Advertisement

Population Crosses and the Genetic Structure of Milkweed Bug Life Histories

  • Hugh Dingle
  • William S. Blau
  • Carl Kice Brown
  • Joseph P. Hegmann
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The fitness of a given phenotype is a direct consequence of the schedule of behavior, fecundity, and mortality that constitutes a life history. For this reason life histories are major adaptations of unique importance to general Darwinism (Bell 1980). As with other complex adaptations life histories consist not of single characters, but of sets of phenotypic traits that covary and function together (Frazetta 1975). Such sets often are referred to as “strategies” or “tactics” and much theoretical and empirical effort has been devoted to attempting to understand the evolution of the complex known as a “life history strategy” (Bell 1980, Stearns 1976, 1977). Births and deaths are most closely related to fitness and have drawn most of the attention, but behavior is also an important component of life histories, especially as it confers flexibility on where and when to breed (Istock 1978 and Chapter 1, this volume, Nichols et al. 1976, Taylor and Taylor 1977, 1978). Two important elements of insect behavior are migration and diapause (Dingle 1981, Solbreck 1978), and we consider them in our discussion here, along with the more traditional life table statistics that they influence.

Keywords

Life History Life History Trait Clutch Size Wing Length Additive Genetic Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, K.: Temperature adaptations of amphibian embryos. Am. Nat. 103, 115–130 (1969).CrossRefGoogle Scholar
  2. Bell, G.: The costs of reproduction and their consequences. Am. Nat. 116, 45–76 (1980).CrossRefGoogle Scholar
  3. Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., Sams, S.: Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).CrossRefGoogle Scholar
  4. Caldwell, R. L.: A comparison of the migratory strategies of two milkweed bugs, Oncopeltus fasciatus and Lygaeus kalmii. In: Experimental Analysis of Insect Behaviour. Barton Browne, L. (ed.). New York: Springer-Verlag, 1974, pp. 304–316.Google Scholar
  5. Carson, H. L.: The genetics of speciation at the diploid level. Am. Nat. 109, 83–92 (1975).CrossRefGoogle Scholar
  6. Danilevskii, A. S.: Photoperiodism and Seasonal Development of Insects. Edinburgh: Oliver & Boyd, 1965.Google Scholar
  7. Dingle, H.: Life history and population consequences of density, photoperiod, and temperature in a migrant insect, the milkweed bug Oncopeltus. Am. Nat. 102, 149–163 (1968).CrossRefGoogle Scholar
  8. Dingle, H.: The experimental analysis of migration and life history strategies in insects. In: Experimental Analysis of Insect Behaviour. Barton Browne, L. (ed.). New York: Springer-Verlag, 1974, pp. 327–342.Google Scholar
  9. Dingle, H.: Migration and diapause in tropical, temperate, and island milkweed bugs. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 254–276.Google Scholar
  10. Dingle, H.: Geographic variation and behavioral flexibility in milkweed bug life histories. In: Insects and Life History Patterns: Geographic and Habitat Variation. Denno, R. F., Dingle, H. (eds.). New York: Springer-Verlag, 1981, pp. 57–73.CrossRefGoogle Scholar
  11. Dingle, H., Alden, B. A., Blakely, N. R., Kopec, D., Miller, E. R.: Variation in photo-periodic response within and among species of milkweed bugs (Oncopeltus), Evolution 34, 356–370 (1980a).CrossRefGoogle Scholar
  12. Dingle, H., Blakley, N. R., Miller, E. R.: Variation in body size and flight performance in milkweed bugs (Oncopeltus). Evolution 34, 371–385 (1980b).CrossRefGoogle Scholar
  13. Dingle, H., Brown, C. K., Hegmann, J. P.: The nature of genetic variance influencing photoperiodic diapause in a migrant insect, Oncopeltus fasciatus. Am. Nat. 111, 1047–1059 (1977).CrossRefGoogle Scholar
  14. Dobzhansky, T.: Genetics of the Evolutionary Process. New York: Columbia University Press, 1970.Google Scholar
  15. Endler, J. A.: Geographic Variation, Speciation, and Clines. Princeton: Princeton University Press, 1977.Google Scholar
  16. Falconer, D. S.: Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd, 1960.Google Scholar
  17. Frazetta, T. H.: Complex Adaptations in Evolving Populations. Sunderland, Mass.: Sinauer, 1975.Google Scholar
  18. Hoffman, R. J.: Environmental uncertainty and evolution of physiological adaptation in Colias butterflies. Am. Nat. 112, 999–1015 (1978).CrossRefGoogle Scholar
  19. Hoy, M. A.: Variability in diapause attributes of insects and mites: Some evolutionary and practical implications. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 101–126.Google Scholar
  20. Istock, C. A.: Fitness variation in a natural population. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 190.Google Scholar
  21. Kruckeberg, A. R.: Variation in fertility of hybrids between isolated populations of the serpentine Streptanthus glandulosus Hook. Evolution 11, 185–211 (1957).CrossRefGoogle Scholar
  22. Lande, R.: Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33, 402–416 (1979).CrossRefGoogle Scholar
  23. Lewontin, R. C.: The Genetic Basis of Evolutionary Change. New York: Columbia University Press, 1974.Google Scholar
  24. Lindsay, D. W., Vickery, R. K., Jr.: Comparative evolution in Mimulus guttatus of the Bonneville Basin. Evolution 21, 439–456 (1967).CrossRefGoogle Scholar
  25. Lumme, J.: Phenology and photoperiodic diapause in northern populations of Drosophila. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978.Google Scholar
  26. Mayr, E.: Animal Species and Evolution. Cambridge, Mass.: Harvard University Press, 1963, 797 pp.Google Scholar
  27. McFarquhar, A. M., Robertson, F. W.: The lack of evidence for coadaptation in crosses between geographical races of Drosophila subobscura Coll. Genet. Res. 4, 104–131 (1963).CrossRefGoogle Scholar
  28. Nichols, J. D., Conley, W., Batt, B., Tipton, A. R.: Temporally dynamic reproductive strategies and the concept of r- and k-selection. Am. Nat. 110, 995–1005 (1976).CrossRefGoogle Scholar
  29. Ohno, S.: The preferential activation of maternally derived alleles in development of interspecific hybrids. In: Heterospecific Genome Interaction. Defendi, V. (ed.). Philadelphia: Wistar Institute Press, 1969.Google Scholar
  30. Oliver, C. G.: Genetic and phenotypic differentiation and geographic distance in four species of Lepidoptera. Evolution 26, 221–241 (1972).CrossRefGoogle Scholar
  31. Oliver, C. G.: Genetic differentiation and hybrid viability within and between some Lepidoptera species. Am. Nat. 114, 681–694 (1979).CrossRefGoogle Scholar
  32. Slater, J. A., Knop, N. F.: Geographic variation in the North American milkweed bugs of the Lygaeus kalmii complex. Ann. Entomol. Soc. Am. 62, 1221–1232 (1969).Google Scholar
  33. Sokal, R. R., Taylor, C. E.: Selection at two levels in hybrid populations of Musca domestica. Evolution 30, 509–522 (1976).CrossRefGoogle Scholar
  34. Solbreck, C.: Migration, diapause, and direct development as alternative life histories in a seed bug, Neacoryphus bicrucis. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 195–217.Google Scholar
  35. Stearns, S. C.: Life history tactics: A review of the ideas. Q. Rev. Biol. 51, 2–47 (1976).CrossRefGoogle Scholar
  36. Stearns, S. C.: The evolution of life history traits. Ann. Rev. Ecol. Syst. 8, 145–172 (1977).CrossRefGoogle Scholar
  37. Tauber, C. A., Tauber, M. J.: A genetic model for sympatric speciation through habitat diversification and seasonal isolation. Nature (London) 268, 702–705 (1977).CrossRefGoogle Scholar
  38. Tauber, M. J., Tauber, C. A.: Insect seasonality: Diapause maintenance, termination, and postdiapause development. Ann. Rev. Entomol. 21, 81–107 (1976).CrossRefGoogle Scholar
  39. Taylor, L. R., Taylor, R. A. J.: Aggregation, migration, and population mechanics. Nature (London) 265, 415–421 (1977).CrossRefGoogle Scholar
  40. Taylor, L. R., Taylor, R. A. J.: The dynamics of spatial behavior. In: Population Control by Social Behaviour. Ebling, F. J., Stoddart, D. M. (eds.). London: Institute of Biology, 1978.Google Scholar
  41. Templeton, A. R.: The unit of selection in Drosophila mercatorum. II. Genetic revolutions and the origin of coadapted genomes. Genetics 92, 1265–1282 (1979).PubMedGoogle Scholar
  42. Vepsäläinen, K.: Wing dimorphism and diapause in Gerris: Determination and adaptive significance. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 1978, pp. 218–253.Google Scholar
  43. Vetukhiv, M.: Fecundity of hybrids between geographic populations of Drosophila pseudoobscura. Evolution 10, 139–146 (1956).CrossRefGoogle Scholar
  44. Vetukhiv, M.: Longevity of hybrids between geographic populations of Drosophila pseudoobscura. Evolution 11, 348–360 (1957).CrossRefGoogle Scholar
  45. Wallace, B.: Inter-population hybrids in Drosophila melanogaster. Evolution 9, 302–316 (1955).CrossRefGoogle Scholar
  46. Wallace, B., Vetukhiv, M.: Adaptive organization of the gene pools of Drosophila populations. Cold Spring Harbor Symp. Quant. Biol. 20, 303–309 (1955).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Hugh Dingle
  • William S. Blau
  • Carl Kice Brown
  • Joseph P. Hegmann
    • 1
  1. 1.Program in Evolutionary Ecology and Behavior Department of ZoologyUniversity of IowaIowa CityUSA

Personalised recommendations