, Friderici KH, Buse JF (1972) Oxidation of branched-chain amino acids by isolated hearts and diaphragms of the rat. J Biol Chem 247: 8085–8096PubMedGoogle Scholar
  61. 61.
    Kaufman L, Crooks LE, Margulis AR (eds) (1982) Nuclear magnetic resonance imaging in medicine, Igaku-Shoin, New YorkGoogle Scholar
  62. 62.
    Moult DI, Busby SJW, Gadian DG, Richard Y, Seeley PJ (1974) Observation of tissue metabolites using P nuclear magnetic resonance. Nature 252: 285–287CrossRefGoogle Scholar
  63. 63.
    Hollis DP, Bulkley BH, Nunnally RL, Jacobus WE, Weisfeldt ML (1978) Effect of manganese ion on the phosphorus nuclear magnetic resonance spectra of the perfused rabbit heart. Clin Res 26: 240A (abstr)Google Scholar
  64. 64.
    Garlick PB, Radda GK, Seeley PF, Chance B (1977) Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun 74: 1256–1267PubMedCrossRefGoogle Scholar
  65. 65.
    Nunnally RJ, Bottomley PA (1980) Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Science 211: 177–180CrossRefGoogle Scholar
  66. 66.
    Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In vivo simulation of thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828PubMedGoogle Scholar
  67. 67.
    Frank JA, Feiler MA, House WV, Lauterbur PC, Jacobson MT (1976) Measurement of proton nuclear magnetic longitudinal relaxation times and water content in infarcted canine myocardium and induced pulmonary injury. Clin Res 24: 217A (abstr)Google Scholar
  68. 68.
    Young IR, Baffles DR, Burl M, Collins AG, Smith DT, McDonnell MJ, Orr JS, Banks LM, Bydder GM, Greenspan RH, Steiner RE (1982) Initial clinical evaluation of a whole body nuclear magnetic resonance (NMR) tomograph. J Comput Assist Tomogr 6: 1–18PubMedCrossRefGoogle Scholar
  69. 69.
    Crooks L, Singer J (1978) Some magnetic study of biological material. J Clin Engr 3: 237Google Scholar
  70. 70.
    Thulborn KR, Waterton JC, Radda GK (1981) Proton imaging for in vivo blood flow and oxygen consumption measurements. J Magn Reson 45: 188–191Google Scholar
  71. 71.
    Lauterbur PC, Dias MIIM, Rudin AM (1978) Augmentation of tissue water proton spin-lattice relaxation ratio by in vivo addition of paramagnetic ions. In: Dutton PL, Leigh JS, Scarpa A (eds) Electrons to tissue. Frontiers of biological energetics. Academic Press, New York, pp 752–759Google Scholar
  72. 72.
    Edelstein WA, Hutchison JMS, Johnson G, Redpath T (1980) Spin warp NMR imaging and applications to human whole body imaging. Phys Med Biol 24: 751–756CrossRefGoogle Scholar
  73. 73.
    Hawkes RC, Holland GN, Moore W, Roebuck EJ, Worthington BS (1981) Nuclear magnetic resonance (NMR) tomography of the normal heart. J Comput Assist Tomogr 5: 605–612PubMedCrossRefGoogle Scholar
  74. 74.
    Delayre JL, Ingwall JS, Malloy C, Fassell ET (1981) Gates sodium-23 magnetic resonance images of an isolated perfused working rat heart. Science 212: 935–939PubMedCrossRefGoogle Scholar
  75. 75.
    Battocletti JH, Halbach RE, Salles-Cunha SX, Sances A Jr (1980) NMR blood flow meter-theory and history. Med Phys 8: 435–443CrossRefGoogle Scholar
  76. 76.
    Singer JR (1981) Blood flow measurements by NMR. In: Kaufman L, Crooks LE, Margulis AR (eds) Nuclear magnetic resonance imaging in medicine. Igaku-shoin, pp 128–144Google Scholar
  77. 77.
    Battocletti JH, Halbach RE, Sances A Jr, Larson SJ, Bowman RI, Kudravcev V (1979) Flat crossed-coil detector for blood-flow measurement using nuclear magnetic resonance. Med Biol Eng Comput 17: 183–191PubMedCrossRefGoogle Scholar
  78. 78.
    Gaffey CT, Tenforde TS, Budinger TF, Moyer BR (to be published Bioelectromagnetics) Electrocardiogram and blood pressure measurements on monkeys during exposure to stationary magnetic fields.Google Scholar
  79. 79.
    Crooks L, Hoenninger J, Arakawa M (1979) Tomography of hydrogen with NMR and the potential of imaging other body constituents. SPIE 106: 120Google Scholar
  80. 1.
    Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210PubMedGoogle Scholar
  81. 2.
    Bassingthwaighte JB (1974) A concurrent model for extraction during transcapillary passage. Circ Res 35: 483–503Google Scholar
  82. 3.
    Rose CP, Goresky CA, Bach GG (1977) The capillary and sarco-lemmal barriers in the heart-An exploration of labeled water permeability. Circ Res 41:515–533Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Thomas F. Budinger
  • Edward Ganz
  • David C. Price
  • Martin Lipton
  • Brian R. Moyer
  • Yukio Yano
  • James B. Bassingthwaighte

There are no affiliations available

Personalised recommendations