The Evolution of Life Span

  • Charles E. King
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


In 1954, Lamont Cole stated the basic tenet of life history pattern analysis and in so doing established a new branch of evolutionary ecology. According to Cole, “The total life history pattern of a species has meaning in terms of its ability to survive and ecologists should attempt to interpret these meanings.” The interpretational method he proposed and used was “to compute the characteristics of the future hypothetical population by assuming an unvarying pattern of the life history features which govern natality and mortality.”


Life Span Life Table Population Growth Rate Clutch Size Parental Care 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. D.: The evolution of social behavior. Ann. Rev. Syst. Ecol. 5, 325–383 (1974).CrossRefGoogle Scholar
  2. Caswell, H.: On the equivalence of maximizing reproductive value and maximizing fitness. Ecology 61, 19–24 (1980).CrossRefGoogle Scholar
  3. Charlesworth, B.: Evolution in Age-Structured Populations. Cambridge: Cambridge University Press, 1980.Google Scholar
  4. Cole, L. C.: The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).PubMedCrossRefGoogle Scholar
  5. Dawson, P. S.: Directional versus stabilizing selection for developmental time in natural and laboratory populations of flour beetles. Genetics 80, 773–783 (1975).PubMedGoogle Scholar
  6. De Steven, D.: Clutch size, breeding success, and parental survival in the tree swallows (Iridoprocne bicolor). Evolution 34, 278–291 (1980).CrossRefGoogle Scholar
  7. Gilbert, J. J.: Mictic female production in the rotifer Brachionus calyciflorus. J. Exptl. Zool. 153, 113–124 (1963).CrossRefGoogle Scholar
  8. Gilbert, J. J.: Mictic female production in monogonont rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8, 142–155 (1977).Google Scholar
  9. Greenwood, P. J.: Mating systems, philopatry and dispersal in birds and mammals. Anim. Behay. 28, 1140–1162 (1980).CrossRefGoogle Scholar
  10. Hamilton, W. D.: The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).PubMedCrossRefGoogle Scholar
  11. King, C. E.: Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48, 111–128 (1967).CrossRefGoogle Scholar
  12. King, C. E.: Experimental studies of aging in rotifers. Exptl. Gerontol. 4, 63–79 (1969).CrossRefGoogle Scholar
  13. King, C. E.: Comparative survivorship and fecundity of mictic and amictic female rotifers. Physiol. Zool. 43, 206–212 (1970).Google Scholar
  14. King, C. E.: Adaptation of rotifers to seasonal variation. Ecology 53, 408–418 (1972).CrossRefGoogle Scholar
  15. King, C. E.: Genetics of reproduction, variation, and adaptation in rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8, 187–201 (1977).Google Scholar
  16. King, C. E.: The genetic structure of zooplankton populations. In: Evolution and Ecology of Zooplankton Communities. Kerfoot, W. C. (ed.). Limnology and Oceanography, Special Symposium 3. Hanover, New Hampshire: University Press of New England, 1980, pp. 315–329.Google Scholar
  17. King, C. E., Miracle, M. R.: A perspective on aging in rotifers. Hydrobiology 73, 13–19 (1980).CrossRefGoogle Scholar
  18. King, C. E., Snell, T. W.: Density-dependent sexual reproduction in natural populations of the rotifer Asplanchna girodi. Hydrobiology 73, 149–152 (1980).CrossRefGoogle Scholar
  19. Lack, D.: The significance of clutch size. Ibis 89, 302–352 (1947).CrossRefGoogle Scholar
  20. Lamb, M. J.: Biology of Aging. New York: Halsted Press, Wiley, 1977.Google Scholar
  21. Leslie, P. H.: The intrinsic rate of increase and the overlap of successive generations in a population of guillemots (Urfa aalga Pont.). J. Anim. Ecol. 35, 291–301 (1966).CrossRefGoogle Scholar
  22. Lewontin, R. C.: Selection for colonizing ability. In: The Genetics of Colonizing Species. Baker, H. G., Stebbins, G. L. (eds.). New York: Academic Press, 1965, pp. 77–94.Google Scholar
  23. Lints, F. A.: Genetics and Aging. Interdisciplinary Topics in Gerontology, Vol. 14. Basel: Karger, 1978.Google Scholar
  24. Medawar, P. B.: The Uniqueness of the Individual. London: Methuen, 1957, pp. 44–70.Google Scholar
  25. Rose, M., Charlesworth, B.: A test of evolutionary theories of senescence. Nature (London) 287, 141–142 (1980).CrossRefGoogle Scholar
  26. Schaffer, W. M.: Selection for optimal life histories: The effects of age structure. Ecology 55, 291–303 (1974).CrossRefGoogle Scholar
  27. Snell, T. W.: Intraspecific competition and population structure in rotifers. Ecology 60, 494–502 (1979).CrossRefGoogle Scholar
  28. Snell, T. W., King, C. E.: Life span and fecundity patterns in rotifers: The cost of reproduction. Evolution 31, 882–890 (1977).CrossRefGoogle Scholar
  29. Stearns, S. C.: Life history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).PubMedCrossRefGoogle Scholar
  30. Taylor, H. M., Gourley, R. S., Lawrence, C. E., Kaplan, R. S.: Natural selection of life history attributes: An analytical approach. Theor. Pop. Biol. 5, 104–122 (1974).CrossRefGoogle Scholar
  31. Williams, G. C.: Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).CrossRefGoogle Scholar
  32. Woolfenden, G. E.: Florida scrubjay helpers at the nest. Auk 92, 1–15 (1975).Google Scholar
  33. Wynne-Edwards, V. C.: Animal Dispersion in Relation to Social Behavior. New York: Hafner, 1962.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Charles E. King
    • 1
  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA

Personalised recommendations