Models for Physiological and Genetic Adaptation to Variable Environments

  • Brian P. Bradley
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The challenge of a temporally or spatially varying environment to a population can be met at the individual level, at the population level, or at both. Individual organisms may adjust physiologically to the entire range of conditions. Populations may systematically change in gene frequencies (where the environmental variation is sufficiently predictable). Likewise, both physiological and genetic changes may occur in space and time.


Cold Tolerance Additive Genetic Variance Temperature Tolerance Full Sibling Ovigerous Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battaglia, B.: Genetic aspects of benthic ecology in brackish waters. In: Estuaries. Lauff, G. W. (ed.). Washington, D.C.: AAAS Publ. No. 83, 1967, pp. 574–577.Google Scholar
  2. Bradley, B. P.: The anomalous influence of salinity on temperature tolerances of summer and winter populations of the copepod Eurytemora affinis. Biol. Bull. 148, 26–34 (1975).PubMedCrossRefGoogle Scholar
  3. Bradley, B. P.: The measurement of temperature tolerance: Verification of an index. Limnol. Oceanog. 21, 596–599 (1976).CrossRefGoogle Scholar
  4. Bradley, B. P.: Increase in range of temperature tolerance by acclimation in the copepod Eurytemora affinis. Biol. Bull. 154, 177–187 (1978a).CrossRefGoogle Scholar
  5. Bradley, B. P.: Genetic and physiological adaptation of the copepod Eurytemora affinis to seasonal temperatures. Genetics 90, 193–205 (1978b)PubMedGoogle Scholar
  6. Bradley, B. P.: Genetic and physiological flexibility of a calanoid copepod in thermal stress. In: Energy and Environmental Stress in Aquatic Systems (J. H. Thorp, J. W. Gibbons, Eds.), Washington, D.C.: Dept. of Energy CONF-771114, 1979.Google Scholar
  7. Engel, R. A.: Eurytemora affinis, a calanoid copepod new to Lake Erie. Ohio J. Sci. 62, 252–255 (1962).Google Scholar
  8. Ewing, E. P.: Genetic variation in a heterogeneous environment VII. Temporal and spatial heterogeneity in infinite populations. Am. Nat. 114, 199–212 (1979).CrossRefGoogle Scholar
  9. Falconer, D. S.: Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd, 1960.Google Scholar
  10. Gillespie, J. H.: Polymorphism in patchy environments. Am. Nat. 108, 145–151 (1974a).CrossRefGoogle Scholar
  11. Gillespie, J. H.: The role of environmental grain in the maintenance of genetic variation. Am. Nat. 108, 831–836 (1974b).CrossRefGoogle Scholar
  12. Gillespie, J. H.: A general model to account for enzyme variation in natural populations. Am. Nat. 110, 809–821 (1976).CrossRefGoogle Scholar
  13. Gonzalez, J.: Critical thermal maxima and upper lethal temperatures for the calanoid copepods Acartia tonsa and A. clausi. Mar. Biol. 27, 219–223 (1974).CrossRefGoogle Scholar
  14. Haldane, J. B. S., Jayakar, S. D.: Polymorphism due to selection of varying direction. J. Genet. 58, 237–242 (1963).CrossRefGoogle Scholar
  15. Hedrick, P. W., Ginevan, M. E., Ewing, E. P.: Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7, 1–32 (1976).CrossRefGoogle Scholar
  16. Heinle, D. R.: Population dynamics of exploited cultures of calanoid copepods. Helgol. Wiss. Meere. 20, 360–366 (1970).CrossRefGoogle Scholar
  17. Ketzner, P. A.: The effect of constant and varying temperature regimes on the genetic and physiological flexibility of the copepod Eurytemora affinis. Unpubl. M.S. Thesis, Dept. of Biological Sciences, University of Maryland, Baltimore, 1979.Google Scholar
  18. Ketzner, P. A., Bradley, B. P.: Rate of environmental change and adaptation in the copepod Eurytemora affinis. Evolution (1982).Google Scholar
  19. Kojima, K., Yarbrough, K.: Frequency-dependent selection at the esterese-6 locus in D. melanogaster. Proc. Natl. Acad. Sci. (US) 57, 645–649 (1967).CrossRefGoogle Scholar
  20. Lande, R.: The maintenance of genetic variability by mutation in polygenic characters with linked loci. Genet. Res. Cambr. 26, 221–235 (1976).CrossRefGoogle Scholar
  21. Lerner, M.: Genetic Homeostasis. New York: John Wiley and Sons, 1954.Google Scholar
  22. Levene, H.: Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331–333 (1953).CrossRefGoogle Scholar
  23. Mather, K.: Polymorphism as an outcome of disruptive selection. Evolution 9, 52–61 (1955).CrossRefGoogle Scholar
  24. Maynard Smith, J., Hoekstra, R.: Polymorphism in a varied environment: How robust are the models? Genet. Res. Cambr. 35, 45–57 (1980).CrossRefGoogle Scholar
  25. McLaren, I. A.: Inheritance of demographic and production parameters in the marine copepod Eurytemora herdmani. Biol. Bull. 151, 200–213 (1976).PubMedCrossRefGoogle Scholar
  26. Robertson, A.: The effect of selection against extreme deviants based on deviation or on homozygosis. J. Genet. 54, 236–249 (1956).CrossRefGoogle Scholar
  27. Roughgarden, J.: Theory of Population Genetics and Evolutionary Ecology. An Introduction. New York: Macmillan, 1979.Google Scholar
  28. Slobodkin, L. B., Rapoport, A.: An optimal strategy for evolution. Q. Rev. Biol. 49, 181–199 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Brian P. Bradley
    • 1
  1. 1.Department of Biological SciencesUniversity of MarylandBaltimoreUSA

Personalised recommendations