• Richard A. Passwater


Anthranilic Acid Zinc Phosphate Pyridine Nucleotide Fluorometric Assay Federation Proc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E 1.
    Automatic measurement of light absorption and fluorescence on paper chromatograms. Marsh, M., and Brown, J. Anal. Chem. 25: 1865–9 (1953)Google Scholar
  2. E 2.
    Fluorescence characteristics of 5-hydroxytryptamine (serotonin). Udenfriend, S., Bodanski, D. F., and Weissbach, H. Science 122: 972–3 (1955)Google Scholar
  3. E 3.
    Estimation of 5-hydroxytryptamine (serotonin) in biological tissue. Udenfriend, S., Weissbach, H., and Clark, C.T. J. Biol. Chem. 215: 337–44 (1955)Google Scholar
  4. E 4.
    Phosphorimetry,new list of analyses. Kiers, R.J., Britt, R.D., and Wentworth, W.E. Anal. Chem., Feb. (1957) CA 51: 5621iGoogle Scholar
  5. E 5.
    A spectrophotofluorometric study of organic compounds of pharmacological interest. Udenfriend, S., Duggan, D.E., Vasta, B.M., and Brodie, B.B. J. Pharmacol. Exptl. Therap. 120 (1): 26–37 (1957) CA 51: 18473bGoogle Scholar
  6. E 6.
    Fluorometric method for estimation of tyrosine in plasma and tissues. Waalkes, T. P., and Undenfriend, S. J. Lab. Clin. Med. 50 (5): 733–6 (1957)Google Scholar
  7. E 7.
    Spectrophotofluorometry for pesticide determinations. Hornstein, I. J. Agr. Food Chem., 6: 32–4 (1958) CA 52: 7606Google Scholar
  8. E 8.
    Fluorometric determination of kynurenic acid and xanthurenic acid in human urine. Satoh, K., and Price, J.M. J. Biol. Chem. 230(2): 781–9 (1958) CA 52: 12053dGoogle Scholar
  9. E 9.
    A new instrument for fluorescent analysis. Howerton, H.K. ISA J., Vol. 6, No. 10 (1959)Google Scholar
  10. E 10.
    A method for the fluorometric assay of histamine in tissues. Shore, PA., Burkhalter, A., and Cohn, V.H. J. Pharmacol. Exptl. Therap. 127: 182–6 (1959)Google Scholar
  11. E 11.
    The Chesapeake Bay Institute study of the Baltimore Harbor. Carpenter, J.H. Proc. Ann. Conf., Maryland-Delaware Water Sewage Assoc. 33: 62–78 (1960)Google Scholar
  12. E 12.
    Tracer for circulation and mixing in natural waters. Carpenter, J.H. Public Works, Vol. 91, No. 6 (1960)Google Scholar
  13. E 13.
    New instrument for phosphorescent analysis. Howerton, H.K. J. Opt. Soc. Am. 50: 505 (1960)Google Scholar
  14. E 14.
    Influence of scatter on fluorescence spectra of dilute solutions. I. Observations with two f/4 Czerny-Turner monochromators. Price, J.M., Kaihara, M., and Howerton, H.K. Pitts. Conf. Anal. Chem. Appl. Spect. (1960)Google Scholar
  15. E 15.
    Measurements of turbulent diffusion in Estuarine and inshore waters. Pritchard, D.W., and Carpenter, J.H. Bull. Intern. Assoc. Scientific Hydrology 20: 37–50 (1960)Google Scholar
  16. E 16.
    Quinidine. Gelfman, N., and Seligson, D. Am. J. Clin. Pathol. 36: 390–2 (1961)Google Scholar
  17. E 16a.
    Photometric determination of boron in magnesium alloys. Gordievskii, A.V., and Ustyugov, G. P., Izvest. Vysshikh. Ucheb Zavedenii, Khim. i Khim. Tekhnol. 4: 366–9 (1961) CA 55: 25581iGoogle Scholar
  18. E 17.
    Studies of the physical, immunological, and biological properties of insulin conjugated with fluorescein isothiocyanates. Halikis, D.N., and Arguilla, E.R. Diabetes 10: 142–7 (1961)Google Scholar
  19. E 18.
    Gluocester-forced circulation of Babson Reservoir. Nicker son, H.D. Sanitalk 9: 1–10 (1961)Google Scholar
  20. E 19.
    A fluorometric method to determine levels of histamine in human plasma. Noah, J.W., and Brand, A. J. Allergy 32: 236–40 (1961)Google Scholar
  21. E 20.
    Standard methods of clinical chemistry. Seligson, D. Academic Press (1961)Google Scholar
  22. E 21.
    A study of the factors affecting the aluminum oxide trihydroxyindole procedures for analysis of catecholamine. Anton, A.H., and Sayre, A.F. J. Pharmacol. Exptl. Therap. 138, Dec. (1962)Google Scholar
  23. E 22.
    Formation of phenolic acids in brain after administration of 3,4-dihydr oxyphenylalanine. Carlsson, A., and Hillays, NA. Acta Phys. Scand. 55: 95–100 (1962)Google Scholar
  24. E 23.
    The selective sensitization of biacetyl triplet state in the vapor phase. Dubois, J.T. J. Am. Chem. Soc. 84: 2902–4 (1962)Google Scholar
  25. E 24.
    Fluorescence of tetracyclines in bone. Absorption maximum, hydration shell, and polarization effects. Hattner, R., and Frost, H.M. J. Surg. Res. 2: 262–7 (1962) CA 62: 1896eGoogle Scholar
  26. E 25.
    New fluorometric micromethod for the determination of reserpine. Jakovljevic, I.M., Fose, J.M., and Kuzel, N.R. Anal. Chem. 34: 410–3 (1962)Google Scholar
  27. E 26.
    Isolation of dehydroepiandrosterone and 17 a-hydroxy-pregnenolone from the polycystic ovaries of the Stein- Lev enthal syndrome. Maheah, V.B., Greenblatt, D.P., and Greenblatt, R.B. J. Clin. Endocrinol. Metab. 22: 441–8 (1962)Google Scholar
  28. E 27.
    Excitation of optical fluorescence spectra of transition elements by means of X rays. Makovsky, J., Low, W., and Yatsiv, S. Phys. Rev. Letters 2: 186–7 (1962) CA 62: 9932eGoogle Scholar
  29. E 28.
    Method of determining the composition of piridine nucleotides in biological materials. Martelli, P., and Ricci, C. Accad. Fis. Atti 11: 3–16 (1962)Google Scholar
  30. E 29.
    Calibration of spectrofluorometers for measuring corrected emission spectra. Melhuish, W.H. J. Opt. Soc. Am. 52: 1256–8 (1952)Google Scholar
  31. E 30.
    a-Haloacrylic polymers. X. Quenching effect of poly (a-ehloroacrylate) and the dehalogenated polymer on the fluorescence of a liquid scintillator. Okamura, S., and Yamada, Y. Doitai To Hoshasen 4: 331–42 (1962) CA 62: 12620eGoogle Scholar
  32. E 31.
    a-Haloacrylic polymers. XI. Quenching effects of copolymer and mixture of poly (ethyl a-chloroacrylate). Okamura, S., and Yamada, Y. Doitai To Hoshasen 4: 343–52 (1962) CA 62: 12620gGoogle Scholar
  33. E 32.
    α-Haloacrylie polymers. XII. Quenching the fluorescence of a liquid scintillator in a solvent by organic halides. Okamura, S., and Yamada, Y. Doitai To Hoshasen 4: 353–62 (1962) CA 62: 12620hGoogle Scholar
  34. E 33.
    A comparative study of various methods for the detection of formaldehyde. Sawicki, E., Stanley, T.W., and Pfaff, J. Chem. Anal. 51, Mar. (1962)Google Scholar
  35. E 34.
    Determination of the secretion rate of aldosterone in normal man by use of 7-H3-d-aldosterone and acid hydrolysis of urine. Siegenthaler, W.E., Dowdy, A., and Leutscher, J A. J. Clin. Endocrinol. Metab. 22: 172–7 (1962)Google Scholar
  36. E 35.
    E 35 Fluorescence of fresh and glycerinated muscle stained by Acridine Orange. Takahashi, M. Sapporo Igaku Zasshi 21: 85–9 (1962) CA 62: 108l2fGoogle Scholar
  37. E 36.
    Fluorescence assay in biology and medicine. Udenfriend, S. Academic Press (1962)Google Scholar
  38. E 37.
    Formation of highly fluorescent zinc phosphate in the presence of uranium and its application to the direct fluorimetry of uranium in aqueous media. Alberti, G., and Saini, A. Anal. Chim. Acta 28: 536–42 (1963)Google Scholar
  39. E 38.
    Basal content and the induced biosynthesis of pyridine nucleotides in the rat liver under the influences of insulin. Alertsen, A.R., Haugen, H.N., and Walass, E. Acta Physiol. Scand. 57: 317–27 (1963)Google Scholar
  40. E 39.
    Fluorescence methods for the determination of correction factors for fluorescence excitation and emission spectra. Argauer, R., and White, C.E. Eleventh Detroit Anachem Conf., Wayne State Univ. Paper No. 59 (1963)Google Scholar
  41. E 40.
    One-hour subcutaneous ACTH test with determination of plasma corticosteroids. Arner, B., Hedner, P., Karlefors, T., and Rerup, C. Acta Med. Scand. 173: 91–7 (1963)Google Scholar
  42. E 41.
    A sensitive method of high specificity for determination of urinary estrogens. Barlow, J.J. Anal. Biochem. 6: 435–50 (1963)Google Scholar
  43. E 42.
    Fluorescent pesticide techniques. Beckman, H.F., Bruce, R.B., and MacDougall, D. Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives, Zweig, G., editor, Academic Press, N.Y., Vol. I, Ch. 8 (1963)Google Scholar
  44. E 43.
    Study of thalidomide in organisms. Beckmann, R. Arzneimittel-Forsch. 13: 185–91 (1963)Google Scholar
  45. E 44.
    Fluorimetric determination of formaldehyde. Belman, S. Anal. Chim. Acta 29: 120–6 (1963)Google Scholar
  46. E 45.
    Photodissociation and fluorescence in the Schumann ultraviolet. Beyer, K., and Welge, K.H. US Dept. of Comm. Bull., AD 438456,15 pp. (1963) CA 62: 2373aGoogle Scholar
  47. E 46.
    On the luminescence properties of some purines and pyrimidines. A study by fluorescence spectrophotometry of the sites of protonation and of the types of lowest excited singlet states. Borresen, H.C. Acta Chem. Scand. 17: 921–9 (1963)Google Scholar
  48. E 47.
    Study of the Momose fluorometric determination of blood glucose. Bourne, B.B. Clin. Chem. 9 (120): 460 (1963)Google Scholar
  49. E 48.
    Introduction of fluorescence into proteins by treatment with N-bromosuccinimide. Brand, L., and Shaltiel, S. Israel J. Chem. 1: 51–2 (1963)Google Scholar
  50. E 49.
    Lower limits of organic reactions. Brandt, R., and Cheronis, N.D. Mikrochim. Acta 1963: 467–73 (1963)Google Scholar
  51. E 50.
    Simplified method for the determination of reduced triphosphopyridine nucleotide by means of enzymic cycling. Brown, E., and Clarke, D.L. J. Lab. Clin. Med. 61: 889–92 (1963)Google Scholar
  52. E 51.
    Differential fluorometry in catecholamine determination. A simplified method of calculation. Brunjes, S., and Wybenga, D. Clin. Chem. 9: 626–30 (1963)Google Scholar
  53. E 52.
    Chemiluminescence of phenazine methosulfate in the presence of hydrogen peroxide induced by reductants including reduced nicotinanide adenine dinucleotide (NADH) and ascorbic acid. Chayet, C., Steele, R.H., and Breckinridge, B.S. Biochem. Biophys. Res. Commun. 10: 390–395 (1963)Google Scholar
  54. E 53.
    Fluorometric assay of yohimbine. Chiang, H.C., and Chen, W.F. J. Pharm. Sci. 52: 808–9 (1963)Google Scholar
  55. E 54.
    Light — an essential factor in the trihydroxyindole spectrofluorometric assay of norepinephrine. Chin, L., Picchioni, A.L., and Childs, R.F. J. Pharm. Sci. 52: 907–9 (1963)Google Scholar
  56. E 55.
    Direct proportionality of urinary excretion rate and serum level of tetracycline in human subjects. Chulski, T., Johnson, R.H., Schlagel, C.A., and Wagner, J.G. Nature 198: 450–3 (1963)Google Scholar
  57. E 56.
    Fluorescent analysis of a-tuboeurarine hydrochloride. Cohen, E.N. J. Lab. Clin. Med. 61: 338–45 (1963)Google Scholar
  58. E 57.
    Quantitative determination of a-tubocurarine in body tissues and fluids. Cohen, E.N. J. Lab. Clin. Med. 62: 979–84 (1963)Google Scholar
  59. E 58.
    Fluorometric assay of glutathione. Cohn, V.H., and Lyle, T. Federation Proc. 22(2), Paper 1564 (1963)Google Scholar
  60. E 59.
    Joint occurrence of a lichen depsidone and its probable depside precursor. Culberson, C.F. Science 143: 255–6 (1963)Google Scholar
  61. E 60.
    Correction of luminescence spectra and calculation of quantum efficiencies using computer techniques. Drushel, H.V., Sommers, A.L., andCox, R.C,. Anal. Chem. 35: 2166 (1963)Google Scholar
  62. E 61.
    Singlet-singlet energy transfer in fluid solutions. Dubois, J.T., and Cox, M. J. Chem. Phys., 38(10): 2536–41 (1963)Google Scholar
  63. E 62.
    An improved bioassay for blood ACTH. Ducommun, P., Ducommun, S., Kraiser, J„ Job in, M., and Fortier, C. Proc. Can. Fed. Biol. Sci. 6: 20 (1963)Google Scholar
  64. E 63.
    Paper chromatographic differentiation of some important phenothiazine encountered in toxicology. Eagleson, DA. Am. J. Clin. Pathol. 39: 648–51 (1963)Google Scholar
  65. E 64.
    Stationary phase as color reagent in glass paper chromatography of estrogens. Epstein, E., and Zak, B. Clin. Chem. 9: 70–8 (1963)Google Scholar
  66. E 65.
    Testosterone analysis by glass paper chromatography. Epstein, E., and Zak, B. Eleventh Detroit Anachem Conf., Wayne State Univ., Paper No. 46 (1963)Google Scholar
  67. E 66.
    Fluorescent tracers for dispersion measurements. Feuerstein, D.L., and Selleck, R.E. J. Sanit. Eng. Div., Am. Soc. Civil Engrs. 89: 1–21 (1963)Google Scholar
  68. E 67.
    Tooth fluorometer. Forziati, A.F., Kumpula, J.W., and Bar one, J J. J. A.. Dental Assoc. 67: 663–9 (1963)Google Scholar
  69. E 68.
    Fluorometry as a method of determining protein content of milk. Fox, K.K., Holsinger, V.H., and Pallansch, M.J. J. Dairy Sci. 26: 302–9 (1963)Google Scholar
  70. E 69.
    Colorimetric and fluorometrie reactions of digitalis. Frerejacque, M., and DeGrave, P. Ann. Pharm. Franc. 21: 509–28 (1963)Google Scholar
  71. E 70.
    Fluorometrie determination of biliverdin in serum bile and urine. Garay, E.A.R., and Argevich, T.C. J. Lab. Clin. Med. 62: 141–7 (1963)Google Scholar
  72. E 71.
    Fluorometrie determination of total phospholipids in rat tissues. Harris, RA., and Gambal, D. Anal. Biochem. 5: 479–88 (1963)Google Scholar
  73. E 72.
    Fluorometrie analysis of 4-chloro-2-oxybenzoic-n-butylamide. Haussler, A., and Hajdu, P. Arzneimittel-Forsch. 13: 16–7 (1963)Google Scholar
  74. E 73.
    Separation of pyridoxine, pyridoxal, and pyridoxamine by a sulfonic acid ion exchange resin. Hedin, P.A. Agr. Food Chem. 11: 343–5 (1963)Google Scholar
  75. E 74.
    Measurement of protein in millimicrogram amounts by quenching of dye fluorescence. Hiraoka, T., and Glick, D. Anal. Biochem. 5: 497–504 (1963)Google Scholar
  76. E 75.
    Utility of 2,4-bis-N,N1-di(carboxymethyl)aminomethyl fluorescein in the fluorometrie estimation of aluminum, alkaline earths, cobalt copper, nickel, and zinc in micromolar concentrations. Hoelzl-Wallach, D.F., and Steck, T.L. Anal. Chem. 35: 1035–44 (1963)Google Scholar
  77. E 76.
    Fluorometrie determination of Oxytetracycline in biological material. Ibsen, K.H., Saunders, R.L., and Urist, M.R. Anal. Biochem. 5: 505–14 (1963)Google Scholar
  78. E 77.
    The fluorimetric determination of rhenium in ores with Rhodamine 6J. Ivankova, A.I., and Shcherbov, D.P. Ind. Lab. (USSR) (English Trans.) 29: 843–5 (1963)Google Scholar
  79. E 78.
    Fractionation and fluorometrie quantitation of digoxin and its metabolites from human urine. Jellinek, M., and Willman, V.L. Federation Proc. 22(2), Paper 152 (1963)Google Scholar
  80. E 79.
    Detection of quanidine compounds on paper chromatograms. Jones, A.S., and Thompson, T.W. J. Chromatog. 10: 248–9 (1963)Google Scholar
  81. E 80.
    Fluorometrie determination of albumin in cerebrospinal fluid and serum. Kaplan, A., and Johnstone, MA. Clin. Chem. 9 (126): 461 (1963)Google Scholar
  82. E 81.
    The structure of the phenylalanine hydroxylation c of actor. Kaufman, S. Proc. Natl. Acad. U.S. 50: 1085–93 (1963)Google Scholar
  83. E 82.
    The identification of 3-methoxy-anthranilic acid, additional tryptophan metabolite, in human urine. Kido, R., Tsuji, T., and Matsumura, Y. Biochem. Biophys. 13: 428–30 (1963)Google Scholar
  84. E 83.
    Paper chromatography of flavin analogs. Kimmieh, G.A., and McCormick, D.B. J. Chromatog. 12: 394–400 (1963)Google Scholar
  85. E 84.
    The use of lumogallion IREA for the fluorescent determination of niobium. Klimov, V.V., and Didkovskaya, O.S. Ind. Lab. (USSR) (English Trans.) 29: 128–9 (1963)Google Scholar
  86. E 85.
    Assay of disulfide and sulfhydryl content of proteins and peptides by fluorescence quenching. Klinman, N., and Karush, F. Federation Proc. 22 (2), 1123 (1963)Google Scholar
  87. E 86.
    Determination of chlordiazepoxide and of a metabolite of lac turn character in plasma of humans, dogs, and rats by a specific speetrofluorometric micro method. Koechlin, B.A., and D’Arconte, L. Anal. Biochem. 5: 195–207 (1963)Google Scholar
  88. E 87.
    Testosterone production rates in normal adults. Korenman, S.G., Wilson, H., and Lipsett, M.R. J. Clin. Invest. 42: 1753–60 (1963)Google Scholar
  89. E 88.
    Change of the character of bond strengths in the Nb-N system. Korsunskii, M.I., and Genkin, Y.E. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. Nauk 1963: 70–5 (1963) CA 62: I216gGoogle Scholar
  90. E 89.
    Spectrophotofluorometric determination of o, o-diethyl-2-pyrazinyl phosphorothioate and its oxygen analog in soil and plant tissues. Kugenagi, U., and Terriere, L.C. Agr. Food Chem. 11: 293–7 (1963)Google Scholar
  91. E 90.
    A sensitive fluorometric assay for morphine. Kupferberg, H.J., Burkhatter, A., and Way, E.L. Federation Proc. 22(2), Paper 533 (1963)Google Scholar
  92. E 91.
    Effect of impurities on the effectiveness of liquid scintillators. Kutsyna, L.M., Verkhovtseva, E.T., and Poduzharlo, V.F. Stsintillyatory i Stsintillyats. Maerialy 1963: 32–5 (1963) CA 62: 1 1310aGoogle Scholar
  93. E 92.
    Isolation of estrone, estradiol-17β, and estriol from female human urine. Lodany, S., and Finkelstein, M. Steroids 2: 297–318 (1963)Google Scholar
  94. E 93.
    Accumulation of oestrone in the allantoic fluid. Lunaas, T. J. Endocrinol. 26: 401–6 (1963)Google Scholar
  95. E 94.
    An outline of magnesium metabolism in health and disease — a review. Maclntyre, I. J. Chronic Diseases 16: 201–15 (1963)Google Scholar
  96. E 95.
    A method for the enzymic determination of corticosteroids in extracts from whole blood, plasma, and urine. Margraf, H.W., Margraf, C.O., and Werchselbaum, T.E. Steroids 2: 143–54 (1963)Google Scholar
  97. E 96.
    Use of sephadex G-25 for the separation of catecholamines from plasma. Marshall, C.S. Biochim. Biophys. Acta 74: 158–9 (1963)Google Scholar
  98. E 97.
    Chromatographic separation of estriol, 16-ketostradiol-17β, 16-epiestriol, estradiol-170α, estradiol-17 β, estrone, and 2-methoxyestrone on the column of partially esterified carboxylic acid type ion exchange resin. Matsumoto, K., and Seki, T. Endocrinol. Japon. 10: 136 β 41 (1963)Google Scholar
  99. E 98.
    Nd3+ fluorescence and stimulated emission in oxide glasses. Maurer, R.D. Polytech. Inst. Brooklyn, Microwave Res. Inst. Symp. Ser. 13: 435–449 (1963) CA 62: 3778aGoogle Scholar
  100. E 99.
    Urinary excretion of magnesium in man following the ingestion of ethanol. McCollister, R.J., Flink, E.B., and Lewis, M.D. Am. J. Clin. Nutr. 12: 415–20 (1963)Google Scholar
  101. E 100.
    Purification and analysis of fluorescein labeled antisera by column chromatography. McDevitt, H.O., Peter, J.H., Polland, L.W., Harter, J.G., and Coons, A.H. J. Immunol. 90: 634–642 (1963)Google Scholar
  102. E 101.
    Some catechol compounds other than noradrenaline and adrenaline in brains. Montagu, K. Biochem. J. 86: 9–11 (1963)Google Scholar
  103. E 102.
    Effect of serotonin loading on histamine release and blood flow of isolated perfused liver and lung. Moore, T.C., Normell, L., and Eiseman,B. Arch. Surgery 87: 42–3 (1963)Google Scholar
  104. E 103.
    Browning of fish meat. XII. Fluorescent substance in flounder extracts. Nagayama, F., and Ono, T. J. Tokyo Univ. Fisheries 50: 31–6 (1963) CA 62: 11070dGoogle Scholar
  105. E 104.
    Quantitative fluorometric determination of anthranilic acid, 3-hydroxy- and 5-hydroxy-anthranilic acid in the urine. Nakken, K.F. Scand. J. Clin. Lab. Invest., 15: 78 (1963)Google Scholar
  106. E 105.
    Determination of millimicrogram amounts of protein. Newmark, M.Z., and Wenger, B.S. Federation Proc. 22(2), Paper 1899 (1963)Google Scholar
  107. E 106.
    Luminescence in animals. Nicol, J.A.C. Endeavor 22: 37–41 (1963)Google Scholar
  108. E 107.
    Simplified micromethod for measuring histamine in human plasma. Noah, J.W., and Brand, A. J. Lab. Clin. Med. 62: 506–10 (1963)Google Scholar
  109. E 108.
    Hydraulic model tests of estuarial waste dispersion. O’Connell, R.L., and Walter, C.M. J. Sanit. Eng. Div., Am. Soc. Civil Engrs. 89: 3394 (1963)Google Scholar
  110. E 109.
    The use of β-thiopropionic acid for the analysis of mixtures of adrenaline and noradrenaline in plasma by the fluorometric trihydroxyindole method. Palmer, J.F. West Indian Med. J. 13: 38–53 (1963)Google Scholar
  111. E 110.
    Fluorescence determination of gibberellic acid in cherries. Parker, K.G., St. John, L.E., and Lisk, D.J. J. Assoc. Offic. Agr. Chemists 46: 986–8 (1963)Google Scholar
  112. E 111.
    Fluorometric determination of 11-hydroxycorticosteroids in human plasma. Popens, Y., Silinsh, E., and Vitols, I. Vopr. Med. Khim. 8: 628–34 (1962); Federation Proc. Trans. Suppl. 22, T957–60 (1963)Google Scholar
  113. E 112.
    An initial inquiry into a photoelectric device to detect menhaden marked with fluorescent pigments. Reintjes, J.W. North Atlantic Fish Marking Symp., Spec. Publ. No. 4 (1963)Google Scholar
  114. E 113.
    Separation and determination of thiamine and pyrothiamine in biological materials by chromatography on polyethylene powder. Rindi, G., and Perri, V. Anal. Biochem. 5: 179–86 (1963)Google Scholar
  115. E 114.
    Stability assays of pharmaceutical preparations by quantitative paper chromatography. Roberts, H.R., and Siino, M.R. J. Pharm. Sci. 52: 370–5 (1963)Google Scholar
  116. E 115.
    Application of fluorescence assay to the identification of acidic components in psoriatic lesions. Roe, DA. J. Invest. Dermatol. 41: 319–24 (1963)Google Scholar
  117. E 116.
    Fluorometric determination of trypsin. Roth, M. Clin. Chim. Acta 8: 574–8 (1963)Google Scholar
  118. E 117.
    Fluorogenic substrates for B-D-galactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfluoran) and its monomethyl ether. Rotman, B., Zderic, J A., and Edelstein, M. Proc. Natl. Acad. Sci. U.S. 50: 1–6 (1963)Google Scholar
  119. E 118.
    A new fluorimetric method of plasma Cortisol assay with a study of pituitary-adrenal function using metyrapone. Rudd, B.T., Sampson, P., and Brooke, B.N. J. Endocrinol. 27: 317–25 (1963)Google Scholar
  120. E 119.
    Detection of alloxan by paper chromatography. Said, A., and Fleita, D.H. Chem. Anal. 52: 109–10 (1963)Google Scholar
  121. E 120.
    Thin-layer chromatographic separation and fluorescence analysis of polynuclear azo hydrocarbons. Sawicki, E., Stanley, T.W., Elbert, W.C., and Pfaff, J.D. Eleventh Detroit Anachem Conf., Wayne State Univ., Paper No. 48 (1963)Google Scholar
  122. E 121.
    Comparison of spectrophotometric and spectrophotofluorometric methods for the determination of malonaldehyde. Sawicki, E., Stanley, T.W., and Johnson, H., Anal. Chem. 35, Feb. (1963)Google Scholar
  123. E 122.
    Comparative study of some new methods for the detection of malonaldehyde. Sawicki, E., Stanley, T.W., and Johnson, H. Chem. Anal. 52, Jan. (1963)Google Scholar
  124. E 123.
    Speetrophotofluorimetric determination of formaldehyde and acrolein with J-acid, comparison with other methods. Sawicki, E., Stanley, T.W., and Pfaff, J. Anal. Chim. Acta 28: 156–63 (1963)Google Scholar
  125. E 124.
    Fluorescence-structure relationship for polynuclear hydrocarbons by automatic triparametric recording. Schachter, M.M., and Haenni, E.O. Eleventh Detroit Anachem Conf., Wayne State Univ., Paper No. 57 (1963)Google Scholar
  126. E 125.
    Interaction of some fluorescent quaternary ammonium salts with muscle protein. Sehell, H.D. Acad. Rep. Populare Romine, Studii Cereetari Biochim. 6: 545 (1963)Google Scholar
  127. E 126.
    A new fluorometric technique for measuring serum high and low-density lipoproteins. Searcy, R.L., Korotzer, J.C., and Bergquist, L.M. Clin. Chim. Acta 8: 148–51 (1963)Google Scholar
  128. E 127.
    Fluorometric method for the estimation of 4-hydroxy-3-methoxyphenylace- tic acid (homovanillic acid) and its identification in brain tissue. Sharman, D.F. Brit. J. Pharmacol. 20: 204–13 (1963)Google Scholar
  129. E 128.
    Microdetermination of calcium by aequorin luminescence. Shimomura, O., Johnson, F.H., and Saiga, Y. Science 140: 1339–40 (1963)Google Scholar
  130. E 129.
    Blue fluorescence in crystals excited by the ruby optical maser. Singh, S., and Stoicheff, B.P. Polytech. Inst. Brooklyn, Microwave Res. Inst. Symp. Ser. 13: 385–403 (1963) CA 62: 6028aGoogle Scholar
  131. E 130.
    Fluorimetric determination of total catecholamines in urine. Small, NA. Clin. Chim. Acta 8: 803–6 (1963)Google Scholar
  132. E 131.
    Distribution of forms of lactic dehydrogenase within the developing rat kidney. Smith, C.H., and Kissane, J.M. Exptl. Bio. 8: 151–64 (1963)Google Scholar
  133. E 132.
    The presence and distribution of tyramine in mammalian tissues. Spector, S., Melmon, K., Lovenberg, W., and Sjoerdsena, A. J. Pharmacol. Exptl. Therap. 140: 229–35 (1963)Google Scholar
  134. E 133.
    Fluorometric and spectrophotometric determination of magnesium with O,O’ -dihydroxyazobenzene. Spielholtz, G.I., and Jensen, R. Anal. Chem. 35: 1144 (1963)Google Scholar
  135. E 134.
    Excretion of a tryptophan metabolite in rheumatoid arthritis. Spiera, H. Arthritis Rheumat. 6: 364–71 (1963)Google Scholar
  136. E 135.
    Fluorometric determination of chlorotetraeycline in premixes. Spick, J., and Katz, S.E. J. Assoc. Offic. Agr. Chemists 46: 434–7 (1963)Google Scholar
  137. E 136.
    A simple fluorometric method for the routine determination of orticosteroids in small quantities of plasma. Stahl, F., Hertline, I., and Knappe, G. Acta Biol. Med. Ger. 10: 480–7 (1963)Google Scholar
  138. E 137.
    A photo-induced chemiluminescence of riboflavin in water containing hydrogen peroxide. I. The primary photochemical phase. Steele, R.H. Biochemistry 2: 529–36 (1963)Google Scholar
  139. E 138.
    A partial kinetic analysis of the chemiluminescence of phenazine methosulfate. Steele, R.H., and Breckenridge, B.S. Biochem. Biophys. Res. Comm. 10: 396–400 (1963)Google Scholar
  140. E 139.
    Oestriol and pregnandiol estimations in urine as an aid in the examination of placental function. Strand, A. Acta Obstet. Gynecol. Scand. 42: 96–104 (1963)Google Scholar
  141. E 140.
    Enzymatic formation of a-isopropyl malic acid, an intermediate in leucine biosynthesis. Straussman, M., and Ceci, L.N. J. Biol. Chem. 238: 2445–2452 (1963)Google Scholar
  142. E 141.
    A quantitative fluorometric method for the determination of serpasil (reserpine) in feeds at the micro level. Tishler, F., Sheth, P.B., and Giaimo, M.B. J. Assoc. Offic. Agr. Chemists 46: 448–51 (1963)Google Scholar
  143. E 142.
    Salicylism. Tschetter, P.N. Diseases Children 106: 134–46 (1963)Google Scholar
  144. E 143.
    Fluorescence of purines and pyrimidines. Udenfriend, S. Eleventh Detroit Anachem Conf., Wayne State Univ., Paper No. 47 (1963)Google Scholar
  145. E 144.
    A new method for the determination of dopamine α-hydroxytyramine). Uuspaa, V.J. Ann. Med. Exper. Biol. Fennial 41: 194–201 (1963)Google Scholar
  146. E 145.
    A ninhydrin reaction giving a sensitive quantitative fluorescence assay for 5-hydroxytryptamine. Vanable, J.W. Anal. Biochem. 6: 393–403 (1963)Google Scholar
  147. E 146.
    Clinical significance of trace elements. Vollee, B.L. Mod. Medicine 8: 111–27 (1963)Google Scholar
  148. E 147.
    Quantitative determination of 3, 4-dihydroxymandelic acid (DOMA) in human urine. Wada, Y. Tohoku J. Exptl. Med. 79: 389–400 (1963)Google Scholar
  149. E 148.
    Magnesium binding constants of a denosine triphosphate and some other compounds estimated by the use of fluorescence of magnesium-8-hydroxyquinoline. Watanabe, S., Trosper, T., Lynn, M., and Evenson, L. J. Biochem. (Tokyo) 54: 17–24 (1963) CA 60: 12267hGoogle Scholar
  150. E 149.
    Fluorescent biological stains as markers for Drosophila. Wave, H.E., Henneberry, T.J., and Mason, H.C. J. Econ. Entomol. 56: 890–1 (1963)Google Scholar
  151. E 150.
    Estimation of serotonin in biological material. Weissbach, H. Std. Methods Clin. Chem., Vol. 4, p. 197, Academic Press (1963)Google Scholar
  152. E 151.
    Rapid appearance of injected fat in the gut of the rat. Wilkins, D.J. Proc. Soc. Exptl. Biol. Med. 112: 953 (1963)Google Scholar
  153. E 152.
    A routine procedure for screening of phenylketonuria in the newborn. Wong, P., Inouye, T., and Hsia, D.Y.Y. Clin. Chem. 9 (71): 444 (1963)Google Scholar
  154. E 153.
    Ethyl esters of eoumarin-4-acetic acids. Woods, L.L., and Sapp, J. J. Chem. Eng. Data 8: 235–6 (1963)Google Scholar
  155. E 154.
    Plasma N-acetyl-β-glucosaminidase and -glucuronidase in health and disease. Woolen, J.W., and Turner, P. Clin. Chem. 9 (77): 446 (1963)Google Scholar
  156. E 155.
    Inherited metabolic disorders. Errors of phenylalanine and tyrosine metabolism. Woolf, L.I. Adv. Clin. Chem., Vol. 6, pp. 97–230, H. Sobotka and C.P. Stewart, editors, Academic Press (1963) CA 60: 8462cGoogle Scholar
  157. E 156.
    Spectrophotofluorometric determination of the dissociation constants of amides from the enzyme-reduced coenzyme complex of liver alcohol dehydrogenase. Woronick, C.L. Acta Chem. Scand. 17: 1789–91 (1963)Google Scholar
  158. E 157.
    Aspects of the clinical chemistry of demethylimipramine in man. Yates, C.M., Todrick, A., and Tait, A.C. J. Pharm. Pharmacol. 15: 432–9 (1963) CA 59: 6881eGoogle Scholar
  159. E 158.
    Method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Yentsch, C.S., and Menzel, D.W. Deep-Sea Res. 10: 221–31 (1963)Google Scholar
  160. E 159.
    Histamine in human blood. Zachariae, H. Scand. J. Clin. Lab. Invest. 15: 173–8 (1963)Google Scholar
  161. E 160.
    Use of dimedon for the detection of keto sugars by paper chromatography. Adachi, S. Anal. Bioehem. 9: 224–7 (1964)Google Scholar
  162. E 161.
    A method for the determination of estrogens in urine. Aizawa, Y., and Pincus, G. Steroids 4: 249–54 (1964)Google Scholar
  163. E 162.
    Polarization ratios in tetraceneanthracene mixed crystals. Akon, C.D., and Craig, D.P. J. Chem. Phys. 41: 4000–1 (1964) CA 62: 8518hGoogle Scholar
  164. E 163.
    Determination of submicrogram amounts of selenium in biological materials. Allaway, W.H., and Cary, E.E. Anal. Chem. 36: 1359–62 (1964)Google Scholar
  165. E 164.
    Determination of phenoxyacetic acids with J and phenyl J acids. Aly, O.M., and Faust, S.D. Anal. Chem. 36: 2200–2201 (1964)Google Scholar
  166. E 165.
    Determination of antibody-hapten building constant by fluorescence enhancement. Amkrant, A A, Immunochemistry 1: 231–5 (1964)Google Scholar
  167. E 166.
    Fluorometrie determination of uranium with Rhodamine B. Anderson, N.R., and Hercules, D.M. Anal. Chem. 36: 2138–41 (1964) CA 62: 26dGoogle Scholar
  168. E 167.
    Lead poisoning test studied. Anon. Lab. World 15: 802 (1964)Google Scholar
  169. E 168.
    Dopamine in CNS and a method for its determination. Anton, A.H., and Sayre, D.F. Federation Proc. Abst. 23, Abst. 2339 (1964)Google Scholar
  170. E 169.
    Effect of the concentrational transformation of the fluorescence spectrum of pyrene solutions at low temperatures. Arabidze, A A. Opt. i Spektroskopiya 17: 633–5 (1964)Google Scholar
  171. E 170.
    Effect of substituent groups on fluorescence of metal chelates. Argauer, R.J., and White, C.E. Anal. Chem. 36: 2141–4 (1964) CA 62: 1218dGoogle Scholar
  172. E 171.
    Use of the excitation spectrum to determine the degree of dissociation of fluorescent metal chelates. Argauer, R.J., and White, C.E. Spectrochim. Acta 20: 1323–6 (1964)Google Scholar
  173. E 172.
    5-Hydroxytryptophan decarboxylase activity in nerve endings of the rat brain. Arnaiz, G.R.D.L., and de Robertis, E. J. Neurochem. 11: 213 (1964)Google Scholar
  174. E 173.
    Estimation of 5-hydroxytryptamine in human blood. Ashcroft, G.W., and Crawford, T.B.B. Clin. Chim. Acta 9: 364–9 (1964)Google Scholar
  175. E 174.
    Measurement of the temperature of the ionosphere from the incidence of the twilight glow of aluminum monoxide. Authier, B., Blamont, J.E., and Carpenter, G. Ann. Geophys. 20: 342–5 (1964) CA 62: 14037dGoogle Scholar
  176. E 175.
    Studies of coporporphyrin. VII. Adaptation of the Eriksen paper chromatographic method to the quantitative analysis of the isomers in normal human urine. Aziz, MA., Schwartz, S., and Watson, C.J. J. Lab. Clin. Med. 63: 585–9 (1964)Google Scholar
  177. E 176.
    Prototropic equilibrium and fluorescence of some 8-hydroxyquinoline derivatives. Ballard, R.E., and Edwards, J.W. J. Chem. Soc. 1964: 4868–74 (1964) CA 62: 5174bGoogle Scholar
  178. E 177.
    Formation of 5-hydroxytryptophol from endogenous 5-hydroxytryptamine by isolated blood platelets. Bartholini, G., Pletscher, A., and Bruderer, H. Nature 203: 1281–3 (1964)Google Scholar
  179. E 178.
    Fluorometrie estimation of magnesium in serum and urine. Batsakis, J.G., Madera-Orsini, F., Stiles, D., and Briere, R.O. Am. J. Clin. Pathol. 42: 541–6 (1964)Google Scholar
  180. E 179.
    Octaeoordinate chelate of lanthanides. Two series of compounds. Bauer, H., Blanc, J., and Ross, D.L. J. Am. Chem. Soc. 86: 5125–31 (1964) CA 62: 3636aGoogle Scholar
  181. E 180.
    Ultraviolet-induced radiophotoluminescence in silver-activated metaphosphate glasses. Becker, K. Z. Naturforsch. 19a: 1233–4 (1964) CA 62: 141cGoogle Scholar
  182. E 181.
    Catalytic synthesis of a new luminophor in the presence of the natural aluminosilicate gumbrin. Bekauri, N.G., Shuikin, N.I., Shakarashvili, T.S., Topuridze, L.F., and Goderzishvili, K.G. Tr. Inst. Khim., Akad. Nauk Gruz. SSR 17: 145–58 (1964) CA 62: 7220hGoogle Scholar
  183. E 182.
    Fluorometer for chemical dosimetry. Berlinguette, G.E., and Tate, PA. Rev. Sci. Instr. 35: 1725–6 (1964) CA 62: 4874gGoogle Scholar
  184. E 183.
    A micro method for blood serotonin. Berman, J.L., and Hsia, D.Y. Clin. Chem. 10: 641 (1964)Google Scholar
  185. E 184.
    A fluorescence study of specific and nonspecific dye-protein interactions. Berns, D.S., and Singer, S.J. Immunoehemistry 1: 209–17 (1964) CA 62: 3242eGoogle Scholar
  186. E 185.
    Studies on the inhibition of dihydrofolate reductase by the folate antagonists. Bertino, J.R., Booth, B.A., Bieber, A.L., Cashmore, A., and Sartorelli, A.C. J. Biol. Chem. 239: 479–485 (1964)Google Scholar
  187. E 186.
    Simplified determination of blood adenosine triphosphate using the firefly system. Beutler, E., and Baluda, M.C. Blood 23: 688–98 (1964)Google Scholar
  188. E 187.
    Fluorometrie assay of a-chymotrypsin. Bielski, B.H.J., and Freed, S. Anal. Biochem. 7: 192–8 (1964)Google Scholar
  189. E 188.
    Qualitative and quantitative analysis of amino acids. Boulton, A.A., and Bush, I.E. Biochem. J. 92: 11 (1964)Google Scholar
  190. E 189.
    Application and modification of the Momose-Ohkura fluorometrie determination of blood glucose. Bourne, B.B. Clin. Chem. 10: 1121–30 (1964)Google Scholar
  191. E 190.
    Reproducibility of R and correlation of chromatographic patterns on paper and thin layer plates. Brodasky, T.F. Anal. Chem. 36: 996–9 (1964)Google Scholar
  192. E 191.
    The significance of lactate dehydrogenase isozymes in abnormal skeletal muscle. Brody, IA. Neurology 14: 1091–9 (1964)Google Scholar
  193. E 192.
    Fluorometrie determination of urinary metanephrine and normetanephrine. Brunjes, S., and Wybenga, D. Clin. Chem. 10: 1–12 (1964)Google Scholar
  194. E 193.
    Time of travel of soluble contaminants in streams. Buchanan, T.J. J. Sanit. Eng. Div., Proe.Am. Soc. Civil Engrs. 90: 1–12 (1964)Google Scholar
  195. E 194.
    Plasma Cortisol and corticosterone response to infused eorticotrophin in normal subjects. Cameron, E.A., and Kilborn, J.R. Clin. Chim. Acta 10: 308–13 (1964)Google Scholar
  196. E 195.
    Method for the fluorometrie determination of 3-methoxytyramine in tissues and the occurrence of this amine in brain. Carlsson, A., and Waldeck, B. Scand. J. Clin. Lab. Invest. 16: 133–8 (1964)Google Scholar
  197. E 196.
    Fluorescent method for determining fibrinolytic activity. Caviezel, V.O. Schweiz. Med. Wochschr. 94: 555–6 (1964)Google Scholar
  198. E 197.
    Bioluminescence-production of light by organisms. Chase, A.M. Photophysiology, Vol. n, pp. 389–421, A.C. Giese, editor, Academic Press N.Y. (1964)Google Scholar
  199. E 198.
    Sensitive fluorescence reaction for vitamins D and dihydrotachysterol. Chen, P.S., Terepka, A.R., and Lane, K. Anal. Biochem. 8: 34–42 (1964)Google Scholar
  200. E 199.
    Photoinactivation of L-glutamate dehydrogenase in a spectrophotofluorometer. Chen, R.F. Biochem. Biophys. 17: 141–5 (1964)Google Scholar
  201. E 200.
    Experiments on determination of melphalan by fluorescence. Interaction with protein and various solutions. Chirigos, M.A. and Mead, J.A.R. Anal. Biochem. 7: 259–268 (1964)Google Scholar
  202. E 201.
    A procedure for the direct reading of fluorescent spots on thin-layer chromatography plates using the Turner fluorometer. Connors, W.M., and Boak, W.K. J. Chromatog. 16: 243–5 (1964)Google Scholar
  203. E 202.
    The estimation of 5-hydroxytryptamine in human blood. Contractor, S.F. Biochem. Pharmacol. 13: 1351–7 (1964)Google Scholar
  204. E 203.
    The fluorometric determination of acetylcholine. Cooper, J.R. Biochem. Pharmacol. 13: 795–7 (1964)Google Scholar
  205. E 204.
    Direct extraction of corticosterone from rat adrenal gland under an applied electrical field. Cortes, J.M., and Per on, F.G. Federation Proc. Abst. 23 (3), Abst. 1055 (1964)Google Scholar
  206. E 205.
    Application of isotopic dilution analysis to the fluorometric determination of selenium in plant materials. Cukor, P., Walzcyk, J., and Lott, P.F. Anal. Chim. Acta 30: 473 (1964)Google Scholar
  207. E 206.
    Fluorimetrie determination of adrenal corticosteroids: observations on interfering fluorogens in human plasma. Daly, J.R., and Spencer-Peet, J. J. Endocrinol. 30: 255–63 (1964)Google Scholar
  208. E 207.
    Determination of serotonin in blood using an ion-exchange resin. Davis, V.E., Huff, J.A., Brown, H., and Alfrey, C.P. Clin. Chim. Acta 9: 419–26 (1964)Google Scholar
  209. E 208.
    Determination of serotonin in tissues using an ion-exchange resin. Davis, V.E., Huff, J.A., and Brown, H. Clin. Chim. Acta 9: 427–33 (1964)Google Scholar
  210. E 209.
    Calcein, colmagite, and O,O’- dihydroxyazobenzene titrimetric, colorimetrie, and fluorometric re-agents for calcium and magnesium. Diehl, H. G. Frederick Smith Co., Ohio (1964)Google Scholar
  211. E 210.
    Identification and quantitative determination scofolin and scopoletin in tobacco plants treated with 2,4- dichlorophenoxyacetic acid. Dieterman, L.J., Lin, C.Y., Rohrbaugh, L., Thiesfeld, V., and Wender, S.H. Anal. Biochem. 9: 139 (1964)Google Scholar
  212. E 211.
    Carbonyl addition to nicotinamide adenine dinucleotide in frozen solution. Dolin, M.I., and Jacobson, K.B. J. Biol. Chem 239: 3007–16 (1964)Google Scholar
  213. E 212.
    Simplified method for the fluorometric measurement of free Cortisol and corticosterone in urine. Dorner, G., and Stahl, F. Acta Biol. Med. Ger. 12: 606–11 (1964)Google Scholar
  214. E 213.
    Micro-detection of β-phenethylbiquanide. Durfee, DA., Bailey, R.E., and Beck, J.H. Federation Proc. Abst. 23, Abst. 2344 (1964)Google Scholar
  215. E 214.
    Chromatographic assay of estrogen in pregnancy urine. Epstein, E., and Zak, B. Clin. Chem. 10: 637 (1964)Google Scholar
  216. E 215.
    Thiamine retention as influenced by processing method, storage time, and temperature, and type of container. Everson, G.J., Chang, J., Leonard, S., Luh, B.S., and Simone, M. Food Teehnol. 18: 84–6 (1964)Google Scholar
  217. E 216.
    Single extraction method for the simultaneous determination of serotonin, dopamine, and norepinephrine in brain. Fleming, R.M., Clark, W.G., and Clark, P.T. Federation Proc. Abst. 23, Abst. 2340 (1964)Google Scholar
  218. E 217.
    Experience with a simple procedure for the determination of plasma and urine free 11-hydroxycorticosteroids. Gantt, C.L., Maynard, D.E., and Hamwi, G.G. Metab., Clin. Eptl. 13: 1327–32 (1964)Google Scholar
  219. E 218.
    Enzymic determination of free myoinositol in human cerebrospinal fluid and plasma. Garcia-Bunuel, L., and Garcia-Bunuel, V.M. J. Lab. Clin. Med. 64: 461–8 (1964)Google Scholar
  220. E 219.
    Fluorescein labeled clot assay of plasmathrombolytic activity. Genton, E., and Fletcher, A.P. Federation Proc. Abst. 23, Abst. 6395 (1964)Google Scholar
  221. E 220.
    Assay of plasma thrombolytic activity with fluorescein-labeled clots. Genton, E., Fletcher, A.P., Alkjaersig, N., and Sherry, S. J. Lab. Clin. Med. 64: 313 (1964)Google Scholar
  222. E 221.
    Modified trihydroxyindole procedure for plasma catecholamines using stannous chloride and temperature control. Gerst, E.C., and Steinsland, O.S. Federation Proc. Abst. 23, Abst. 2337 (1964)Google Scholar
  223. E 222.
    Quantitative mierodetermination of enzymes in the sweat gland, n. Dehydrogenases in patients with cystic fibrosis and in control subjects. Gibbs, G.E., and Reimer, K. J. Pediat. 65: 540–1 (1964)Google Scholar
  224. E 223.
    Fluorometric determination of corticostersone and Cortisol in 0.02–0.05 milliliters of plasma on submilligram samples of adrenal tissue. Glick, D., Von Redlick, D., and Levine, S. Endocrinology 74: 653–5 (1964)Google Scholar
  225. E 224.
    Fluorometric analysis of amidase and alkaline phosphatase in neonatal rat thymocytes. Greenberg, L.J., and Cole, L.J. Nature 201: 1001 (1964)Google Scholar
  226. E 225.
    Separation and identification of pyridoxal and pyridoxal-5-phosphate by paper chromatography. Hakanson, R. J. Chromatog. 13: 263–5 (1964)Google Scholar
  227. E 226.
    Photoluminescence of lanthanide complexes. II. Enhancement by an insulating sheath. Halverson, F., Brinen, J.S., and Leto, J.R. J. Chem. Phys. 41: 157–63 (1964)Google Scholar
  228. E 227.
    On the molecular mechanism of bioluminescence. I. The role of long chain aldehyde. Hastings, J.W., Gibson, Q.H., and Greenwood, C. Proc. Natl. Acad. Sci. U.S. 52: 1529–35 (1964)Google Scholar
  229. E 228.
    A simple method for quantitative estimation of tetracycline antibiotics. Hayes, J.E., and Dubuy, H.G. Anal. Biochem. 7: 322–7 (1964)Google Scholar
  230. E 229.
    Progesterone levels in intact and ovariectomized pregnant guinea pigs. Heap, R.B., and Deamesly, R. J. Endocrinol. 30: ii-iii (1964)Google Scholar
  231. E 230.
    A fluorescence assay of progesterone. Heap, R.B. J. Endocrinol. 30: 293–305 (1964)Google Scholar
  232. E 231.
    Spectrofluorometric method for measuring 6-amino-nicotinamide in pyridine nucleotides of rat kidney. Herken, H., and Neuhoff, V. Naunyn-Schmiedebergs Arch. Exptl. Pathol. Pharmakol. 247: 187–201 (1964)Google Scholar
  233. E 232.
    Fluorometric assay of sialic acid in brain gangliosides. Hess, H.H., and Rolde, E. J. Biol. Chem. 239: 3215–20 (1964)Google Scholar
  234. E 233.
    Urinary estrogens in non-pregnant human subjects measured by modification of Bauld’s method. Hobkirk, R., and Nilsen, M. Steroids 3: 453–470 (1964)Google Scholar
  235. E 234.
    Fluorometric demonstration of tryptophan in dentin and bone protein. Hoerman, K.C., and Mancewicz, S.A. J. Dental Res. 43: 276–80 (1964)Google Scholar
  236. E 235.
    Screening newborn infants for phenylketonuria. Hsia, D.Y., Berman, J.L., and Slatis, H.M. J. Am. Med. Assoc. 188: 203 (1964)Google Scholar
  237. E 236.
    Blood phenylalanine levels of newborn infants (phenylketonuria). Irwin, H.R., Notrica, S., and Fleming, W. Calif. Med. 101: 331–3 (1964)Google Scholar
  238. E 237.
    Quantitation of estrone, estradiol, and estriol on thin layer chromatograms by a photogrammetric procedure. Jacobsohn, G.M. Anal. Chem. 36: 275–9 (1964)Google Scholar
  239. E 238.
    Fluorometric study of antihistamines. Jensen, R.E., and Pflaum, R.T. J. Pharm. Sci. 53: 835–7 (1964)Google Scholar
  240. E 239.
    Fluorometric method for the determination of amprolum in feeds. Kanora, J., and Szalkowski, C.P. J. Assoc. Offic. Agr. Chemists 47: 209–13 (1964)Google Scholar
  241. E 240.
    Assay method for disulfide groups by fluorescence quenching. Karush, F., Klinman, N.R., and Marks, R. Anal. Biochem. 9: 100–14 (1964)Google Scholar
  242. E 241.
    Determination of penicillins and chlorotetracycline in premixed and mixed feeds. Katz, S.E., and Helrich, K. Pest. Rev. 7: 74–95 (1964)Google Scholar
  243. E 242.
    Drugs, in feeds. Fluorometric determination of chlortetracycline in mixed feeds. Katz, S.E., and Spock, J. J. Assoc. Offic. Agr. Chemists 47: 203–8 (1964)Google Scholar
  244. E 243.
    Fluorometric determination of chlortetracycline in low level mixed feeds. Katz, S.E., and Spock, J. J. Assoc. Offic. Agr. Chemists 47: 1157–61 (1964)Google Scholar
  245. E 244.
    Xanthine dehydrogenase: Differences in activity among Drosophila strains. Keller, E.C., and Glass man, E. Science 143: 40–1 (1964)Google Scholar
  246. E 245.
    Tracer studies with Rhodamine B in a 3.2 kilometer reach of the upper Ohio River. Kisiel, C.C., Shapiro, MA., Fiche, J.F., Morgan, P.V., and Spear, R.D. Verh. Int. Ver. Limnol. XV: 265–75 (1964)Google Scholar
  247. E 246.
    Phenylketonuria — a review of some deficits in our information. Kleinman, D.S. Pediatrics 33: 123–4 (1964)Google Scholar
  248. E 247.
    Interferences by formaldehyde forming drugs in the determination of urinary catecholamines. Klotz, M.O., Richter, H., and Meuffels, M. Clin. Chem. 10: 372–3 (1964)Google Scholar
  249. E 248.
    Simplified procedure for the estimation of testosterone production rates. Korenman, S.G., Davis, T.E., Wilson, H., and Lipsett, M.D. Steroids 3: 203–7 (1964)Google Scholar
  250. E 249.
    Separation of uranium, thorium, and the rare earth elements by anion exchange. Korkisch, J., and Arrhenius, G. Anal. Chem. 36: 850–4 (1964)Google Scholar
  251. E 250.
    Ion exchange determination of uranium in ferrous alloys. Korkisch, J., and Hazan, I. Anal. Chem. 36: 2464–6 (1964)Google Scholar
  252. E 251.
    Determination of small amounts of aldosterone and corticosterone in the incubation medium of the adrenal gland of rats. Kraus, M., and Popp, M. Physiol. Bohemoslov. 13: 457–61 (1964)Google Scholar
  253. E 252.
    Nicotinamide coenzyme concentrations in mammary biopsy samples from ketotic cows. Kronfeld, D.S., and Raggi, F. Bio. Chem. J. 90: 219–24 (1964)Google Scholar
  254. E 253.
    A sensitive fluorometric assay for morphine in plasma and brains. Kupferberg, H., Burkhalter, A., and Way, E.L. J. Pharmacol. Exptl. Therap. 145: 247–51 (1964)Google Scholar
  255. E 254.
    Fluorometric identification of sub-microgram amounts of morphine and related compounds on thin-layer ehromatograms. Kupferberg, H., Burkhalter, A., and Way, E.L. J. Chromatog. 16: 558–9 (1964)Google Scholar
  256. E 255.
    Determination of pyrrolidine and piperidine. Langemann, H.M., and Honegger, C.G. Anal. Bioehem. 8: 529–31 (1964)Google Scholar
  257. E 256.
    Simplified method for the determination of adrenaline and noradrenaline in urine. Lauber, K. Z. Klin. Chem., 2(3): 76–9 (1964) CA 63: 5972bGoogle Scholar
  258. E 257.
    Histamine release from human leukocytes by ragweed pollen antigen. Lichtenstein, L.M., and Osier, A.G. J. Exptl. Med. 120: 507–30 (1964)Google Scholar
  259. E 258.
    Benzopyrene and other polynuelear hydrocarbons in charcoal-broiled meat. Lijinsky, W., and Shubik, P. Science 145: 53–5 (1964)Google Scholar
  260. E 259.
    A critical study of pyridine nucleotide concentrations in normal fed, normal fasted, and diabetic rat liver. Lindall, A.W., and Luzarow, A. Metab., Clin. Exptl. 13: 259–71 (1964) CA 61: 6175eGoogle Scholar
  261. E 260.
    Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. Lowry, O.H., and Passonneau, J.V. J. Biol. Chem. 239: 18–30 (1964)Google Scholar
  262. E 261.
    The relationships between substrates and enzymes of glycolysis in brain. Lowry, O.H., and Passonneau, J.V. J. Biol. Chem. 239: 31–42 (1964)Google Scholar
  263. E 262.
    Electrophoretic separation (and fluorescence measurement) of urobiline. Lozzio, B.B., Gorodisch, S., and Royer, M. Clin. Chim. Acta 9: 78–81 (1964)Google Scholar
  264. E 263.
    The potential of fluorescence for pesticide residue analysis. MacDougall, D. Pest. Rev. 5: 119–29 (1964)Google Scholar
  265. E 264.
    Fluorometric method for guthion. MacDougall, D. Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives, G. Zweig, editor, Vol. n, Ch. 20, Academic Press N.Y. (1964)Google Scholar
  266. E 265.
    A paper chromatographic method for estrogen determination. Mahesh, V.B. Steroids 3: 647–61 (1964)Google Scholar
  267. E 266.
    Fluorometric method for the enzymic determination of glycolytic intermediates. Maitra, P.K., and Estabrook, R.W. Anal. Bioehem. 7: 472–84 (1964)Google Scholar
  268. E 267.
    Simplified estimation of leucine amino-peptidase (LAP) activity. Martinek, R.G., Berger, L., and Broida, D. Clin. Chem. 10: 1087–97 (1964)Google Scholar
  269. E 268.
    Rapid screening test for adrenal cortical function. Mattingly, D., Dennis, P.M., Pearson, J., and Cope, C.L. Lancet 2: 1046–9 (1964)Google Scholar
  270. E 239.
    The mechanism of ehemiluminescence: A new chemiluminescent reaction. McCapro, F., and Richardson, D.G. Tetrahedron Letters 43: 3167–72 (1964)Google Scholar
  271. E 270.
    The hydrolysis of amino acyl-β-naphthylamide by plasma aminopeptidases. McDonald, J.K., Reilly, T.J., and Ellis, S. Bioehem. Biophys. Res. Commun. 16(2): 135–40 (1964) CA 61: 4780hGoogle Scholar
  272. E 271.
    Determination of purity of fluorescein isothiocynates. McKinney, B.M., Spillane, J.T., and Pearce, G.W. Anal. Biochem. 7: 74–86 (1964)Google Scholar
  273. E 272.
    Further studies of plasma tyrosine in patients with altered thyroid function. Melmon, K.L., Rivlin, R„ Oates, J.A., and Sjoerdsma, A. J. Clin. Endocrinol. Metab. 24: 691 (1964)Google Scholar
  274. E 273.
    A new in vitro test for the detection of antibody in sera of patients allergic to lolium multiflorum. Millman, M., Wolter, G.H., Millman, S., and Rosen, R. Ann. Allergy 22: 136–45 (1964)Google Scholar
  275. E 274.
    Multidimensional chromatography of Arenes produced during combustion. Mukai, M., Tebbens, B.D., and Thomas, J.F. Anal. Chem. 36: 1126–30 (1964)Google Scholar
  276. E 275.
    New fluorometric method for estimation of citrovorum factor. Netrawaki, M.S., Radhakrishmamurty, R., and Sreenivasan, G. Anal. Biochem. 8: 143 (1964)Google Scholar
  277. E 276.
    Fluorometric determination of pyridine nucleotides. Pande, S.V., Bhan, A.K., and Venkitasubramanian, T A. Anal. Biochem. 8: 446–62 (1964)Google Scholar
  278. E 277.
    Quantitative fluorometric determination of panthenol in multivitamin preparations. Panier, R.G., and Close, J A. J. Pharm. Sci. 53: 108–10 (1964)Google Scholar
  279. E 278.
    Fluorimetry and spectrofluorimetry. Parker, CA., and Rees, W.T. Trace Analysis of Semiconductor Materials, pp. 228–246, J.P. Cali, editor, Pergamon Press (1964)Google Scholar
  280. E 279.
    Transglucurondiase activity of the liver: a dosage method suitable for fragments obtained with needle biopsy. Perona, G., Frezza, M., Dalla Rosa, C., and DeSandre, G. Clin. Chim. Acta 10: 513–20 (1964)Google Scholar
  281. E 280.
    The enzymatic measurement of γ-amino butyric-α-ketoglutarie transaminase. Pitts, F.N. Federation Proc. Abst. 23, Abst. 1695 (1964)Google Scholar
  282. E 281.
    Vitamins and other nutrients — pyridoxine determined fluorometrically as pyridoxal cyanide compound. Polansky, M.M., Camarra, R.T., and Toepfer, E.W. J. Assoc. Offic. Agr. Chemists 47: 827–8 (1964)Google Scholar
  283. E 282.
    Fluoropietric determination of glycosidose in the locust and other insects. Robinson, D. Comp. Biochem. Physiol. 12: 95 (1964)Google Scholar
  284. E 283.
    Coproporphyrin analyses on random urine samples. Rogers, J. Clin. Chem. 10: 678 (1964)Google Scholar
  285. E 284.
    A fluorometric ultra-micro method for the determination of leucine aminopeptidase in biological fluids. Roth, M. Clin. Chim. Acta 9: 448–53 (1964)Google Scholar
  286. E 285.
    Determination of alloxan via paper chromatography in solutions, blood, and plasma. Said, A., and El Naggar, G.M. Chem. Anal. 53: 69–71 (1964)Google Scholar
  287. E 286.
    The determination of methanol in biological fluids. Sardesai, V.M., and Provido, H.S. J. Lab. Clin. Med. 64: 977–82 (1964)Google Scholar
  288. E 287.
    Separation and analysis of polynuclear aromatic hydrocarbons present in the human environment. D3. Sawicki, E. Chem. Anal. 53: 88–91 (1964)Google Scholar
  289. E 288.
    Application of thin-layer chromatography to the analysis of atmospheric pollutants and determination of benzopyrene. Sawicki, E., Stanley, T.W., Elbert, W.C., and Pfaff, J.D. Anal. Chem. 36: 497–502 (1964)Google Scholar
  290. E 289.
    Catecholamines in the urine of patients receiving methyldopa (presinol). Schlossmann, K., Bock, K.D., and Kroneberg, G. Klin. Wochschr. 42: 440–3 (1964)Google Scholar
  291. E 290.
    Urobilin in urine. Schmidt, NA., and Scholtis, R.J.H. Clin. Chim. Acta 10: 574–6 (1964)Google Scholar
  292. E 291.
    The fluorometric determination of mescaline and some β-phenylethylamines. Seiler, N., and Wiechmann, M. Z. Physiol. Chem. 337: 229–240 (1964)Google Scholar
  293. E 292.
    Experimental human magnesium depletion. I. Clinical observations and blood chemistry alterations. Shils, M.E. Am. J. Clin. Nutr. 15: 133–143 (1964)Google Scholar
  294. E 293.
    Binding and release of metaraminol (α amine). Shore, PA., and Alpers, H.S. Federation Proc. Abst. 23, Abst. 1498 (1964)Google Scholar
  295. E 294.
    Fluorometric estimation of metaraminol and related compounds. Shore, PA., and Alpers, H.S. Life Sci. 3: 551 (1964)Google Scholar
  296. E 295.
    Precipitation of submierogram quantities of thorium by barium sulfate and application to fluorometric determination of thorium in mineralogical and biological samples. Sill, C.W., and Willis, C.P. Anal. Chem. 36: 622–30 (1964)Google Scholar
  297. E 296.
    Some studies on the effect of angiotensinnon adrenocortical hormone secretion in hypophysectomized rats with renal pedicle ligation. Singer, B„ Losito, C., and Salmon, S. Endocrinology 74: 325–32 (1964)Google Scholar
  298. E 297.
    Fluorescent marking and migration of grasshoppers from sprayed plots. Smith, D.S., Holmes, N.D., Swailes, G.E., and McDonald, S. J. Econ. Entomol. 57: 990–2 (1964)Google Scholar
  299. E 298.
    Excretion of injected catecholamines by white rats at 23 °C. and 2°C. Smith, L.C., and Dugal, L.P. Can. J. Physiol. Pharmacol. 42: 579–84 (1964)Google Scholar
  300. E 299.
    Acetyl CoA condensation with α-keto acids. Strassman, M., Ceci, L.N., and Silverman, B.E. Federation Proc. Abst. 23, Abst. 1270 (1964)Google Scholar
  301. E 300.
    Spectrophotofluorometric determination of low concentrations of amobarbital in plasma. Swagdis, J.E., and Flanagan, T.L. Anal. Biochem. 7: 147–51 (1964)Google Scholar
  302. E 301.
    Spectrofluorometric determination of low concentrations of amobarbital in plasma. Swagdis, J.E., and Flanagan, T.L. Anal. Biochem. 7: 147–51 (1964)Google Scholar
  303. E 302.
    The determination of coproporphyrin isomers. Sweeney, G.O., and Eales, L. Scand. J. Clin. Lab. Invest. 16: 250–1 (1964)Google Scholar
  304. E 303.
    Quantitative determination of metanephrine and normetanephrine in urine. Taniguchi, K., Kahimoto, Y., and Armstrong, M.D. J. Lab. Clin. Med. 64: 469–84 (1964)Google Scholar
  305. E 304.
    Fluorometric measurement of alkaline phosphatase activity in single cells of human fibroblast cultures. Tierney, J.H. Federation Proc. Abst. 23, Abst. 2381 (1964)Google Scholar
  306. E 305.
    Automated fluorescence-monitored system for the separation of serum proteins on sephadex. Toporek, M., and Phillipp, L.J. Federation Proc. Abst. 23, Abst. 2396 (1964)Google Scholar
  307. E 306.
    Spectrofluorometric determination of α-glucuronidase activity. Verity, MA., Caper, R., and Brown, W.J. Arch. Biochem. Biophys. 106: 386–93 (1964)Google Scholar
  308. E 307.
    Determination of plasma Cortisol by a fluorometric method. Vermeulen, A., and Van der Straeten, M. J. Clin. Endocrinol. Metab. 24: 1188–94 (1964)Google Scholar
  309. E 308.
    Determination of selenium in semi-conductor materials by the fluorescence method. Vladimir ova, V.M., and Kuehmistaya, G.I. Zavodsk. Lab. 30: 528–9 (1964)Google Scholar
  310. E 309.
    Quantitation of stress by catecholamine analysis. Von Euler, U.S. Clin. Pharmacol. Therap. 5: 398–404 (1964)Google Scholar
  311. E 310.
    The estimation of uranin (fluorescein sodium) in blood. Wagatsuma, T., and Wright, H.P. J. Clin. Pathol. 17: 271–2 (1964)Google Scholar
  312. E 311.
    The simultaneous estimation of catecholamines and their metabolites. Weil-Malherbe, H. Z. Klin. Chem. 2: 161–7 (1964)Google Scholar
  313. E 312.
    Catecholamine excretion in smokers and non-smokers. Westfall, T.C., and Watts, D.T. J. Appl. Physiol. 19: 40 (1964)Google Scholar
  314. E 313.
    Fluorescent labeling of polystyrene latex for tracing in biological systems. Wilkins, D.J. Nature 202: 798 (1964)Google Scholar
  315. E 314.
    Fluorescence of solutions: A review. Williams, R.T., and Bridges, J.W. J. Clin. Pathol. 17: 371 (1964)Google Scholar
  316. E 315.
    The determination of the acid-non-extractable flavin in mitochondrial preparations from heart muscle. Wilson, D.F., and King, T.E. J. Biol. Chem. 239: 2683–2690 (1964)Google Scholar
  317. E 316.
    Phosphorimetric determination of procaine, phenobarbital, cocaine, and ehlorpromazine in blood serum, and cocaine and atropine in urine. Winefordner, J.D., and Tin, M. Anal. Chim. Acta 31: 341–7 (1964)Google Scholar
  318. E 317.
    The use of rigid ethanolic solutions for the phosphorimetric investigation of organic compounds of pharmacological interest. Winefordner, J.D., and Tin, M. Anal. Chim. Acta 31: 239–45 (1964)Google Scholar
  319. E 318.
    Mieromethods for measuring phenyl-alanine and tyrosine in serum. Wong, P.W.K., O’Flynn, M.E., and Inouye, T. Clin. Chem. 10: 1098–1104 (1964)Google Scholar
  320. E 319.
  321. E 320.
    A microprocedure for the determination of 4-pyridoxic acid in urine. Woodring, M.J., Fisher, D.H., and Storvick, CA. Clin. Chem. 10: 479–89 (1964)Google Scholar
  322. E 321.
    Skin histamine and delayed skin reactions. Zachariae, H. Acta Allergol. 19: 336–50 (1964)Google Scholar
  323. E 322.
    Histamine in delayed skin reactions; fluorometric determinations on patch tests. Zachariae, H. J. Invest. Dermatol. 42: 431–4 (1964)Google Scholar
  324. E 323.
    Analytical methods for pesticides, plant growth regulators, and food additives. Zweig, G. Academic Press, N.Y. (1963–4)Google Scholar
  325. E 324.
    Measurement of anti-tuberculosis drug isoniazid. Peters, J.H. Am. Rev. Respirat. Diseases 81: 485–97 (1960)Google Scholar
  326. E 325.
    Studies on the metabolism of isoniazid. Peters, J.H. Am. Rev. Respirat. Diseases 81 (4): 485–97 (1960)Google Scholar
  327. E 326.
    Fluorimetric method for the determination of major spironolactone (aldaetone) metabolite in human plasma. Ochman, N., and Gantt, C.L. J. Pharmacol. Exptl. Therap. 135(3): 114–7 (1962)Google Scholar
  328. E 327.
    Delayed fluorescence of solid solutions of polyacenes. n. Kinetic consideration. Azumi, T., and McGlynn, S.P. J. Chem. Phys. 39: 1186 (1963)Google Scholar
  329. E 328.
    Testosterone production rates in normal adults Korenman, S.G., Wilson, H., and Lipsett, M.B. J. Clin. Invest. 42 (11): 649–52 (1963)Google Scholar
  330. E 329.
    Immunologic tests for tuberculosis. Parlett, R.C. Off. J. Am. Med. Tech., 13: 288–92 (1963)Google Scholar
  331. E 330.
    Fluorometric and spectrophotometry determination of magnesium with O, O’-dehydroxyazobenzene. Spielholtz, G.I., and Jensen, R. Anal. Chem. 35: 1144 (1963)Google Scholar
  332. E 331.
    Energy transfer studies by spectrophotofluorometric methods. Wilkenson, F., and Dubois, J.T. J. Chem. Phys., 39: 337–9 (1963)Google Scholar
  333. E 332.
    The effect of photosynthesis inhibitors in oxygen evolution and fluorescence of illuminated chlorella. Zweig, G., Tamas, I., and Greenberg, E. Biochim. Biophys. Acta 4: 196–205 (1963)Google Scholar
  334. E 333.
    The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. Anton, A.H., and Sayre, D.F. J. Pharmacol. Exptl. Therap. 145: 326–36 (1964)Google Scholar
  335. E 334.
    Fluorescent compounds for calibration of excitation and emission units of spectr of luorometer. Argauer, R.J., and White, C.E. Anal. Chem. 36: 368–71 (1964)Google Scholar
  336. E 335.
    Characterization of carbazole and poly-nuclear carbazoles in urban air and in air polluted by coal tar pitch fumes by thin-layer chromatography and speetrophotofluorometry. Bender, D.F., Sawicki, E., and Wilson, R.M. Air and Water Poll. 8: 633–43 (1964)Google Scholar
  337. E 336.
    Fluorescent detection and spectrophotofluorometric characterization and estimation of carbazoles and polynuclear carbazoles separated by thin-layer chromatography. Bender, D.F., Sawicki, E., and Wilson, R.M. Air and Water Poll. 8: 625–33 (1964)Google Scholar
  338. E 337.
    Application and modification of the Momose-Ohkura fluorometric determination of blood glucose. Bourne, B.B. Clin. Chem. 10(12): 515–8 (1964)Google Scholar
  339. E 338.
    Photoinactivation of L-glutamate dehydrogenase in a spectrophotofluorometer. Chen, R.F. Biochem. Biophys. Res. Commun. 17: 141–5 (1964)Google Scholar
  340. E 339.
    Studies of the prolonged biochemical effects of 3-methyl-cholanthrene and of its physiological disposition in the rat. Dayton, P.G., Vrindten, P., and Perel, J.M. Biochem. Pharmacol. 13: 143–52 (1964)Google Scholar
  341. E 340.
    Direct determination of inhibitors in polymers by luminescence techniques. Drushel, H.V., and Sommers, A.L. Anal. Chem. 36: 836–40 (1964)Google Scholar
  342. E 341.
    Assay of plasma thrombolytic activity with fluoreseein-labeled clots. Genton, E., Fletcher, A.P., Alkjaersig, N., and Sherry, S. J. Lab. Clin. Med. 64: 313–20 (1964)Google Scholar
  343. E 342.
    Fluorometric determination of lipase acylase, alpha- and gamma-chymotrypsin and inhibitors of these enzymes. Guilbault, G.G., and Kramer, D.N. Anal. Chem. 36: 409–12 (1964)Google Scholar
  344. E 343.
    Phosphorescence of calcified tissues. Hoerman, K.C., and Mancewicz, S.A. Arch. Oral Biol. 9: 517–34 (1964)Google Scholar
  345. E 344.
    Characteristics of insoluble protein of tooth and bone. Hoerman, K.C., and Mancewicz, SA. Arch. Oral Biol., 9: 835–42 (1964) CA 61: 2253hGoogle Scholar
  346. E 344a.
    Fluorometrie demonstration of tryptophan in dentin and bone protein. Hoerman, K.C., and Mancewicz, S.A. J. Dental Res. 43: 276–80 (1964) CA 61: 2253hGoogle Scholar
  347. E 345.
    Fluorescence and phosphorescence. Howerton, H.K. American Inst. Co., Silver Spring, Md., Reprint 222 (1964)Google Scholar
  348. E 346.
    Factors influencing spectrofluorometry of phenothiazine drugs. Mellinger, T.J., and Keeler, C.E. Anal. Chem. 36(9): 1822–4 (1964)Google Scholar
  349. E 347.
    Spectrofluorometric measurement of phenothiazines. Ragland, J.B., and Kenross-Wright, V.J. Anal. Chem. 36: 1356 (1964)Google Scholar
  350. E 348.
    Direct spectrophotofluorometric analysis of aromatic compounds on thin-layer chromatograms. Sawicki, E., Stanley, T.W., and Johnson, H. Microchem. J. 8: 257–84 (1964)Google Scholar
  351. E 349.
    Thin-layer chromatographic separation and analysis of polynuclearaza heterocyclic compounds. Sawicki, E., Stanley, T.W., Pfaff, J.D., and Elbert, W.C. Anal. Chim. Acta 31s 359–75 (1964)Google Scholar
  352. E 350.
    Quenchofluorometric analysis for fluoranthenic hydrocarbons in the presence of other types of aromatic hydrocarbons. Sawicki, E., Stanley, T.W., and Elbert, W.C. Talanta 11: 1433–41 (1964)Google Scholar
  353. E 351.
    The application of thin-layer chromatographic and spectral procedures to the analysis of aza heterocyclic hydrocarbons in complex mixtures. Sawicki, E., Stanley, T.W., and Elbert, W.C. Occupational Health Rev. 16(3): 8–16 (1964)Google Scholar

Copyright information

© Plenum Press Data Division 1967

Authors and Affiliations

  • Richard A. Passwater
    • 1
  1. 1.Fluorescence InstrumentationAmerican Instrument CompanySilver SpringUSA

Personalised recommendations