Decomposition Spaces

  • Gordon Whyburn
  • Edwin Duda
Part of the Undergraduate Texts in Mathematics book series (UTM)


We say that a topological space X decomposes into the collection l of subsets of X provided that X = \( X = { \cup _{g \in g}}g \) and these sets g are nonempty and disjoint.


Topological Space Lower Semicontinuous Quotient Space Compact Hausdorff Space Countable Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Alexandroff, Über stetige Abbildungen kompakter Räume, Mathematische Annalen, vol. 92 (1927), pp. 555–571.MathSciNetCrossRefGoogle Scholar
  2. B. v. Kerékjártó, Involutions et surfaces continues, Szeged, Acta Litterarum ac Scientia-rum, vol. 3 (1927), pp. 49–67.Google Scholar
  3. K. Kuratowski, Sur les décompositions semi-continues d’espaces métriques compacts, Fundamenta Mathematicae, vol. 11 (1928), pp. 169–185.MATHGoogle Scholar
  4. R. L. Moore, Concerning upper semi-continuous collections of continua, Transactions of the American Mathematical Society, vol. 27 (1925), pp. 416–428.MathSciNetMATHCrossRefGoogle Scholar
  5. R. L. Moore, loc. cit., Part A, §XXGoogle Scholar
  6. L. Vietoris, Über stetige Abbildungen einen Kugelfläche, Proceedings, Akademie van Wetenschappen, Amsterdam, vol. 29 (1926), pp. 443–453.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Gordon Whyburn
    • 1
  • Edwin Duda
    • 2
  1. 1.DePartment of MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.DePartment of MathematicsUniversity of MiamiCoral GablesUSA

Personalised recommendations