Advertisement

Direct and Indirect Action of Radiation

  • Hermann Dertinger
  • Horst Jung
Part of the Heidelberg Science Library book series (HSL)

Abstract

In the previous chapters, an attempt has been made to draw conclusions as to the nature of the radiation lesions by applying formal physical and mathematical procedures to the interpretation of dose-response curves, and by investigating the LET-dependence of radiation sensitivity. It was assumed that such a thing as a well defined target really exists. Basically, this assumption seems to be justified, since the formal definition of target used in the hit theory was so general that difficulties are only encountered when attempts are made to identify the target with sensitive biological structures. However, as this is the main theme of the target theory, it is necessary to consider the extent to which realistic targets can be obtained from dose-response curves. The concept of a target does not make any allowance for damage from the “outside”, which is the rule rather than the exception. If the concept is to be retained, then the fraction of the energy contributed from outside to the target must be determined. This leads to the concepts of direct and indirect effect as outlined in Chapter 1.3. Such a classification is meaningful only at the molecular level, where the chances of distinguishing between these two effects are greatest. If the absorption of radiation occurs in the molecule in which the lesion appears, then this is the direct action of radiation,while with indirect action the absorption of the radiation energy and the response to this energy occur in different molecules. This definition is considerably more rigorous than the one used in the past, in which the irradiation of dry systems was considered as direct, while the indirect effect was considered to occur predominantly in the presence of water.

Keywords

Indirect Effect Indirect Action Radiation Sensitivity Water Radical Dose Reduction Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P., Charlesby, A.: In: Radiobiology symposium. Eds.: Z. M. Bacq and P. Alexander. London: Butterworth 1955, p. 49.Google Scholar
  2. Bachofer, C. S., Hartwig, Q. L.: Radiat. Res. 5, 528 (1956).PubMedCrossRefGoogle Scholar
  3. Bachofer, C. S., Pollinger, M. A.: J. gen. Physiol. 37, 663 (1954).PubMedCrossRefGoogle Scholar
  4. Bacq, Z. M., Alexander, P.: Fundamentals of radiobiology. Oxford: Pergamon Press 1961.Google Scholar
  5. Berger, K. U.: Z. Naturforsch. 24 b, 722 (1969).Google Scholar
  6. Bhattacharjee, S. B.: Radiat. Res. 14, 50 (1961).CrossRefGoogle Scholar
  7. Blok, J.: In: Radiation research. Ed.: G. Silini. Amsterdam: North-Holland Publ. Co. 1967, p. 423.Google Scholar
  8. ten Bosch, J. J., Braams, R.: Cited by Braams (1963).Google Scholar
  9. Braams, R.: Nature 200, 752 (1963).PubMedCrossRefGoogle Scholar
  10. Butler, J. A. V., Robins, A. B., Rotblat, J.: Proc. roy. Soc. 256, 1 (1960).CrossRefGoogle Scholar
  11. Buxton, G. V.: In: Radiation research. Ed.: G. Silini. Amsterdam: North-Holland Publ. Co. 1966, p. 423.Google Scholar
  12. Gordy, W., Miyagawa, I.: Radiat. Res. 12, 211 (1960).PubMedCrossRefGoogle Scholar
  13. Günther, W., Jung, H.: Z. Naturforsch. 22 b, 313 (1967).Google Scholar
  14. Heitkamp, D., Merwitz, O., Späth, H.: Z. Naturforsch. 23 b, 403 (1968).Google Scholar
  15. Heller, H. C., Cole, T.: Proc. nat. Acad. Sci. (Wash.) 54, 1486 (1965).CrossRefGoogle Scholar
  16. Henriksen, T., Sanner, T., Pihl, A.: Radiat. Res. 18, 163 (1963).PubMedCrossRefGoogle Scholar
  17. Hotz, G., Müller, A.: Z. Naturforsch. 17 b, 34 (1962).Google Scholar
  18. Howard-Flanders, P.: Nature 186, 485 (1960).PubMedCrossRefGoogle Scholar
  19. Hutchinson, F.: Radiat. Res. Suppl. 2, 49 (1960).CrossRefGoogle Scholar
  20. Hutchinson, F., Presten, A., Vogel, B.: Radiat. Res. 7, 465 (1957).PubMedCrossRefGoogle Scholar
  21. Jung, H.: Z. Naturforsch. 2013, 764 (1965).Google Scholar
  22. Jung, H.: Z. Naturforsch. 21 b, 1165 (1966).Google Scholar
  23. Jung, H., Kürzinger, K.: Radiat. Res. 36, 369 (1968).PubMedCrossRefGoogle Scholar
  24. Jung, H., Kürzinger, K.: Z. Naturforsch. 24 b, 328 (1969).Google Scholar
  25. Jung, H., Schüßler, H.: Z. Naturforsch. 21 b, 224 (1966).Google Scholar
  26. Müller, A., Dertinger, H.: Z. Naturforsch. 23 b, 83 (1968).Google Scholar
  27. Nakken, K. F.: In: Current topics in radiation research, Vol. I. Eds.: M. Ebert and A. Howard. Amsterdam: North-Holland Publ. Co. 1965, p. 49.Google Scholar
  28. Nakken, K. F.: In: Current topics in radiation research, Vol. I. Eds.: M. Ebert and A. Howard. Amsterdam: North-Holland Publ. Co. 1965, p. 49.Google Scholar
  29. Ormerod, M. G., Alexander, P.: Nature 193, 290 (1962).PubMedCrossRefGoogle Scholar
  30. Pauly, H., Pfister, H., Rajewsky, B.: Biophysik 3, 36 (1966).PubMedCrossRefGoogle Scholar
  31. Phillips, G. O. (Ed.): Energy transfer in radiation processes. Amsterdam: Elsevier Publishing Company 1966.Google Scholar
  32. Sommermeyer, K., Stegle, J., Schnepel, G. H.: Atompraxis 13, 20 (1967).Google Scholar
  33. Spikes, J. D., Straight, R.: Ann. Rev. Phys. Chem. 18, 409 (1967).CrossRefGoogle Scholar
  34. Spinks, J. W. T., Woods, R. J.: An introduction to radiation chemistry. New York: John Wiley & Sons 1964.Google Scholar
  35. Swallow, A. J.: Radiation chemistry of organic compounds. Oxford: Pergamon Press 1960.Google Scholar
  36. Tanooka, H., Hutchinson, F.: Radiat. Res. 24, 43 (1965).PubMedCrossRefGoogle Scholar
  37. Tobias, C. A., Brustad, T., Manney, T.: In: The initial effects of ionizing radiations on cells. Ed.: R. J. C. Harris. London, New York: Academic Press 1960, p. 257.Google Scholar
  38. Zimmer, K. G., Bouman, J.: Physikal. Zschr. 45, 298 (1944).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • Hermann Dertinger
    • 1
  • Horst Jung
    • 1
  1. 1.Nuclear Science CenterUniversity of Heidelberg and Institute for Radiation BiologyKarlsruheGermany

Personalised recommendations