Evolution of Seasonal Adaptations and Life History Traits in Chrysopa: Response to Diverse Selective Pressures

  • Catherine A. Tauber
  • Maurice J. Tauber
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Earth’s seasonal cycles have multiple direct and indirect influences on the life histories of organisms. Growth, development, and reproduction must be synchronized with the seasonal presence of energy resources, mates, and favorable physical conditions. Also, the seasonal occurrence of vulnerable stages must be timed to avoid periods of physical extremes and periods when parasites, predators, and competitors occur at high densities. In a seasonally variable environment, therefore, growth, development, and reproduction are interrupted by periods of dormancy and migration; these periods subserve survival, and they maximize the probability of growth, development, and reproduction occurring at an appropriate time and place.


Life History Trait Photoperiodic Response Thermal Requirement Diapause Induction Preoviposition Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alrouechdi, K., Canard, M.: Mise en evidence d’un biotype sans diapause photoperiodique dans une population mediterraneenne de Chrysoperla carnea (Stephens) (Insectes, Neuroptera). C.R. Acad. Sci. Paris Ser. D. 289, 553–555 (1979).Google Scholar
  2. Ando, Y.: Geographic variation in the incidence of non-diapause eggs of the false melon beetle, Atrachya menetriesi Falderman (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 14, 193–202 (1979).Google Scholar
  3. Blackman, R. L.: Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.). Bull. Entomol. Res. 60, 533–546 (1971).CrossRefGoogle Scholar
  4. Blackman, R. L.: Life-cycle variation of Myzus persicae (Sulz.) (Horn., Aphididae) in different parts of the world, in relation to genotype and environment. Bull. Entomol. Res. 63, 595–607 (1974).CrossRefGoogle Scholar
  5. Bradshaw, W. E.: Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54, 1247–1259 (1973).CrossRefGoogle Scholar
  6. Bush, G. L.: The mechanism of sympatric host race formation in the true fruit flies. In: Genetic Mechanisms of Speciation in Insects, White, M. J. D., (ed.). Boston: D. Reidel, 1974, pp. 3–23.Google Scholar
  7. Danilevskii, A. S.: Photoperiodism and Seasonal Development of Insects. ( English translation) London: Oliver & Boyd, 1965.Google Scholar
  8. Denno, R. F., Grissell, E. E.: The adaptiveness of wing-dimorphism in the salt marsh-inhabiting planthopper, Prokelisia marginata (Homoptera: Delphacidae). Ecology 60, 221–236 (1979).CrossRefGoogle Scholar
  9. Dingle, H.: The experimental analysis of migration and life-history strategies in insects. In: Experimental Analysis of Insect Behaviour. Barton Brown, L. (ed.). New York: Springer-Verlag, 1974, pp. 329–342.Google Scholar
  10. Dingle, H.: Migration and diapause in tropical, temperate, and island milkweed bugs. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 254–276.Google Scholar
  11. Dingle, H., Brown, C. K., Hegmann, J. P.: The nature of genetic variance influencing photoperiodic diapause in a migrant insect, Oncopeltus fascia tus. Am. Nat. 111, 1047–1059 (1977).CrossRefGoogle Scholar
  12. Goldschmidt, R.: Lymantria. Biblio. Genet. 11, 1–186 (1934).Google Scholar
  13. Hagen, K. S., Tassan, R. L.: The influence of protein hydrolysates of yeasts and chemically defined diets upon the fecundity of Chrysopa carnea Stephens (Neuroptera). Acta Soc. Zool. Bohemoslov. 30, 219–227 (1966).Google Scholar
  14. Istock, C. A.: Fitness variation in a natural population. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 171–190.Google Scholar
  15. Istock, C. A., Zisfein, J., Vavra, K. J.: Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness. Evolution 30, 535–547 (1976).CrossRefGoogle Scholar
  16. Kidokoro, T., Masaki, S.: Photoperiodic response in relation to variable voltinism in the ground cricket, Pteronemobius fascipes Walker (Orthoptera: Gryllidae). Jap. J. Ecol. 28, 291–298 (1978).Google Scholar
  17. Krysan, J. L., Branson, T. F., Castro, G. D.: Diapause in Diabrotica virgifera (Coleoptera: Chrysomelidae): A comparison of eggs from temperate and subtropical climates. Entomol. Exptl. Appl. 22, 81–89 (1977).CrossRefGoogle Scholar
  18. Lees, A. D.: The physiology of Diapause in Arthropods. London: Cambridge University Press, 1955.Google Scholar
  19. Lumme, J., Oikarinen, A.: The genetic basis of the geographically variable photo-periodic diapause in Drosophila littorales. Hereditas 86, 129–142. (1977).CrossRefGoogle Scholar
  20. MacLeod, E. G.: Experimental induction and elimination of adult diapause and autumnal coloration in Chrysopa carnea (Neuroptra). J. Insect Physiol. 13, 1343–1349 (1967).CrossRefGoogle Scholar
  21. Masaki, S.: Geographic variation of diapause in insects. Bull. Fac. Agr. Hirosaki Univ. 7, 66–98 (1961).Google Scholar
  22. Masaki, S.: Seasonal and latitudinal adaptations in the life cycle of crickets. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 72–100.Google Scholar
  23. Masaki, S.: Climatic adaptation and species status in the lawn ground cricket. I. Photoperiodic response. Kontyû 47, 48–65 (1979).Google Scholar
  24. Maynard Smith, J.: Sympatric speciation. Am.Nat. 100, 637–650 (1966).CrossRefGoogle Scholar
  25. Obrycki, J. J., Tauber, M. J.: Phenology of three coccinellid species: thermal requirements for development. Ann. Entomol. Soc. Am. 74, 31–36 (1981).Google Scholar
  26. Sheldon, J. K., Macleod, E. G.: Studies on the biology of the Chrysopidae II. The feeding behavior of the adult of Chrysopa carnea (Neuroptera). Psyche Cambr. 78, 107–121 (1971).Google Scholar
  27. Sims, S. R.: Diapause dynamics and host plant suitability of Papilio zelicaon (Lepidoptera: Papilionidae). Am. Midl. Nat. 103, 375–384 (1980).CrossRefGoogle Scholar
  28. Southwood, T. R. E.: Habitat, the templet for ecological strategies ? J. Anim. Ecol. 46, 337–365 (1977).CrossRefGoogle Scholar
  29. Stearns, S. C.: Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).PubMedCrossRefGoogle Scholar
  30. Tauber, C. A.: Systematics of North American chrysopid larvae: Chrysopa carnea group (Neuroptera). Can. Entomol. 106, 1133–1153 (1974).CrossRefGoogle Scholar
  31. Tauber, M. J., Tauber, C. A.: Geographic variation in critical photoperiod and in diapause intensity of Chrysopa carnea (Neuroptera). J. Insect Physiol. 18, 25–29 (1972).CrossRefGoogle Scholar
  32. Tauber, M. J., Tauber, C. A.: Seasonal regulation of dormancy in Chrysopa carnea (Neuroptera). J. Insect Physiol. 19, 1455–1463 (1973a).CrossRefGoogle Scholar
  33. Tauber, M. J., Tauber, C. A.: Quantitative response to daylength during diapause in insects. Nature (London) 244, 296–297 (1973b).CrossRefGoogle Scholar
  34. Tauber, M. J., Tauber, C. A.: Nutritional and photoperiodic control of the seasonal reproductive cycle in Chrysopa mohave (Neuroptera). J. Insect Physiol. 19, 729–736 (1973c).CrossRefGoogle Scholar
  35. Tauber, M. J., Tauber, C. A.: Natural daylengths regulate insect seasonality by two mechanisms. Nature (London) 258, 711–712 (1975a).CrossRefGoogle Scholar
  36. Tauber, M. J., Tauber, C. A.: Criteria for selecting Chrysopa carnea biotypes for biological control: Adult dietary requirements. Can. Entomol. 107, 589–595 (1975b).CrossRefGoogle Scholar
  37. Tauber, M. J., Tauber, C. A.: Environmental control of univoltinism and its evolution in an insect species. Can. J. Zool. 54, 260–266 (1976a).CrossRefGoogle Scholar
  38. Tauber, M. J., Tauber, C. A.: Insect seasonality: Diapause maintenance, termination and postdiapause development. Ann. Rev. Entomol. 21, 81–107 (1976b).CrossRefGoogle Scholar
  39. Tauber, M. J., Tauber, C. A.: Developmental requirements of the univoltine Chrysopa downesi: Photoperiodic stimuli and sensitive stages. J. Insect Physiol. 22, 331–335 (1976c).CrossRefGoogle Scholar
  40. Tauber, C. A., Tauber, M. J.: Sympatric speciation based on allelic changes at three loci: Evidence from natural populations in two habitats. Science 197, 1298–1299 (1977a).CrossRefGoogle Scholar
  41. Tauber, C. A., Tauber, M. J.: A genetic model for sympatric speciation through habitat diversification and seasonal isolation. Nature (London) 268, 702–705 (1977b).CrossRefGoogle Scholar
  42. Tauber, M. J., Tauber, C. A.: Evolution of phenological strategies in insects: A comparative approach with eco-physiological and genetic considerations. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 53–71.Google Scholar
  43. Tauber, M. J., Tauber, C. A.: Seasonal responses and their geographic variation in Chrysopa downesi: Ecological and evolutionary considerations. Can. J. Zool. 59, 370–376 (1981a).CrossRefGoogle Scholar
  44. Tauber, C. A., Tauber, M. J.: Insect seasonal cycles: genetics and evolution. Ann. Rev. Ecol. Syst. 12, 281–308 (1981b).CrossRefGoogle Scholar
  45. Tauber, M. J., Tauber, C. A., Denys, C. J.: Adult diapause in Chrysopa carnea: Photoperiodic control of duration and colour. J. Insect Physiol. 16, 949–955 (1970).CrossRefGoogle Scholar
  46. Tauber, C. A., Tauber, M. J., Nechols, J. R.: Two genes control seasonal isolation in sibling species. Science 197, 592–593 (1977).PubMedCrossRefGoogle Scholar
  47. Vepsäläinen, K.: Determination of wing length and diapause in water-striders (Gerris Fabr., Heteroptera). Hereditas 77, 163–177 (1974).PubMedCrossRefGoogle Scholar
  48. Vepsäläinen, K.: Wing dimorphism and diapause in Gerris: Determination and adaptive significance. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 218–253.Google Scholar
  49. Waldbauer, G. P.: Phenological adaptation and the polymodal emergence patterns of insects. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 127–144.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Catherine A. Tauber
  • Maurice J. Tauber
    • 1
  1. 1.Department of EntomologyCornell UniversityIthacaUSA

Personalised recommendations