Advertisement

(1957–1959)

  • Richard A. Passwater

Keywords

Nauk SSSR Fluorescence Spectrum Acridine Orange Zinc Sulfide Cadmium Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C 1.
    Effects of the introduction of oxygen into calcium fluoride. Adler, H., and Kueta, I. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Sitzber., Abt. II 166: 199–243 (1957) CA 53: 7778iGoogle Scholar
  2. C 2.
    Luminescence of sodium chloride. Adler, H., and Stegmuller, F. Acta Phys. Austriaca 11: 31–58 (1957) CA 51: 1 2663hGoogle Scholar
  3. C 3.
    Organic fluorescent materials. Akamatsu, H., and Iguchi, N. Japan 2012, Mar. 30, 1957 CA 52: 15270abGoogle Scholar
  4. C 4.
    Population of the vibrational levels of the electronic state B2S+ of the CN molecule excited in the presence of active nitrogen. Akriche, J„, and Herman, L. Compt. Rend. 244: 1024–6 (1957) CA 51: 9308aGoogle Scholar
  5. C 5.
    Radiation decomposition products of or-ganic materials at 77°K. Alger, R.S., and Anderson, T.H. Am. Chem. Soc., Div. Petrol. Chem., Preprints 2(4): C71-C79 (1957) CA 54: 20442iGoogle Scholar
  6. C 6.
    Optical and electrical properties of silver chloride. Aline, P.G. Phys. Rev. 105: 406–12 (1957) CA 51: 8527gGoogle Scholar
  7. C 7.
    Evaluation of whitening efficiency of fluorescent whitening agents. Allen, E. Soap Chem. Specialties 33: 40–4, 93, 95, 97, 55–6 (1957) CA 51: 15134bGoogle Scholar
  8. C 8.
    Synthetic fluorescent substances. Anderson, J.T., and Wells, R.S. Ger. 963,541 (1957) CA 54: 9514aGoogle Scholar
  9. C 9.
    Diffusional theory of phosphorescence. Antonov-Romanovskii, V.V. Opt. i Spektroskopiya 3: 592–601 (1957) CA 52: 6944iGoogle Scholar
  10. C 10.
    New results in the field of phosphores-cence research. Antonov -Romanov skii, V.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 21: 484–93 (1957) CA 52: 6942eGoogle Scholar
  11. C 11.
    Mixtures and chemical impurities in Yugoslav scheelites. Arsenijevic, M. Zbornik Radov Geol. Inst. “Jovan Zhujovic” 9: 177–208 (1957) CA 53: 996aGoogle Scholar
  12. C 12.
    Combined spectrofluorimeter and double monochromater spectrophotometer. Bartholomew, R.J., Dalgliesh, C.E., and Wootton, I.D.P. Biochem. J. 65, 27 pp. (1957) CA 53: 4829iGoogle Scholar
  13. C 13.
    Fluorescence spectrum of sodium salt of 4,4’ -diaminostilbene–2,2l-disulfonic acid and of Blankofor A. Bartowicz, S. Zeszyty Nauk. Politech. Lodz., Chem. 5: 17–20 (1957) CA 52: 15246bGoogle Scholar
  14. C 14.
    A method for accurate determination of the relative yields of the fluorescence of solutions. Bauer, R., and Frackowiak, D. Bull. Acad. Polon. Sci., Classe (III) 5: 729–32 (1957) CA 52: 876hGoogle Scholar
  15. C 15.
    Measurement of incident energy by silver halide emulsions containing fluorescent substances. Becker, K., Klein, E., and Zeitler, E. Ger. 1,082,120 (Cl57b) (1957) CA 56: 1 1112eGoogle Scholar
  16. C 16.
    Photoreduction of cosin in the bound state. Bellin, J.S., and Oster, G. J.Am. Chem. Soc. 79: 2461–4 (1957) CA 51: 1 1861eGoogle Scholar
  17. C 17.
    Infrared fluorescence of simple mole-cules. Benson, S.W., and Porter, G.B. J. Chem. Phys. 26: 714 (1957) CA 51: 10245aGoogle Scholar
  18. C 18.
    Canning of evaporated and fresh milk. Berg, E.M. U.S. 2,776,213 (1957) CA 51: 4597hGoogle Scholar
  19. C 19.
    Optical properties of calcium metaanti-monate activated with lead. Bernard,R. Ann. Univ. Lyon, Sci., Sect. B, 10: 49–62 (1957) CA 52: 9782hGoogle Scholar
  20. C 20.
    Induced fluorescence in mammalian gametes withAcridine Orange. Bishop, M.W.A., and Smiles, J. Nature 179: 307–8 (1957) CA 51: 1 2193iGoogle Scholar
  21. C 21.
    Solvent quenching of fluorescence. Bowen, E.J., and Stebbens, D.M. J. Chem. Soc. 1957: 360–3 (1957) CA 51: 6357eGoogle Scholar
  22. C 22.
    Luminescent materials based on alkaline earth halide s. Braunholz, F., and Krah, H. Ger. (East) 21,194 (Cl. 57b) (1957) CA 56: 5528eGoogle Scholar
  23. C 23.
    Direct-reading fluorimeter. Brealey, L., and Ross, R.E. Analyst 82: 769–73 (1957) CA 52: 3414iGoogle Scholar
  24. C 24.
    Fluorescence lifetimes of photosynthetic pigments. Brody, S.S. Univ. Microfilms Publ. No. 19802, 94 pp. (1957) CA 51: 10244fGoogle Scholar
  25. C 25.
    Excitation lifetime of photosynthetic pigments in vitro and in vivo. Brody, S.S., and Rabinowitch, E. Science 125: 555 (1957) CA 51: 10674cGoogle Scholar
  26. C 26.
    Fluorescence reactions of steroids with ehlorosulfonic acid. Bruno, S., and Seialpi, E. Farmaco, Ed. Sci. 12: 940–5 (1957) CA 52: 11360dGoogle Scholar
  27. C 27.
    The spectral influence of secondary fluorescence. Budo, A., Dombi, J., and Horvai, R. Acta Univ. Szeged., Acta Phys. Chem. 3: 3–15 (1957) CA 52: 19446aGoogle Scholar
  28. C 28.
    Concerning the determination of the true degree of polarization of the fluorescent radiation from solution. Budo, A., Ketskemety, I., Salkovits, E., and Gargya, L. Acta Phys. Acad. Sci. Hung. 8: 181–93 (1957) CA 53: 13774iGoogle Scholar
  29. C 29.
    Influence of secondary fluorescence on the emission spectra of fluorescing solutions. Budo, A., and Ketskemety, I. Acta Phys. Acad. Sci. Hung. 7: 207–23 (1957) CA 51: 16111aGoogle Scholar
  30. C 30.
    Synthesis of 7,8-benzonaphtho(2f,l!–3,4) fluorene. Buu-Hoi, N.P., and Saint-Ruf, G. J. Chem. Soc. 1957: 3806–7 (1957) CA 52: 4589gGoogle Scholar
  31. C 31.
    Fluorometric uranium analyzer. Byrne, J.T. Anal. Chem. 29: 1408–12 (1957) CA 52: 1690iGoogle Scholar
  32. C 32.
    The systematic error of speetrometric measurements in the study of fluorescence. Chechan, C., Audran, R., and Verain, A. Chim. Anal. 39: 59–61 (1957) CA 51: 8534gGoogle Scholar
  33. C 33.
    Fluorometric determination of trace quantities of tungsten. Chen, K.C., and Chen, C.T. Hsia Men Ta Hsueh Hsueh Pao, She Hii K’o Hsueh 1957: 121–9 (1957) CA 56: 2885iGoogle Scholar
  34. C 34.
    Ursilite — a new uranium silicate. Chernikov, A. A., Krutetskaya, O.U., and Sidelnikova, V.D. At. Energ., Vopr. Geol. Urana, Suppl. 1957: 73–7 (1957) CA 53: 8955hGoogle Scholar
  35. C 35.
    Simultaneous fluorimetrie determination of adrenaline and noradrenaline in plasma. I. Fluorescence characteristics of adrenolutine and noradrenolutine and their simultaneous determination in mixtures. Cohen, G., and Goldenberg, M. J. Neurochem. 2: 58–70 (1957) CA 52: 6468cGoogle Scholar
  36. C 36.
    Study of the complexes formed by some flavones with gallium (III) and antimonyan). Constantinescu, D.G., Oteleanu, R., and Baiulescu, G. Acad. Rep. Populare Romine, Filiala Iasi, Studii Cercetari Stiint., Chim. 8: 89–100 (1957) CA 54: 24693fGoogle Scholar
  37. C 37.
    Fluorescence spectra of uranium, neptunium, and curium. Conway, J.C., Walimami, J.C., Cunningham, B.B., and Shalimoff, G.V. J. Chem. Phys. 27: 1416–7 (1957) CA 52: 5121aGoogle Scholar
  38. C 38.
    Porous ceramic ware from materials containing naphthalene and water. Cramer, F.W., and Cramer, E. Ger. 965,987 (1957) CA 54: 8021iGoogle Scholar
  39. C 39.
    Fluorescence and absorption spectra of molecular compounds at low tempera-tures. Energy transitions in molecular compounds. Czekalla, J., Briegleb, G., Herre, W., and Glier, R. Z. Elektrochem. 61: 537–46 (1957) CA 51: 17465cGoogle Scholar
  40. C 40.
    New technique for staining tubercle bacteria for the investigation of fluorescence. Degommier, J. Ann. Inst. Pasteur 92: 692–4 (1957) CA 51: l5678hGoogle Scholar
  41. C 41.
    The U isotope effect and other features in the absorption and fluorescence spectra of uranyl compounds. Dieke, G.H. U.S. At. Energy Comm. A–3227, 174 pp. (1957) CA 55: 18293eGoogle Scholar
  42. C 42.
    Fluorescence lifetimes of rare earth salts and ruby. Dieke, G.H., and Hall, L.A. J. Chem. Phys. 27: 465–7 (1957) CA 52: 890iGoogle Scholar
  43. C 43.
    Absorption, fluorescence, and magnetic properties of gadolinium chloride (GdCl3 • 6H20). Dieke, G.H., and Leopold, L. J. Opt. Soc. Am. 47: 944–54 (1957) CA 51: 17440hGoogle Scholar
  44. C 44.
    The nature of the edge of emission in cadmium sulfide. Diemer, G., van Gurp, G.J., and Meyer, H.J.G. Physica 23: 987–8 (1957) CA 52: 5968aGoogle Scholar
  45. C 45.
    Direct lifetime measurements of excited molecules of chlorophyll and analogous pigments. Dmitvevskii, O.D., Ermolaev, V.C., and Terenin, A.N. DoMady Akad. Nauk SSSR, 114: 751–3,(1957) CA 52: 1 1191iGoogle Scholar
  46. C 46.
    Fluorescent derivatives of 1,2,3-triazole. VI. 2-Styrylnaphtho (1,2)triazolesulfonic acids. Dobas, J., and Pirkl, J. Chem. Listy 51: 2330–3 (1957) CA 52: 6367eGoogle Scholar
  47. C 47.
    Anti-Stokes fluorescence yield in glucose and collodion rigid solutions. Drabent, E. Bull. Acad. Polon. Sci., Classe (III) 5: 1131–6 (1957) CA 62: 6934aGoogle Scholar
  48. C 48.
    Chitin and melanoidins, intermediate products of the melanoidin reaction. Drozdova, T.V. Biokhimiya 22: 487–94 (1957) CA 52: 2120aGoogle Scholar
  49. C 49.
    A spectrophotofluorometric study of compounds of biological interest. Duggan, D.E., Bowman, R.L., Brodie, B.B., and Udenfriend, S. Arch. Biochem. Biophys. 68: 1–14 (1957) CA 51: 1 1860fGoogle Scholar
  50. C 50.
    Phosphorescence of amino acids excited by forbidden absorption bands. Dumartin, M., Lochet, R., Rybak, B., and Rousset, A. Compt. Rend. 294: 2905–7 (1957) CA 51: 14427bGoogle Scholar
  51. C 51.
    Fluorescence spectrophotometry of pyridine nucleotide in photosynthesizing cells. Duysens, L.N.M., and Sweep, G. Biochim. Biophys. Acta 25: 13–16 (1957) CA 51: 14857fGoogle Scholar
  52. C 52.
    Fluorescence spectrum of the complex of reduced phosphopyridine nucleotide and alcohol dehydrogenase from yeast. Duysens, L.N.M., and Kronenberg, G.H.M. Biochim. Biophys. Acta 26: 437–8 (1957) CA 52: 3022fGoogle Scholar
  53. C 53.
    Pertubation of singlet-triplet transitions of aromatic molecules by oxygen under pressure. Evans, D.F. J. Chem. Soc. 1957: 1351–7 (1957) CA 51: 1 1852fGoogle Scholar
  54. C 54.
    Fluorescent material. Fabriques renvies des lampes electriques Fr. 1,139,056 (1957) CA 53: 19588bGoogle Scholar
  55. C 55.
    Identification of different types of unused film. Societa per Azioni Ferrania Ger. 1,008,569 (1957) CA: 1142dGoogle Scholar
  56. C 56.
    Prospects of utilizing pine bark for tanning. Filipek, Z. Sylwan 101: 60–72 (1957) CA 54: 20263dGoogle Scholar
  57. C 57.
    Elementary photoprocesses in solution. Forster, T. Photochem. Liquid Solid State, Papers Symp., Dedham, Mass. 1957: 10–15 (1957) CA 54: 23659aGoogle Scholar
  58. C 58.
    Absorption spectra and fluorescence properties of concentrated solutions of organic dyes. Forster, T., and Konig, E. Z. Elektrochem. 61: 344–8 (1957) CA 51: 1 1066eGoogle Scholar
  59. C 59.
    Absorption and fluorescence spectra of aryl-alkali amides. Forster, T., and Renner, H. Z. Elektrochem. 61: 340–3 (1957) CA 51: 1 1066bGoogle Scholar
  60. C 60.
    Decay of phosphorescence of rigid solutions. Frackowiak, M. Acta Phys. Polon. 16: 63–78 (1957) CA 52: 2557iGoogle Scholar
  61. C 61.
    Further investigation on the decay of phosphorescence of rigid solutions. Frackowiak, M. Bull. Acad. Polon. Sci., Classe (III) 5: 809–12 (1957) CA 52: 3531iGoogle Scholar
  62. C 62.
    Collisions between excited cadmium and cesium atoms. Friedrich, H., and Seiwert, R. Ann. Physik 20: 215–29 (1957) CA 51: 17461bGoogle Scholar
  63. C 63.
    Fluorescence efficiencies of organic compounds. Fürst, M., Kallmann, H., and Brown, F.H. J. Chem. Phys. 26: 1321–32 (1957) CA 51: 13579iGoogle Scholar
  64. C 64.
    Complex structure and the nature of the absorption and fluorescence spectra of magnesium phthalocyanine and chloro-phyll. Gachkovskii, U.F. Fiz. Sb., L’vovsk. Gos. Univ. 1957: 372–5 (1957) CA 55: 17209aGoogle Scholar
  65. C 65.
    Changes in the type of quenching for zinc sulfide phosphors after excluding the exciting source. Gasting, N.L. Dokl. VII Nauch. Konf., Posvyashch. 40-Letiyer Velikoi Oktyabr’sh Sots. Revolyutsii, Tomsk. Univ. 1957(2): 125 (1957) CA 52: 2994bGoogle Scholar
  66. C 66.
    Fluorescing color pigments. Gaunt, T.N. Ger. 961,575 (1957) CA 54: 9320dGoogle Scholar
  67. C 67.
    The differential excitation ability of a-particles in luminescent plastic films. Geck, F.W., and Hanle, W. Ann. Physik 20: 142–3 (1957) CA 51: 17460dGoogle Scholar
  68. C 68.
    (Indozyl.) Gehauf, B., and Goldenson, J. Anal. Chem. 29: 276 (1957)Google Scholar
  69. C 69.
    Fluorescent stilbyl ditriazole com-pounds. Geigy, J.R. Brit. 779,505, July 24, 1957 CA 52: 446dGoogle Scholar
  70. C 70.
    Marking of photographic material (with fluorescing material). Ossenbrunner, A. and Schulte, W. Ger. 1,009,022 (1957) CA 54: 8385gGoogle Scholar
  71. C 71.
    Coherent scattering in the determina-tions of effective X-ray energy. Glocker, R., and Messner, D. Z. Physik 149: 480–5 (1957) CA 53: 8798fGoogle Scholar
  72. C 72.
    Student-built spectrofluorometer. Goldstein, J.M., McNabb, W.M., and Hazel, J.F. J. Chem. Educ. 34: 604–6 (1957) CA 52: 4260fGoogle Scholar
  73. C 73.
    Absorption and fluorescence spectra of the aniline-nitrobenzene system. Gol’tsev, V.D. Izv. Vysshikh Uchebn. Zavedenii, Fiz. 1957: 91–102 (1957) CA 55: 2 1791bGoogle Scholar
  74. C 74.
    Luminescence of the halides of silver. Golob, S.I. Materially V Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Tartu 1956: 108–24 (1957) CA 55: 6167cGoogle Scholar
  75. C 75.
    Assimilation of berberine and chelidox-anthine by bacteria. Gray, P.H.H., and Lachand, RA. Plant Soil 8: 354–66 (1957) CA 52: 1 2071eGoogle Scholar
  76. C 76.
    Photometry in the extreme ultraviolet using fluorescence sensitized photographic material. Greiner, H. Z. Naturforsch. 12a: 735–8 (1957) CA 52: 9825gGoogle Scholar
  77. C 77.
    Synthesis of C14-labeled anthracene, 9-methylanthracene, and 1,2-benzan-thracene. Hadler, H.I., and Raha, C.R. J. Org. Chem. 22; 433–5 (1957) CA 52: 1129gGoogle Scholar
  78. C 78.
    Fluorescent response of Csl (Tl) to energetic nitrogen ions. Halbert, M.L. Phys. Rev. 107: 647–9 (1957) CA 52: 1796fGoogle Scholar
  79. C 79.
    Fluorescent lifetimes of uranyl salts at different temperatures. Hall, LA., and Dieke, G.H. J. Opt. Soc. Am. 47: 1092–6 (1957) CA 52: 2556aGoogle Scholar
  80. C 80.
    Photofluorescence decay time of organic phosphors. Hamilton, T.D.S. Proc. Phys. Soc. 70B: 144–5 (1957) CA 51: 17460cGoogle Scholar
  81. C 81.
    (Detection of cyanide.)Hanker, J.S., and Gamson, R.M. Anal. Chem. 29: 879 (1957)Google Scholar
  82. C 82.
    Fluorescent derivatives of 1,2,3-triazole. IV. Color and fluorescence of some derivatives of 2-phenylnaph-tho(l,2)triazole. Hanousek, V., and Dobas, J. Chem. Listy 51: 1127–35 (1957) CA 51: 15506eGoogle Scholar
  83. C 83.
    Fluorescence intensity ratio of sodium doublet observed in the optical dissociation of sodium iodide vapor. Hanson, H.G. J. Chem. Phys. 27: 491–4 (1957) CA 52: 873cGoogle Scholar
  84. C 84.
    Measurements of fluorescence in an-thracene vapor. Hardtl, K.H., and Scharmann, A. Z. Naturforseh. 12a: 715–19 (1957) CA 52: 8730bGoogle Scholar
  85. C 85.
    Role of collision transfer in fluorescent solutions. Hardwick, E.R. J. Chem. Phys. 26: 323–4 (1957) CA 51: 7873aGoogle Scholar
  86. C 86.
    Investigation of the scintillation process. Hardwick, E.R., and McMillan, W.G. J. Chem. Phys. 26: 1463–71 (1957) CA 54: 18066gGoogle Scholar
  87. C 87.
    Possibility of fluorescence in comets excited by the emission line hyman and in the sun spectrum. Haser, L., and Swings, P. Ann. Astrophys. 20: 52 (1957) CA 51: 16089eGoogle Scholar
  88. C 88.
    Riboflavine and other fluorescent sub-stances in the skin of several animals. Hashimoto, A. Bitamin 13: 419–22 (1957) CA 54: 3634hGoogle Scholar
  89. C 89.
    Some factors affecting fluorescence maxima. Hercules, D.M. Science 125: 1242–3 (1957) CA 51: 15277hGoogle Scholar
  90. C 90.
    Widening of the arc lines of sodium under the influence of the inter molecular stark effect. Herman, L., Weniger, S., and Herman, R. Spectrochim. Acta, Suppl. 1957: 333–7 (1957) CA 54: 1062hGoogle Scholar
  91. C 91.
    Molecular spectra emitted by radiative r ec ombination. Herman, L., Lucas, G., and Hernian, R. Spectrochim. Acta, Suppl. 1957: 325–8 (1957) CA 54: 1062gGoogle Scholar
  92. C 92.
    Disappearance of H+ ions in hydrogen ionized at atmospheric pressure. Herman, R., Weniger, S., and Herman, L. Compt. Rend. 244: 1179–82 (1957) CA 51: 1 1059cGoogle Scholar
  93. C 93.
    Use of interpolation theory in the study of phosphorescence. Honig, J.M. J. Chem. Phys. 26: 1454–62 (1957) CA 51: 16109dGoogle Scholar
  94. C 94.
    Lower excited states and the phosphorescent state of biphenyl. Iguchi, K. J. Phys. Soc. Japan 12: 1250–5 (1957) CA 52: 3414bGoogle Scholar
  95. C 95.
    Fluorometric analysis. V. Determination of gallium with 8-quinolinol. Ishibashi, M., Shgematsu, T., and Nishikawa, Y. Nippon Kagaku Zasshi 78: 1139–42 (1957) CA 52: 1 1656bGoogle Scholar
  96. C 96.
    Products of interaction of acetylacetone-p-benzoquinones and pyridine. Islam, A.M., and Selim, M.I. J. Org. Chem. 22: 1641–3 (1957) CA 52: 7282eGoogle Scholar
  97. C 97.
    Decay of photoluminescence of solutions. Jablonski, A. Acta Phys. Polon. 16: 471–9 (1957) CA 52: 7854dGoogle Scholar
  98. C 98.
    Quinoline derivatives. Jacob, R.M., Robert, J.G., and Liakhoff,L. U.S. 2,816,893, Dec. 17, 1957 CA 52: 2934aGoogle Scholar
  99. C 99.
    Differentiation of spring-and summer-wood by means of secondary fluorescence. Jayme, G., and Bauer, G. Holzforschung 11: 16–18 (1957) CA 51: 17161bGoogle Scholar
  100. C 100.
    Decrease in fluorescence intensity of a solution of fresh cigaret smoke products on exposure to light. Johnston, H. Nature 180: 1350 (1957) CA 52: 8470hGoogle Scholar
  101. C 101.
    Absorption spectra of dysprosium (III), holmium (III), and erbium (III) aquo ions. Jorgensen, C.K. Acta Chem. Scand. 11: 981–9 (1957) CA 52: 19444eGoogle Scholar
  102. C 102.
    Phosphorescing and fluorescing enameled plates. Kaiser, G. Ger. 1,007,142 (1957) CA 54: 7099iGoogle Scholar
  103. C 103.
    Decay times of fluorescent substances excited by high-energy radiation. Kallman, H., and Brucker, G.J. Phys. Rev. 108: 1122–30 (1957) CA 52: 5967gGoogle Scholar
  104. C 104.
    Pterin-like fluorescent substances produced by aspergillus fungi. Kaneko, Y. Nippon Nogeikagaku Kaishi 31: 118–21 (1957) CA 52: 12993bcGoogle Scholar
  105. C 105.
    Correlation between fluorescence and phosphorescence in esculin-and uranin-activated boron phosphors. Kantardzhyan, L.T. Opt. i Spektroskopiya 2: 378–81 (1957) CA 51: 1 1080aGoogle Scholar
  106. C 106.
    Long distance energy transfer by resonance in biology. Karreman, G„ and Steele, RA. Biochim. Biophys. Acta 25: 280–91 (1957) CA 51: 166l5dGoogle Scholar
  107. C 107.
    The use of infrared absorption spectra in the investigation of sensitization of the photooxidation of organic substances with anthraquinone derivatives. Karyakin, A.V., and Shablya, A.V. Dokl. Akad. Nauk SSSE 112: 688–91 (1957) CA 51: 16106aGoogle Scholar
  108. C 108.
    The viscosity dependence and extinction of the fluorescence of pyrene. Kasper, K. Z. Physik. Chem. 12: 52–67 (1957) CA 51: 14427aGoogle Scholar
  109. C 109.
    Organic phosphorescence. II. A revision of Lewis’ mechanism for the phosphorescence. Kato, S., and Koizumi, M. Bull. Chem. Soc. Japan 30: 27–33 (1957) CA 51: 9326eGoogle Scholar
  110. C 110.
    Atomic absorption and emission centers in alkali halide phosphors activated with heavy-metal ions and their formation under hard radiation. Kats, M.L. Izv. Akad. Nauk SSSR, Ser. Fiz. 21: 550–1 (1957) CA 52: 13438gGoogle Scholar
  111. C 111.
    Atomic centers in the absorption and luminescence of alkali halide phosphors activated with ions of heavy metals and their formation by means of ultraviolet radiation. Kats, M.L. Opt. i Spektroskopiya 3: 602–9 (1957) CA 52: 19492eGoogle Scholar
  112. C 112.
    Infrared stimulable phosphors. Keller, S.P., Mapes, J.E., and Cheroff, G. Phys. Rev. 108: 663–76 (1957) CA 52: 5l38hGoogle Scholar
  113. C 113.
    Effect of extinction on phosphorescence spectra of boron luminophors. Khalupovskii, M.D. Opt. i Spektroskopiya 3: 385–7 (1957) CA 52: 2559eGoogle Scholar
  114. C 114.
    Separation of amaryllidaeeous alkaloids by paper chromatography. Kind, F.A., Troncoso, V., and Rosenkranz, G. J. Org. Chem. 22: 574–6 (1957) CA 51: 17091dGoogle Scholar
  115. C 115.
    Ultraviolet fluorescence of some ternary silicates activated with lead. Klaseno, H.A., Hoekstra, A.H., and Cox, A.P.M. J. Electrochem. Soc. 104: 93–100 (1957) CA 51: 6334dGoogle Scholar
  116. C 116.
    Relation of the absorption and fluorescence spectra to the solvent. Klochkov, V.P. Fiz. Sb. Lfvovsk. Gos, Univ. 1957: 71–5 (1957) CA 55: 16139hGoogle Scholar
  117. C 117.
    Energy transfer during fluorescence of organic solutions. Knau, H. Z. Naturforsch. 12a: 881–6 (1957) CA 52: 5125bGoogle Scholar
  118. C 118.
    Cesium iodide as a scintillation phosphor. Knopfe, H., Loepfe, E. and Stoll, P. Z. Naturforsch. 12a: 348–50 (1957) CA 51: 1 1859cGoogle Scholar
  119. C 119.
    Basicity of excited acridones. Kokubun, H. Naturwissenschaften 44: 233–4 (1957) CA 51: 14427cGoogle Scholar
  120. C 120.
    Intermoleeular proton transition in the excited state. Kokubun, H. Z. Physik. Chem. 13: 386–8 (1957) CA 52: 5123aGoogle Scholar
  121. C 121.
    Behavior of dyes in detergent solutions, in. Investigation of the interaction of dyes and detergents by means of dye-detergent complex. Kondo, T. Nippon Kagaku Zasshi 78: 1093–6 (1957) CA 52: 5933fGoogle Scholar
  122. C 122.
    Fluorescent thin layers to glass. Kramer, K., and Kreudenstein, H.S.V. Ger. 1,011,123 (1957) CA 54: 8021eGoogle Scholar
  123. C 123.
    The effect of long wave ultraviolet light on the fluorescence of carcinogenic hydrocarbons in various solvents. II. The fluorescence behavior of solutions at various radiation intensities. Kriegel, H., and Herforth, L. Z. Naturforsch. 12b: 41–5 (1957) CA 51: 1 1860dGoogle Scholar
  124. C 124.
    Diffusion theory of quenching fluorescence in solutions by foreign substances Kuznetsova, L.A., Sveshnikov, B.Y., and Shirokov, V.U. Opt. i Spektroskopiya 2: 578–86 (1957) CA 51: 16110eGoogle Scholar
  125. C 125.
    Low-temperature activation of precipitated ZnS-Cu phosphor. Kynev, K.D. Opt. i Spektroskopiya 3: 652–4 (1957) CA 52: 19492eGoogle Scholar
  126. C 126.
    The use of radioactive isotopes in wood processing. Lakatosh, B.K. Derevoobrabatyvayushchaya Prom. 6: 9–10 (1957) CA 52: 1 1413cGoogle Scholar
  127. C 127.
    Symmetry properties of the V center. Lambe, J., and West, E.J. Phys. Rev. 108: 634–7 (1957) CA 52: 5139aGoogle Scholar
  128. C 128.
    Aseptic culture of Arabidopsis thaliana. Langridge, J. Australian J. Biol. Sci. 10: 243–52 (1957) CA 52: 2176bGoogle Scholar
  129. C 129.
    Hydrogénation of kerosine to remove color and fluorescence. Lanning, W.C. U.S. 2,793,986 (1957) CA 51: 15110fGoogle Scholar
  130. C 130.
    Effect of energy migration on fluorescence in dye solutions. Lavorel, J. J. Phys. Chem. 61: 864–9 (1957) CA 51: 17465fGoogle Scholar
  131. C 131.
    Influence of concentration on the absorption spectrum and the action spectrum of fluorescence of dye solutions. Lavorel, J. J. Phys. Chem. 61: 1600–5 (1957) CA 52: 43l8fGoogle Scholar
  132. C 132.
    Halochromy. Absorption spectra of tertiary alcohols and aromatic substituted methane derivatives in acid solution. Larrushin, V.F. Uch. Zap., Khar’kovsk. Gos. Univ., Tr. Khim. Fak. i Nauch.-Issled. Inst. Khim. 95(18): 179–206 (1957) CA 54: 17042iGoogle Scholar
  133. C 133.
    Modification of the Raman spectrum of a substance when the existing frequency comes very close to a resonance frequency. Lennuier, E. Compt. Rend. 244: 1022–4 (1957) CA 51: 9318dGoogle Scholar
  134. C 134.
    The carotenoids, steroids, and higher fatty acids of Polytoma uvella. Links, J., Verloop, A., and Havinga, E. Congr. Intern. Botan., 8e, Paris, Compt. Rend. Rappt. Commun. Sect. 17: 35–6 (1957) CA 52: 7446iGoogle Scholar
  135. C 135.
    Effect of surface condition on the fluorescence and surface conductivity of anthracene. Lipsett, F.R., Compton, D.M.J., and Waddington, T.C. J. Chem. Phys. 26: 1444–5 (1957) CA 51: 16l09fGoogle Scholar
  136. C 136.
    Intermolecular transfer of electronic excitation. Livingston, R.S. J. Phys. Chem. 61: 860–4 (1957) CA 51: 1743 9dGoogle Scholar
  137. C 137.
    The role of the triplet state in the photochemical autoxidation of aryl hydrocarbons. Livingston, R.S. Photochem. Liquid Solid State, Papers Symp., Dedham, Mass. 1957: 76–82 (1957) CA 54: 19l08dGoogle Scholar
  138. C 138.
    Absorption and fluorescence spectra of radicals obtained by high-frequency discharge in some aromatic vapors, and stabilized at low temperatures. Lortie, Y. J. Phys. Radium 18: 520–2 (1957) CA 53: 5865eGoogle Scholar
  139. C 139.
    Aromatic hydrocarbons from vehicular exhausts. Lyons, M.J., and Johnston, H. Brit. J. Cancer 11: 60–6 (1957) CA 51: 15l02hGoogle Scholar
  140. C 140.
    Individual and group marketing methods for fly population studies. MacLeod, J., and Donnelly, J. Bull. Entomol. Res. 58: 585–92 (1957) CA 52: 8389hGoogle Scholar
  141. C 141.
    Analysis of the aromatic fractions from kerosine by phosphorescence spectra. Mamedov, K.I. Opt. i Spektroskopiya 3: 587–91 (1957) CA 53: 6587iGoogle Scholar
  142. C 142.
    Reactions of aldehydes and m-phenylenediamine. Maruta, S., and Suzuki, Y. Nippon Kagaku Zasshi 78: 1604–8 (1957) CA 54: 1371aGoogle Scholar
  143. C 143.
    Formation of a cyclic recurring unit in free radical polymerization. Marvel, C.S., and Vest, R.D. J. Am. Chem. Soc. 79: 5771–3 (1957) CA 52: 7220eGoogle Scholar
  144. C 144.
    Application of chromatography. XXXIII. V-compound isolated from the mycelium of Eremothecium ashbyii. Masuda, T., Kishi, T., and Asai, M. Pharm. Bull. 5: 598–606 (1957) CA 52: 16358hGoogle Scholar
  145. C 145.
    Effect of environment on the fluorescence and absorption spectra of some 7r-electron systems. Mataga, N. Bunko Kenkyu 6: 6–19 (1957) CA 53: 9899fGoogle Scholar
  146. C 146.
    Hydrogen bonding effect on the fluorescence of some nitrogen heterocycles. I. Mataga, N., and Tsumo, S. Bull. Chem. Soc. Japan 30: 368–74 (1957) CA 51: 17464gGoogle Scholar
  147. C 147.
    Influence of hydrogen bonding on the fluorescence of some 7r-eleetron systems. Mataga, N., and Tsuno, S. Naturwissenschaften 44: 304–5 (1957) CA 51: 15277fGoogle Scholar
  148. C 148.
    Fluorimeter for the determination of uranium. Mathe, G., and Szalay, S. Magy. Fiz. Folyoirat 5: 247–50 (1957) CA 53: 5766iGoogle Scholar
  149. C 149.
    Luminescence of silver halides. Matyas, Z. Abhandl. Deut. Akad. Wiss. Berlin, Kl. Chem., Biol. Geol. 1955: 89–92 (1957) CA 52: 2555hGoogle Scholar
  150. C 150.
    Artifact in spectrophotometry caused by fluorescence. Mehler, A.H., Bloom, B., Ahrendt, M.E., and Stetten, D. Science 126: 1285–6 (1957) CA 52: 1 2554hGoogle Scholar
  151. C 151.
    Energy dependence of the fluorescence of polycrystalline phosphors excited by electron rays or X rays. Messner, D. Z. Physik 147: 24–42 (1957) CA 51: 6357aGoogle Scholar
  152. C 152.
    Fluorescence spectra of kerosine. Michul, C., Ruscior, C., and Pop, V. Speetrochim. Acta 1957, Suppl. 562–4 (1957) CA 54: 9267bGoogle Scholar
  153. C 153.
    The fluorescence of Romanian diesel oils. Mihul, C., Ruscior, C., Pop, V., Schwartz, F.R., and Radulescu, GA. Analele Stiint Univ. “A. I. Cuza,” Iasi, Sect. I 3: 243–56 (1957) CA 53: 13567bGoogle Scholar
  154. C 154.
    Fluorescent substances. Mizuno, H., and Kamiya, S. Japan 3358, June 6 (1957) CA 52: 15 2691Google Scholar
  155. C 155.
    Effect of ultraviolet radiation on car-cinogenic hydrocarbons by addition of benzoyl peroxide. Monig, H., and Kriegel, H. Naturwissenschaften 49: 115–16 (1957) CA 53: 18604hGoogle Scholar
  156. C 156.
    Fading and tendering activity in anthra-quinonoid rat dyes. I. Electronic absorption spectra of dye solutions. Moran, J.J., and Stonehill, H.I. J. Chem. Soc. 1957: 765–78 (1957) CA 51: 7721fGoogle Scholar
  157. C 157.
    Thallium-activated sodium chloride recrystallization-phosphors. Morlin, Z. Nature 180: 89–90 (1957) CA 52: 1 1588eGoogle Scholar
  158. C 158.
    After-glow of NaCl recrystallized phosphors activated with thallous chloride. Morlin, Z. Acta Phys. Acad. Sci. Hung. 7: 341–56 (1957) CA 52: 1778bGoogle Scholar
  159. C 159.
    XII. On the fluorescence of thiophene compounds. Motoyama, R., Nishimura, S., Imoto, E., Murakami, Y., Hari, K., and Ogawa, J. Nippon Kagaku Zasshi 78: 950–4 (1957) CA 54: 14224iGoogle Scholar
  160. C 160.
    Fluorescence spectrum of various steroids in phosphoric acid. Nakamura, R. Tokyo Jikeikai Ika Daigaku Zasshi 72: 505–8 (1957) CA 52: 15246fGoogle Scholar
  161. C 161.
    Phosphate phosphors. II. Luminescent color of pyrophosphate phosphors excited by cathode ray. Nakano, E., and Takagi, K. Nippon Kagaku Zasshi 78: 1146–50 (1957) CA 52: 1343 8fGoogle Scholar
  162. C 162.
    Hydrous uranyl phosphate (uramphite) (NH4UO2) (PO4) • 3H20. Nekrasona, ZA. At. Energ., Vopr. Geol. Urana, Suppl. 1957: 67–72 (1957) CA 53: 8955aGoogle Scholar
  163. C 163.
    High-voltage electrophoresis of the urine of a child with Wilson’s disease. Noller, H.G., Stelgens, P., andKieser, H.J. Monatsschr. Kinderheilk. 105: 343–6 (1957) CA 52: 546gGoogle Scholar
  164. C 164.
    Fluorescence analysis of skin of guinea pig and rabbit after application of 3,4-benzpyr ene. Norden,G. Acta Pathol. Microbiol. Scand. 40: 296–302 (1957) CA 51: 13220iGoogle Scholar
  165. C 165.
    Fluorescence of uranyl salts in solutions. Novak, M. Jaderna Energie 3: 44–7 (1957) CA 54: l0505gGoogle Scholar
  166. C 166.
    Competition of unimolecular and bi-molecular processes with special ap-plications to the quenching of fluorescence in solution. Noyes, R.M. J. Am. Chem. Soc. 79: 551–5 (1957) CA 51: 9328iGoogle Scholar
  167. C 167.
    Relative intensities of fluorescence and phosphorescence in biacetyl vapor. Okake, H., and Noyes, WA., Jr. J. Am. Chem. Soc. 79: 801–6 (1957) CA 51: 7872gGoogle Scholar
  168. C 168.
    Fluorometric determination of thallium and indium with Rhodamine B. Onishi, A. Bull. Chem. Soc. Japan 30: 567 (1957)Google Scholar
  169. C 169.
    Fluorometric determination of thallium and indium with Rhodamine B. Onishi, A. Bull. Chem. Soc. Japan 30: 827 (1957)Google Scholar
  170. C 170.
    Phosphorescence of acetic acid. Osada,K. J. Phys. Soc. Japan 12: 1420 (1957) CA 52: 8730aGoogle Scholar
  171. C 171.
    Fluorescence spectra of aqueous solu-tions of uranyl nitrate at room temperature (10°C). Pant, D.D., and Khandelwal, D.P. Current Sci. 26: 282–3 (1957) CA 52: 5968gGoogle Scholar
  172. C 172.
    Fluorescence and absorption spectra of uranyl salts. Pant, D.D., and Pandey, B.C. J. Sci. Ind. Res. 16B: 280–5 (1957) CA 52: 2536fGoogle Scholar
  173. C 173.
    Effect of intermittent light excitation on alkali-halide phosphors. Parfianovich, IA. Opt. i Spektroskopiya 2: 392–5 (1957) CA 51: 1 1077aGoogle Scholar
  174. C 174.
    Effect of growth of luminescence of crystal phosphors after cessation of the action of deexciting light. Parfianovich, IA. Tr. Irkutsk. Gornomet. Univ. 15: 13–21 (1957) CA 55: 13080cGoogle Scholar
  175. C 175.
    Spectrofluorimeters and filter fluor-imeters. Parker, CA., and Barnes, W.J. Analyst 82: 606–18 (1957) CA 52: 893aGoogle Scholar
  176. C 176.
    Model ’54 transmission and reflection fluorimeter for determination of uranium with adaptation to field use. Parshall, E.E., and Rader, L.F., Jr. U.S. Geol. Surv., Bull. No. 1036-M, 221–51 (1957) CA 52: 2463dGoogle Scholar
  177. C 177.
    Behavior of cell autofluorescence in activated thyroid. Experimental re-search in activation states from hypo-physeal thyrotropic hormone (TSH). Pende, G., and Romano, P.M. Arch. “E. Maragliano” Pathol. Clin. 13: 743–52 (1957) CA 52: 3974dGoogle Scholar
  178. C 178.
    Quantum yield of F fluorescence. Perlin, Y.E. Opt. i Spektroskopiya 3: 328–33 (1957) CA 52: 3523cGoogle Scholar
  179. C 179.
    Luminescence of microporous glass activated by salts of heavy metals. Pershina, E.V., and Terenin, A.N. Materialy V-go [Pyatogo] Soveshch. po Lyuminests. (Kristallofosfory), Nauk Est. SSR, Tartu 1956: 139–43 (1957) CA 54: 205l8eGoogle Scholar
  180. C 180.
    Vital fluorescence and histochemistry. Peters, T. Acta Histochem. 4: 250–59 (1957) CA 52: 3897eGoogle Scholar
  181. C 181.
    Concerning spectra and duration of afterglow in cement phosphors. Pfahnl, A. Acta Phys. Austriaca 11: 252–68 (1957) CA 52: 890hGoogle Scholar
  182. C 182.
    Luminescence in mineralogy. Pfeiffer, L. Urania 20: 176–8 (1957) CA 51: 1 1941dGoogle Scholar
  183. C 183.
    Fluorescent tungstates for X-ray intensifying screens. Philips, N.V. Ger. 1,001,440 (1957) CA 53: 1 2026fGoogle Scholar
  184. C 184.
    Semiconductor properties of colored potassium chloride crystals. Politov, N.G. Tr. Inst. Fiz. Akad. Nauk Gruz. SSR 5: 77–178 (1957) CA 55: 16166aGoogle Scholar
  185. C 185.
    Free radicals and triplet states in aromatic vapors. Porter, G. Chem. Soc. (London), Spec. Pubi. No. 9: 139–49, 150 (1957) CA 53: 1 1986fGoogle Scholar
  186. C 186.
    Metastable states in photochemistry. Porter, G.Threshold Space, Proc. Conf. Chem. Aeronomy, Cambridge, Mass. 1956: 94–8 (1957) CA 52: 13441dGoogle Scholar
  187. C 187.
    Fluorometric researchers on some fats. Provvedi, F. Olii Minerali, Grassi Saponi, Colori Vernici 34: 373 (1957) CA 51: 18372hGoogle Scholar
  188. C 188.
    Reversibility of fluorescence by an-nealing. Przibram, K. Nature 179: 319–20 (1957) CA 51: 15278fhGoogle Scholar
  189. C 189.
    Fluorescence of skin. Przibram, K. Naturwissenschaften 44: 393–4 (1957) CA 52: 5605bGoogle Scholar
  190. C 190.
    Fluorescence of minerals and chemi-cals reversible by annealing. Przibram, K. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Sitzber., Abt. II 166: 111–23 (1957) CA 53: 7779fGoogle Scholar
  191. C 191.
    Phosphorescence spectra of some aro-matic acids at liquid-air temperature. Pyatnitskii, B.A. Soviet Phys. “Doklady” 1: 451–4 (1957) CA 51: 13580cGoogle Scholar
  192. C 192.
    Photosynthesis and energy transfer. Rabinowitch, E. J. Phys. Chem. 61: 870–8 (1957) CA 51: 18143eGoogle Scholar
  193. C 193.
    Quenching law for zinc sulfide phosphors. Rabotkina, L.R. Dokl. VII Nauch. Konf., Posvyashch. 40-Letiyer Velikoi Oktyabr’sh Sots. Revolyutsii, Tomsk. Univ. 1957: 126–7 (1957) CA 51: 1035iGoogle Scholar
  194. C 194.
    Triplet states of biologically active molecules. Reid, C. Science 125: 396–7 (1957) CA 51: 9330cGoogle Scholar
  195. C 195.
    Response of crystal phosphors to nuclear radiation. Reiffel, L. U.S. At. Energy Comm. OSR-TN-57–313, 56 pp. (1957) CA 55: 18362cGoogle Scholar
  196. C 196.
    Note on heterocyclic substituted pyr-azolines. Ried, W., and Dankert, G. Chem. Ber. 90: 2707–11 (1957) CA 53: 2207gGoogle Scholar
  197. C 197.
    Spectroscopic studies on dyes. IV. The fluorescence spectra of thioindigo dyes. Rogers, DA., Margerum, J.D., and Wyman, G.M. J.Am. Chem. Soc. 79: 2464–8 (1957) CA 51: 15271hGoogle Scholar
  198. C 198.
    Ultraviolet-visible absorption spectra of quinoxaline derivatives. Sawicki, E., Chastain, B., Bryant, H., and Carr, A. J. Org. Chem. 22: 625–9 (1957) CA 52: 2026iGoogle Scholar
  199. C 199.
    Symmetries of electric fields about ions in solutions. Absorption and fluorescence spectra of europic chloride in water, methanol, and ethanol. Sayre, E.V., Miller, D.G., and Freed, S. J. Chem. Phys. 26: 109–13 (1957) CA 51: 6333iGoogle Scholar
  200. C 200.
    Portable self-powered reader for DT–60 glass dosimeter. Schaffert, J.C. Nucleonics 15: 60–2 (1957) CA 53: 7800gGoogle Scholar
  201. C 201.
    The difference in fluorescence between “light” and “dark” pseudo-unipolar ganglion cells in the semilunar ganglion of cattle. Scharf, J.H., and Oster, K. Acta Histochem. 4: 65–89 (1957) CA 51: 18063iGoogle Scholar
  202. C 202.
    Fluorescence and fluorescent polarization of nerve fibers after staining with fluorescein derivatives. Attempt at an interpretation. Scharf, J.H. Mikroskopie 11: 261–319, 349–97 (1957) CA 54: 5798iGoogle Scholar
  203. C 203.
    A new class of solid photoluminescents. Schlivitch, S. Compt. Rend. 245: 2047–8 (1957) CA 52: 5124aGoogle Scholar
  204. C 204.
    Near-ultraviolet spectrum of crystalline hexamethylbenzene and the structure of the hexamethylbenzene molecule. Schnepp, O., and McClure, D.S. J. Chem. Phys. 26: 83–92 (1957) CA 51: 6335bGoogle Scholar
  205. C 205.
    Self-activation of zinc sulfide. Schwager, E.A., and Fischer, A. Z. Physik 149: 345–6 (1957) CA 53: 7779eGoogle Scholar
  206. C 206.
    Thermal quenching in a-and y-excited fluorescent solutions. Selinger, H.H., and Ziegler, CA. J. Res. Natl. Bur. Std. 58: 125–6 (1957) CA 51: 1 1859iGoogle Scholar
  207. C 207.
    Fluorescence of naphthalene and anthracene vapors under /3-ray excitation. Shepp, A. J. Chem. Phys. 27: 816–17 (1957) CA 52: 1796eGoogle Scholar
  208. C 208.
    A possible new type of fluorescence of the earth’s atmosphere. Shklovskii, I.S. Astron. Zh. 34: 127–30 (1957) CA 51: 1 2644iGoogle Scholar
  209. C 209.
    Fluorescent substances from Mycobac-terium. Shoda, T. Bitamin 13: 334–43 (1957) CA 54: 4752aGoogle Scholar
  210. C 210.
    Emission spectra of aromatic hydrocarbons at low temperatures. Shpolrskii, E.V., Girdzhiyauskaite, EA„ and Klimova, L.A. Materialy Desyatogo Vses. Soveshch. po Spektroskopii, L’vovsk. Gos. Univ., Lvov, 1956, Fiz. Sb. 1: 24–36 (1957) CA 53: 21146fGoogle Scholar
  211. C 211.
    Concentration dependence of the ab-sorption and fluorescence spectra of mixed crystals of anthracene with phenanthrene at 77°K. Sidman, J.W. J. Am. Chem. Soc. 79: 305–7 (1957) CA 51: 6336fGoogle Scholar
  212. C 212.
    Electronic and vibrational states of the nitrite ion. I. Electronic states. Sidman, J.W. J. Am. Chem. Soc. 79: 2669–75 (1957) CA 51: 17440dGoogle Scholar
  213. C 213.
    Maillard reaction in dried grass. Sjollemo, A. Landbouwk. Tijdschr. 69: 261–9 (1957) CA 52: 1 2109eGoogle Scholar
  214. C 214.
    Spectrophoto fluorometric studies of 5-hydroxyindoles and related compounds. Sprince, H., Rowley, G.R., and Jameson, D. Science 125: 442–3 (1957) CA 51: 8534hGoogle Scholar
  215. C 215.
    Excitation of biological substances. Steele, R.H., and Szent-Gyorgyi, A. Proc. Natl. Acad. Sci. U.S. 43: 477–91 (1957) CA 52: 19461gGoogle Scholar
  216. C 216.
    Fluorescent insulin conjugates. Steiner, R.F., and McAlister, A.J. J. Colloid Sci. 12: 80–98 (1957) CA 51: 7873bGoogle Scholar
  217. C 217.
    Use of the fluorescence techniques as an absolute method for obtaining mean relaxation times of globular proteins. Steiner, R.F., and McA lister, A. J. J. Polymer Sci. 24: 105–23 (1957) CA 51: 9731cGoogle Scholar
  218. C 218.
    Vibrational energy transfer from colli -sional deactivation of simple molecules and fluorescence stabilization of complex molecules. Stevens, B., and Boudart, M. Ann. N.Y. Acad. Sci. 67: 570–99 (1957) CA 51: 16073fGoogle Scholar
  219. C 219.
    Fluorescence and emission spectra of the three isometric fluorotoluenes. Suryanaryana, V., Rao, I A., and Rao, V.R. Trans. Faraday Soc. 53: 1570–7 (1957) CA 53: 14685iGoogle Scholar
  220. C 220.
    Luminescence of uranium-activated sodium fluoride. Sverdlov, Z.M. Opt. i Spektroskopiya 3: 356–60 (1957) CA 52: 2559d C 221 Nuclear resonance fluorescence studies in oxygen. Swann, C.P. Univ. Microfilms Publ. No. 18015, 120 pp. (1957) CA 51: 9306fGoogle Scholar
  221. C 222.
    Derivatives of 4,4′-diaminostilbene. Swiss J. 324,183 (1957) CA 53: 10134dGoogle Scholar
  222. C 223.
    Detection of chromatographic spots in paper. Szent-Gyorgyi, A.E. Science 126: 751 (1957) CA 52: 1837hGoogle Scholar
  223. C 224.
    Excitations and polymerization. Szent-Gyorgyi, A.E. Proc. Natl. Acad. Sci. U.S. 43: 151–2 (1957) CA 51: 7872iGoogle Scholar
  224. C 225.
    Effect of gas adsorption on zinc oxide luminescence. Tagantsev, K.V., and Terenin, A.N. Dokl. Akad. Nauk SSSR 112: 241–4 (1957) CA 51: 16109aGoogle Scholar
  225. C 226.
    Ultraviolet fluorescence of the aromatic amino acids. Teale, F.W.J., and Weber, G. Biochem. J. 65: 476–82 (1957) CA 51: 7158dGoogle Scholar
  226. C 227.
    Influence of concentration on phosphor-escence of solutions of aromatic compounds at low temperature. Teplyakov, PA. Opt. i Spektroskopiya 2: 269–71 (1957) CA 51: 9329gGoogle Scholar
  227. C 228.
    Infrared spectra (fluorescence) of phthalocyanines with different central metal atoms. Terenin, A.N., and Sidorov, A.N. Spectrochim. Acta, Suppl. 1957: 573–8 (1957) CA 54: 6755eGoogle Scholar
  228. C 229.
    Luminescent inclusions in micas. Tolstikhina, K.I. Tr. Inst. Geol. Rudn. Mestorozhd., Petrogr. Mineralog. i Geokhim. 1957(17): 53–6 (1957) CA 53: 2 1446aGoogle Scholar
  229. C 230.
    Ultra-r-meter. Tolstoi, NA., Tkachuk, A.M., and Tkachuk, N.N. Izv. Akad. Nauk SSSR, Ser. Fiz. 21: 595–611 (1957) CA 52: 15142cGoogle Scholar
  230. C 231.
    A green-blue fluorescent (ultraviolet light) substance in lichens xanthoria, caloplaca, and teloschistes. Tomaselli, R. 1st. Botan. Univ., Lab. Crittogam., Pavia, Atti 14: 144–50 (1957) CA 52: 1 1196fGoogle Scholar
  231. C 232.
    The green 2-band in the ultraviolet luminescence of zinc sulfide. Tomlinson, T.B., and White, EA.D. J. Electron. 2: 404–5 (1957) CA 51: 6356fGoogle Scholar
  232. C 233.
    Metaehromasy of polyvinylpyrrolidone. Tsubomura, I., Yoshioka, J., and Torii, K. Bunko Kenkyu 6: 10–14 (1957) CA 53: 8l07dGoogle Scholar
  233. C 234.
    Duration of the excited state and quan-tum yield of fluorescence from chlorophyll in vitro and in vivo. Tumerman, LA. Soviet Phys. “Doklady” 2: 525–7 (1957) CA 53: 20301gGoogle Scholar
  234. C 235.
    Fluorescence in planetary atmospheres. Urey, H.C., and Brewer, A.W. Proc. Roy. Soc. (London), Ser. A 241: 37–43 (1957) CA 51: 15261dGoogle Scholar
  235. C 236.
    Fluorescence of Argentinian woods. Valente, E., and Pardo, L.L. Rev. Invest. Forestales 1: 47–51 (1957) CA 53: 3689hGoogle Scholar
  236. C 237.
    Red shifts in the spectra of anthracene derivatives. Veljkovic, S.R. Trans. Faraday Soc. 53: 1181–5 (1957) CA 52: 9766gGoogle Scholar
  237. C 238.
    Fluorescence of aromatic amino acids. Vladimirov, Yj\. Dokl. Akad. Nauk SSSR 116: 780–3 (1957) CA 52: 1946IdGoogle Scholar
  238. C 239.
    Zirconium oxide, its crystal polymor-phism and its suitability as a material for high temperatures. Weber, B.C., and Schwartz, MA. Ber. Deut. Keram. Ges. 34: 391–6 (1957) CA 54: 9424aGoogle Scholar
  239. C 240.
    Determination of the absolute quantum yield of fluorescent solutions. Weber, G., and Teale, F.W.J. Trans. Faraday Soc. 53: 646–55 (1957) CA 52: 5l24fGoogle Scholar
  240. C 241.
    The quenching of fluorescence. III. Quenching of the fluorescence of optical bleaches. Weber, K., and Skuric, Z. Croat. Chem. Acta 29: 115–25 (1957) CA 52: 10728aGoogle Scholar
  241. C 241a.
    Polarization of the fluorescence of tetraphenylporphine. Weigl, J.W. J. Mol. Spectry. 1: 133–8 (1957) CA 51: 17465dGoogle Scholar
  242. C 242.
    Discrimination between “radiative” and “nonradiative” transfer of molecular excitation energy in liquid systems. Weinreb, A. J. Chem. Phys. 27: 133–6 (1957) CA 51: 17458cGoogle Scholar
  243. C 243.
    Protolytic reactions of excited acridine. Weiler, A. Z. Elektrochem. 61: 956–61 (1957) CA 52: 4297iGoogle Scholar
  244. C 244.
    I. Phosphorimetric method of analysis. EE. Fluorometric analysis of rare earth by complex formation. Wentworth, W.E. Dissertation, Florida State University, Dissertation Ahstr. 17: 2852–3 (1957) CA 52: 4387gGoogle Scholar
  245. C 245.
    Derivatives of polyvinyl alcohol. Werssermel, K., and Starck, W. Ger. 1,020,791 (1957) CA 54: 10401gGoogle Scholar
  246. C 246.
    Fluorometry. White, C.E. Trace Anal., Papers Symp. Trace Anal., N.Y. 1955: 211–28 (1957) CA 52: 4381fGoogle Scholar
  247. C 247.
    Fluorescence emission spectra, fluorescence excitation spectra, and absorption spectra of some metal chelates. White, C.E., Hoffman, D.E., and Magee, J.S. Spectrochim. Acta 9: 105–12 (1957) CA 51: 14426hGoogle Scholar
  248. C 248.
    Heterocyclic analogs of terphenyl. 3,6-Diaryl-l,2,4,5-tetrazines. Wiley, R.H., Jarboe, C.H., Jr., and Hayes, F.N. J. Org. Chem. 22: 835–6 (1957) CA 52: 2870iGoogle Scholar
  249. C 249.
    Luminescence of synthetic zeolites activated with copper. Wilke, K.T. Z. Physik. Chem. 207: 45–59 (1957) CA 51: 17464fGoogle Scholar
  250. C 250.
    Luminescence in the aluminum fluoride group. Wilke, K.T., and Mannheim, R. Naturwissenschaften 44: 631–2 (1957) CA 52: 8730cGoogle Scholar
  251. C 251.
    Aminco-Bowman speetrophotofluorome-ter. Williams, R.T. Biochem. J. 65, 26 pp. (1957) CA 53: 4829hGoogle Scholar
  252. C 252.
    Observation of the relative polarizations of electronic transitions. Williams, R. J. Chem. Phys. 26: 1186–8 (1957) CA 51: 13569hGoogle Scholar
  253. C 253.
    New phenomena in the fluorescence, spectrum of a diphosphopyridine nucleotide-linked dehydrogenase. Winer, A.D., Novoa, W.B., and Schwert, G.W. J. Am. Chem. Soc. 79: 6571–2 (1957) CA 52: 6929cGoogle Scholar
  254. C 254.
    Absorption alteration and chlorophyll fluorescence in the primary process of photosynthesis. Witt, H.T., and Moraw, R. Z. Physik. Chem. 12: 393–5 (1957) CA 51: 18127aGoogle Scholar
  255. C 255.
    Fluorescence and dyeing characteristics of fluorescent whitening dyes of triazinylstilbene series. I. Diamino and dyhydroxy derivatives. Yabe, A., and Hayashi, M. Kogyo Kagaku Zasshi 60: 740–5 (1957) CA 53: 8635bGoogle Scholar
  256. C 256.
    Fluorescence of nitrogen under the in-fluence of short-wave radiation. Yakovleva, A.V., and Gromoua, I.I. Fiz. Sb., L’vovsk. Gos. Univ. 1957: 308–10 (1957) CA 55: 2l787iGoogle Scholar
  257. C 257.
    The fluorescence and phosphorescence of organic compounds. Yamamoto, D. Kagaku (Tokyo) 27: 384–90 (1957) CA 51: 15245aGoogle Scholar
  258. C 258.
    Composition for fluorescent-penetrant inspection of materials. Yoshida, K., Nishikawa, K., Tsuehida, S. and Sakata, M. Japan 1809, Mar. 20, 1957 CA 52: 9484aGoogle Scholar
  259. C 259.
    Fluorescent substances. Yoshida, K., Nishikawa, K., Tsuehida, S., and Sakada, E. Japan 1810 (1957) CA 52: 5474dGoogle Scholar
  260. C 260.
    Fluorescence analysis of the compounds containing amino group and related substances. Yoshida, T. Igaku Kenkyu 27: 443–55 (1957) CA 52: 1072ÜGoogle Scholar
  261. C 261.
    Relation between fluorescence frequencies and the effectiveness of certain quenchers. Zelinskii, V.V., Kolobkov, V.P., and Kondaraki, N.I. Soviet Phys. “Doklady” 2: 501–4 (1957) CA 53: 18626dGoogle Scholar
  262. C 262.
    Determination of molecular volumes in solutions by the use of polarized luminescence. Zhevandrov, N.D., and Nikolaev, V.P. Soviet Phys. “Doklady” 2: 175–8 (1957); Dokl. Akad. Nauk SSSR 113: 1025–8 (1957) CA 53: 33bGoogle Scholar
  263. C 263.
    Determination of the oscillator strength of the 3720-A iron line from the decay time of the resonance fluorescence. Ziock, K. Z. Physik 147: 99–112 (1957) CA 51: 6330iGoogle Scholar
  264. C 264.
    Luminescence of benzene and hexa-deuteriobenzene at 20°K. Zmerli, A. Compt. Rend. 245: 1911–3 (1957) CA 52: 5123cGoogle Scholar
  265. C 265.
    Fluorescence spectra of the products resulting from high-frequency electric discharges in benzene, toluene, o-, m-, and £-xylene vapors. Agerbiceanu, I., Haglescu-Miriste, M., and Weissman, I. Comun. Acad. Rep. Populäre Romine 8: 359–64 (1958) CA 53: 2781eGoogle Scholar
  266. C 266.
    Naphthalene derivatives in inorganic analysis. VI. Reagent for the fluorimetrie detection of tin. Anderson, J.R.A., Garnett, J.L., and Lock, L.C. Anal. Chim. Acta. 19: 256–9 (1958) CA 54: 2090fGoogle Scholar
  267. C 267.
    Dyes derived from imidazole. I. Pre-paration and chromatographic separation of dyes from 1,4,5,8-naphthalene-tetracarboxylic and 1,8 -naphthalenedi-carboxylic acids. Arient, J., and Franc, J. Chem. Listy 52: 1946–50 (1958) CA 53: 1722eGoogle Scholar
  268. C 268.
    A highly sensitive chemical dosimeter for ionizing radiation. Armstrong, WA., and Grant, D.W. Nature 182: 747 (1958) CA 53: 6803hGoogle Scholar
  269. C 269.
    Transitions without emission in zinc sulfides at low temperature. Arpiarian, N. J. Chim. Phys. 55: 667–71 (1958) CA 53: 4923hGoogle Scholar
  270. C 270.
    Quenching of the long-lived fluorescence of biacetyl in solution. Backstrom, H.L.J., and Sandros, K. Acta Chem. Scand. 12: 823–32 (1958) CA 53: 2 1095cGoogle Scholar
  271. C 271.
    Polarization of photoluminescence of organophosphors. Baczynski, A., and Czajkowski, M. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 6: 271–4 (1958) CA 52: 13438dGoogle Scholar
  272. C 272.
    Formation of aromatic hydrocarbons at high temperatures. Bodger, G.M., Buttery, E.G., Kimber, R.W.L., Lewis, G.E., Moritz, A.G., and Napier, I.M. J. Chem. Soc. 1958: 2449–52 (1958) CA 52: 20094dGoogle Scholar
  273. C 273.
    The variation of fluorescence by addition of benzene (benzene effect), investigated in case of Acridine Orange-aluminum oxide. Bandow, F., and Banderet, E. Z. Physik. Chem. 18: 201–5 (1958) CA 55: 3192eGoogle Scholar
  274. C 274.
    Influence of oxygen on the transfer effi ciency and fluorescence yield of organic solutions. Bar, V., and Weinreb, A. J. Chem. Phys. 29: 1912–14 (1958) CA 53: 6755dGoogle Scholar
  275. C 275.
    Ultraviolet fluorescence of crystals of aromatic amino acids. Barskii, I.Ya., and Brumberg, E.M. Biokhimiya 23: 791–2 (1958) CA 53: 2813iGoogle Scholar
  276. C 276.
    Relation between exciting wave length and the ratio of the phosphorescence and fluorescence yields. Bauer, R., and Baczynski, A. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 6: 113–7 (1958) CA 52: 13438bGoogle Scholar
  277. C 277.
    Excitation energy transfer from dye molecules in the metastable state. Bauer, R., Baczynski, A., and Czajkowski, M. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 6: 653–8 (1958) CA 53: 5867aGoogle Scholar
  278. C 278.
    The connection of Raman dispersion, adsorption, and fluorescence (resonance Raman effect). Behringer, J. Z. Elektrochem. 62: 544–67 (1958) CA 52: 16872bGoogle Scholar
  279. C 279.
    The Elks peroxydisulfate oxidation in the pyridine series: a new synthesis of 2,5 -dihydr oxypyr id ine. Behrman, E.J., and Pih, B.M. J. Am. Chem. Soc. 80: 3717–18 (1958) CA 53: 2223cGoogle Scholar
  280. C 280.
    Delayed light emission from rare gas coronas. Bemerl, W.F., and Fetz, H. Naturwissenschaften 45: 381–2 (1958) CA 53: 9809eGoogle Scholar
  281. C 281.
    The color and fluorescence of Russulas. Bernanose, A., and Vincent, A.M. Bull. Soc. Pharm. Nancy 37: 20–2 (1958) CA 52: l5665hGoogle Scholar
  282. C 282.
    Energy transfer in organic systems. I. Photofluorescence of terphenyl-toluene solutions. Birks, J.B., and Cameron, A.J.W. Proc. Phys. Soc. 72: 53–64 (1958) CA 54: 23511iGoogle Scholar
  283. C 283.
    Phosphorescence studies of o-, m-, and ¿»-xylene at low temperatures. Blackwell, LA. Univ. Microfilms, L.C. Card No. Mie 58–2728, 64 pp. (1958) CA 53: 2782dGoogle Scholar
  284. C 284.
    Delayed singlet-singlet emission from molecular crystals. Blake, N.W., and McClure, D.S. J. Chem. Phys. 29: 722–4 (1958) CA 53: 2772eGoogle Scholar
  285. C 285.
    Carotenoids in man. III. The micro-scopic pattern of fluorescence in atheromas and its relation to their growth. Blankenhorn, D.H., and Braunstein, H. J. Clin. Invest. 37: 160–5 (1958) CA 52: 8345dGoogle Scholar
  286. C 286.
    Photoconductivity and absorption and fluorescence spectra of 9,10-dichloro-anthracene. Bock, E., Ferguson, J., and Schneider, W.G. Can. J. Chem. 36: 507–12 (1958) CA 52: 8743iGoogle Scholar
  287. C 287.
    The photographic effect of charged particles at low temperatures. Bogomolov, K.S., Razorenova, I.F., and Sirotinskaya, A A. Phot. Corpusculaire, Colloq. Intern., Ier Strasbourg 1957: 203–11 (1958) CA 54: 24041iGoogle Scholar
  288. C 288.
    Quenching of the fluorescence of phthalimide vapors by oxygen. Borisvich, NA. Tr. Inst. Fiz. i Mat., Akad. Nauk Belorussk. SSR 1956: 94–101 (1958) CA 55: 2 1793gGoogle Scholar
  289. C 289.
    Fluorescence of the toxin of Clostridium botulinum and its relation to toxicity. Bor off, DA., and Fitzgerald, J.E. Nature 181: 751–2 (1958) CA 52: 13009fGoogle Scholar
  290. C 290.
    Energy-transfer mechanism in poly-styrene phosphors. Bothe, H.K., and Herforth, L.H. Semicond. Phosphors, Proc. Intern. Colloq. Garmisch-Partenkirchen 1956: 439–44 (1958) CA 54: 17045cGoogle Scholar
  291. C 291.
    Fluorescence of acridine and acridone solutions. Bowen, E.J., and Sahu, J. J. Chem. Soc. 1958: 3716–18 (1958) CA 53: 8805gGoogle Scholar
  292. C 292.
    Energy transfer and fluorescence spec-tra in Porphyridium cruentum. Brody, S.S. J. Chim. Phys. 55: 942–51 (1958) CA 54: 1 2268fGoogle Scholar
  293. C 293.
    Energy transfer in liquid and rigid organic systems. Brown, FA., Fürst, M., and Kallmann,H.E, J. Chim. Phys. 55: 688–97 (1958) CA 53: 4900cGoogle Scholar
  294. C 294.
    Fluorescent decay times and their re-lation to the scintillation process. Brucker, G.J. Dissertation Abstr., New York Univ. (1958) CA 52: 16894dGoogle Scholar
  295. C 295.
    Fluorescence spectrum and low levels of neodymium chloride. Carlson, E., and Dieke, G.H. J. Chem. Phys. 29: 229–30 (1958) CA 52: 19440bGoogle Scholar
  296. C 296.
    Constitution of the leucoanthocyanidin peltogynol. Chan, W.R., Forsyth, W.G.C., and Hassall, C.H. J. Chem. Soc. 1958: 3174–9 (1958) CA 53: 3206cGoogle Scholar
  297. C 297.
    Respiratory enzymes in oxidative phos-phorylation. VII. Binding of intramito-chondrial reduced pyridine nucleotide. Chance, B., and Baltscheffsky, H. J. Biol. Chem. 233: 736–9 (1958) CA 53: 2312eGoogle Scholar
  298. C 298.
    Fluorescent substances produced by dermatophytes. Chattaway, F.W., and Barlow, A.J.E. Nature 181: 281 (1958) CA 52: 9297hGoogle Scholar
  299. C 299.
    Measurement of degree of polarization of fluorescence of pure anthracene crystalline film. Chaudhury, N.K. Z. Physik 151: 93–105 (1958) CA 52: 14344cGoogle Scholar
  300. C 300.
    Kinetics of the photochemical transformations and the concentration quenching of the fluorescence of 9-monoalkyl-substituted anthracenes. Cherkasov, A.S., and Vember, T.M. Opt. i Spektroskopiya 4: 203–10 (1958) CA 52: 13440hGoogle Scholar
  301. C 301.
    (Fluorometric detection of aluminum and beryllium with 2-hydroxy–3-naphthoic acid.) Cherkesov, A.I. Dokl. Akad. Nauk SSSR 118: 309 (1958) CA 52: 8840cGoogle Scholar
  302. C 302.
    Organophosphors. VIII. Chomse, H. Festkoerperphys. Leuchtstoffe 1958: 254–9 (1958) CA 55: 18341iGoogle Scholar
  303. C 303.
    Determination of molecular weight by scattered light from fluorescent solutions. Ciferri, A., and Weill, G. Ric. Sci. 28: 765–9 (1958) CA 52: 17906ÌGoogle Scholar
  304. C 304.
    Use of a coumarin derivative as a secondary solute in liquid scintillators. Coche, A., Henck, R., and Laustriat, G. Compt. Rend. 247: 2123–6 (1958) CA 53: 1 2870fGoogle Scholar
  305. C 305.
    The electronic spectra of crystalline toluene, bibenzyl, diphenylmethane, and biphenyl in the near ultraviolet. Coffman, R., and McClure, D.S. Can. J. Chem. 36: 48–58 (1958) CA 52: 19445bGoogle Scholar
  306. C 306.
    Photoconductivity of anthracene. The effect of neutron bombardment. Compton, D.M.J., Schneider, W.G., and Waddington, T.C. J. Chem. Phys. 28: 741–2 (1958) CA 52: 12566ÌGoogle Scholar
  307. C 307.
    Glycosides. III. Glycosides of 4 -methylumbellif er one. Constantzas, N., and Kocourek, J. Chem. Listy 52: 1629–32 (1958) CA 53: 1318cGoogle Scholar
  308. C 308.
    Acid-stable organic azides and the Schmidt reaction with heterocyclic ketones. Coombs, M.M. J. Chem. Soc. 1958: 4200–2 (1958) CA 53: 10202gGoogle Scholar
  309. C 309.
    Concentration quenching in fluorescent acene solutions. Dammers-de-Klerk, A. Mol. Phys. 1: 141–50 (1958) CA 53: 2782eGoogle Scholar
  310. C 310.
    Fluorescence quenching of organic molecules in solution. Dammers-de-Klerk, A. Chem. Weekblad 54: 281–8 (1958) CA 52: 19445hGoogle Scholar
  311. C 311.
    Introduction to spectrophotofluorimetry, description of a type of spectrophoto-fluorimeter. De Francesco, F. Ann. Chim. 48: 390–9 (1958) CA 52: 15249dGoogle Scholar
  312. C 312.
    Fluorescence spectrum of PrCl3 and the levels of the Pr+++ ion. Dieke, G.H., and Sarup, R. J. Chem. Phys. 29: 741–5 (1958) CA 53: 2772fGoogle Scholar
  313. C 313.
    Analysis of mixed ambipolar and ex-citon diffusion in cadmium sulfide crystals. Diemer, G., VanGurp, G.J., and Hoogenstraaten, W. Philips Res. Rept. 13: 458–84 (1958) CA 53: 6782gGoogle Scholar
  314. C 314.
    Stilbenes. Drefahl, G., and Plotner, G. Chem. Ber. 91: 1274–80 (1958) CA 52: 20044dGoogle Scholar
  315. C 315.
    Photolumineseence of esters of phthalic and benzoic acids. Dubinskii, I.B. Izv. Krymsk. Ped. Inst. 1957: 29, 321–35 (1958) CA 54: 16174eGoogle Scholar
  316. C 316.
    The spectrum of comet Mrkos (1957d) in the near infrared. Dufay, J., and Swings, P. Ann. Astrophys. 21: 260–72 (1958) CA 53: 6750hGoogle Scholar
  317. C 317.
    Griseofulvin. xm. Homologs erf gris-eofulvin and 7-chloro–4,4’,6-trimethyl-gris–3’-ene–3,2’-dione. Duncanson, LA., Grove, J.F., and Jeffs, P.W. J. Chem. Soc. 1958: 2929–33 (1958) CA 53: 326cGoogle Scholar
  318. C 318.
    Two simplified fluorimeters for uranium determination. Dutra, C.V. Inst. Pesquisas Radioativas, Publ. 10: 1–10 (1958) CA 56: 8265fGoogle Scholar
  319. C 319.
    Thermoluminescence and phosphores-cence spectra of some pure and impurity-activated alkali halides. Dutta, B.C., and Ghosh, A.K. Indian J. Phys. 32: 578–9 (1958) CA 53: 10994hGoogle Scholar
  320. C 320.
    Effect of an activator on phosphorescence quenching. Dvorovenko, V.K. Nauchn. Zap., Odessk. Gos. Ped. Inst., Kafedry Mate., Fiz. i Estestvoz. 22: 32–4 (1958) CA 55: 1 1106gGoogle Scholar
  321. C 321.
    Organic oxide luminophors. Dvorovenko, V.K. Nauchn. Zap., Odessk. Gos. Ped. Inst., Fiz.-Mat. Fak. 22: 43–6 (1958) CA 52: 2996iGoogle Scholar
  322. C 322.
    Damping of phosphorescence of cemented phosphors activated by tereph-thalic acid. Dvorovenko, V.K. Nauchn. Zap., Odessk. Gos. Ped. Inst., Fiz.-Mat. Fak. 22: 47–52 (1958) CA 52: 4217eGoogle Scholar
  323. C 323.
    Fluorescence of diamond. Dyer, H.B., and Mathews, I.G. Proc. Roy. Soc. (London), Ser. A 243: 320–35 (1958) CA 52: 7870aGoogle Scholar
  324. C 324.
    Development of a single fired phos-phorescent enamel. Eichbaum, B.R. Am. Ceram. Soc. Bull. 37: 148–51 (1958) CA 52: 8492fGoogle Scholar
  325. C 325.
    Fluorescent colored porcelain enamel. Eichbaum, B.R. Ceram. Ind. 70: 92–3 (1958) CA 52: 1 2352eGoogle Scholar
  326. C 326.
    Absorption and fluorescence spectra of acridone and its dependence on hydrogen ion concentration and solvent. Kokubun, H. Z. Elektrochem. 62: 599–607 (1958) CA 52: 16869eGoogle Scholar
  327. C 327.
    Phosphorescence of lubricating oils at the temperature of liquid oxygen. Elin, L.V., Korobtsov, I.M., and Khalupovskii, M.D. Nauchn. Zap., Odessk. Gos. Ped. Inst., Fiz.-Mat. Fak. 22(1): 63–5 (1958) CA 57: 8799dGoogle Scholar
  328. C 328.
    Determination of X-ray absorption co-efficients of inhomogeneous materials. Ergun, S., and Tiensuu, V.H. J. Appl. Phys. 29: 946–9 (1958) CA 53: 7756eGoogle Scholar
  329. C 329.
    Energy transfer between triplet levels. Ermolaev, V.L., and Terenin, A.N. J. Chim. Phys. 55: 698–704 (1958) CA 53: 4899dGoogle Scholar
  330. C 330.
    The polarized fluorescence of very thin anthracene crystals. Ferguson, J., and Schneider, W.G. Can. J. Chem. 36: 1070–80 (1958) CA 53: 854fGoogle Scholar
  331. C 331.
    Spectral response of photoconduction in thin single crystals of anthracene. Ferguson, J., and Schneider, W.G. Can. J. Chem. 36: 1633–9 (1958) CA 53: 6783fGoogle Scholar
  332. C 332.
    Methylenedeoxybenzoins. VII. The condensation of deoxybenzoin and similar ketones with cyanoacetate. Fiesselman, H., and Ehmann, W. Chem. Ber. 91: 1706–13 (1958) CA 53: 1329gGoogle Scholar
  333. C 333.
    Identification of glass fragments by their physical properties. Finch, J., and Williams, P.P. Analyst 83: 698–9 (1958) CA 53: 9597iGoogle Scholar
  334. C 334.
    External quenching, activator reciprocity, and hole migration in ZnSCu and ZnSCuCo phosphors. Fok, M.V. Semicond. Phosphors, Proc. Intern. Colloq., Garmisch-Partenkirchen 1956: 593–601 (1958) CA 54: 14971iGoogle Scholar
  335. C 335.
    Phosphorescence spectra and analysis of some indole derivatives. Freed, S., and Salmre, W. Science 128: 1341–2 (1958) CA 55: 6138cGoogle Scholar
  336. C 336.
    Proteins in solutions at low temperatures. Freed, S., Turnbull, J.H., and Salmre, W. Nature 181: 1731–2 (1958) CA 53: 982iGoogle Scholar
  337. C 337.
    Photographic duplicating process using fluorescence. Friedman, J.S., and Horwitz, L. U.S. 2,865,744 (1958) CA 53: 2 1313eGoogle Scholar
  338. C 338.
    Oxidative decomposition of riboflavine. Fujisawa, T. Nagoya J. Med. Sci. 21: 69–83 (1958) CA 53: 5276iGoogle Scholar
  339. C 339.
    Cross quenching of fluorescence in organic solutions. Furst, M., and Kallmann, H.P. Phys. Rev. 109: 646–51 (1958) CA 52: 1 1567eGoogle Scholar
  340. C 340.
    Fluorescent pigments based on tetra-zaindenes. Fusco, F., and Rossi, S. U.S. 2,837,520, June, 1958 CA 52: 16388cGoogle Scholar
  341. C 341.
    The experimental investigation of the rotational depolarization of the fluorescence of solutions. Gati, L., and Szalay, L. Acta Univ. Szeged., Acta Phys. Chem. 4: 90–3 (1958) CA 53: 19684fGoogle Scholar
  342. C 342.
    Oxygen-containing heterocycles as liquid scintillator solutes. Gilman, H., Weipert, EA., Dietrich, J.J., and Hayes, F.N. J. Org. Chem. 23: 361–2 (1958) CA 53: 9225eGoogle Scholar
  343. C 343.
    Measurements of X-ray doses by means of thin, fluorescent screens. Glocker, R., and Meissner, D. Z. Physik. 152: 538–45 (1958) CA 53: 849hGoogle Scholar
  344. C 344.
    Effect of light on fluorescence of ethyl-enediamine derivatives of adrenaline and norepinephrine. Goldfien, A., and Karler, R. Science 127: 1292–3 (1958) CA 53: 1576ldGoogle Scholar
  345. C 345.
    Dependence of the ratios of the yields of phosphorescence and fluorescence on the position of the fluorescence spectra. Golikova, L.E., Zelinskii, V.V., and Kolobkov, V.P. Opt. i Spektroskopiya 5: 480–2 (1958) CA 53: 10956bGoogle Scholar
  346. C 346.
    Synthesis and reactions of 2-ehlorooxa-zoles. Gompper, R., and Effenberger, F. Angew. Chem. 70: 628 (1958) CA 53: 714 IdGoogle Scholar
  347. C 347.
    Energy transfer by excitons in pure cadmium sulfide. Grillot, E. J. Chim. Phys. 55: 642–9 (1958) CA 53: 4923bGoogle Scholar
  348. C 348.
    Extinction factors of the fluorescence of CdS (Ag). Grillot-Bancie, M. Semicond. Phosphors, Proc. Intern. Colloq., Garmisch-Partenkirchen 1956: 610–13 (1958) CA 54: 10543fGoogle Scholar
  349. C 349.
    Heinrichite and metaheinrichite, hy-drated barium uranyl arsenate minerals. Gross, E.B., Corey, A.S., Mitchell, R.S., and Walenta, K. Am. Mineralogist 43: 1134–43 (1958) CA 53: 5027cGoogle Scholar
  350. C 350.
    The fluorescence of air excited by fast electrons: light yield as a function of pressure. Grun, A.E. Can. J. Phys. 36: 858–62 (1958) CA 52: 15259cGoogle Scholar
  351. C 351.
    Dependence of the state of polarization on the wavelength of fluorescence. Gurinovieh, G.P., and Sevcheniko, A.N. Izv. Akad. Nauk SSSR, Ser.. Fiz. 22: 1407–11 (1958) CA 53: 2783dGoogle Scholar
  352. C 352.
    Inhibition of the fading dyes. II. Hajo’s, Z., and Fodor, J. Acta Chim. Acad. Sci. Hung. 16: 291–9 (1958) CA 53: 722hGoogle Scholar
  353. C 353.
    Theory of excitons and their role in energy transfer in the solid state. Haken, H. J. Chim. Phys. 55: 613–20 (1958) CA 53: 4922iGoogle Scholar
  354. C 354.
    The fluorescence of tetracycline in rats treated with dihydrotachysterol. Hakkinen, I.P.T. Acta Physiol. Scand. 42: 282–7 (1958) CA 52: 16611cGoogle Scholar
  355. C 355.
    Thermoluminescence spectra of X-ray-colored potassium chloride crystals. Halperin, A., and Kristianpoller, N. J. Opt. Soc. Am. 48: 996–1000 (1958) CA 53: 3897cGoogle Scholar
  356. C 356.
    The nature of some fluorescent substances of pterin type in the adult skin of the toad Bufo vulgaris formosus. Hama, T., and Obika, M. Experientia 14: 182–4 (1958) CA 52: 15755bGoogle Scholar
  357. C 357.
    Isolation and structure of the fluorescent compound formed from adrenaline and ethylenediamine. Harley-Mason, J., and Laird, A.H. Biochem. J. 69: 59–60 (1958) CA 52: 18543eGoogle Scholar
  358. C 358.
    The calcium silicate-tungstate phosphor. Phase relationships and fluorescent properties. Harrison, D.E., and Hummel, FA. J. Electrochem. Soc. 105: 34–7 (1958) CA 52: 4332hGoogle Scholar
  359. C 359.
    Photochemical reduction of thionine. I. The thionine-ferrous ion complex. Havemann, R., and Pietsch, H. Z. Physik. Chem. 208: 98–108 (1958) CA 52: 9785bGoogle Scholar
  360. C 360.
    Phosphorescence studies of some het-erocyclic and related organic compounds. Heckman, R.C. J. Mol. Spectry. 2: 27–41 (1958) CA 52: 1072ÜGoogle Scholar
  361. C 361.
    Phosphorescence in liquid scintillation counting of proteins. Herber g, R.J. Science 128: 199–200 (1958) CA 52: 18588bGoogle Scholar
  362. C 362.
    See C 677aGoogle Scholar
  363. C 363.
    Emission processes in the phosphorescence of argon. Herman, L., Seguier, J., and Herman, R. J. Phys. Radium 19: 463–74 (1958) CA 53: 7757bGoogle Scholar
  364. C 364.
    Tetramethylrhodamine as an immuno-histochemical fluorescent label in the study of chronic thyroditis. Hiramoto, R., Engel, K., and Pressman, D. Proc. Soc. Exptl. Biol. Med. 97: 611–14 (1958) CA 52: 14809eGoogle Scholar
  365. C 365.
    Steroid epoxides. Hoehn, W.M. J. Org. Chem. 23: 929–30 (1958) CA 53: 1412fGoogle Scholar
  366. C 366.
    Color reactions for the identification of some derivatives of progesterone. Hohensee, F., and Huttenrauch, R. Z. Physiol. Chem. 310: 19–22 (1958) CA 52: 1 2329gGoogle Scholar
  367. C 367.
    4,6-Dimethyl–7-methylaminocoumarin. H.B. Holliday amp; Co., Ltd. Ger. 1,033,218, July 3,1958 CA 55: 1660fGoogle Scholar
  368. C 368.
    Paramagnetic resonance absorption in naphthalene in its phosphorescent state. Hutchinson, CA., Jr., and Mangum, B.W. J. Chem. Phys. 29: 952–3 (1958) CA 53: 3887iGoogle Scholar
  369. C 369.
    Lower excited states and the phosphor-escent state of biphenyl. n. Scheme of modification of molecular orbitals. Iguchi, K. J. Phys. Soc. Japan 13: 1186–9 (1958) CA 53: 2765iGoogle Scholar
  370. C 370.
    Naphthyridines. in. Synthesis of 2,10-diazaanthracene and 1,7-naphthyridine. Ikekawa, N. Chem. Pharm. Bull. 6: 401–4 (1958) CA 53: 3227CGoogle Scholar
  371. C 371.
    The reaction of methyl j8 -anilinovinyl ketone with aldehydes. Inoue, G. Nippon Kagaku Zasshi 79: 1243–6 (1958) CA 54: 24716dGoogle Scholar
  372. C 372.
    Mercury-vapor discharge lamp. Istvan, G., and Kardos, F. Austrian 198,835, July 25, 1958 CA 52: 16048dGoogle Scholar
  373. C 373.
    Metastable state of dye molecules. Jablonski, A. Bull. Acad. Polon. Sci., Ser. Sei., Math., Astron. Phys. 6: 589–93 (1958) CA 53: 5866iGoogle Scholar
  374. C 374.
    Apparatus for the automatic registration of fluorescence spectra. Jokl, J. Chem. Listy 52: 1370–2 (1958) CA 53: 5873hGoogle Scholar
  375. C 375.
    Energy transfer in liquid organic systems. Kallman, H.P., Furst, M., and Brown, FA. Semicond. Phosphors, Proc. Intern. Colloq., Garmisch-Partenkirchen 1956: 269–84 (1958) CA 53: 8773gGoogle Scholar
  376. C 376.
    Triplet-singlet emission spectra of solid toluene at 4K and 77K and in EPA solution at 77K. Kanda, Y., and Sponer, H. J. Chem. Phys. 28: 798–806 (1958) CA 52: 16032fGoogle Scholar
  377. C 377.
    Oxygen quenching of fluorescence of chlorophyll and its analogs in the absorbed state. Karayakin, A.V., and Shablya, A.V. Opt. i Spektroskopiya 5: 655–62 (1958) CA 53: 3877cGoogle Scholar
  378. C 378.
    Synthesis of riboflavine by microorgan-isms. n. The green and violet fluorescent compounds produced in the culture filtrate of Clostridium acetobutylicum. Katagiri, H., Takeda, J., and Ionai, K. J. Vitaminol. 4: 207–10 (1958) CA 54: 1 2259iGoogle Scholar
  379. C 379.
    Absorption and luminescence spectra of alkali halide crystals activated by nickel. Kats, M.L., and Semenov, B.Z. Opt. i Spektroskopiya 4: 637–42 (1958) CA 53: 28l2hGoogle Scholar
  380. C 380.
    Micellar behavior of half ester soaps in benzene. Kaufman, S., and Singleterry, C.R. J. Phys. Chem. 62: 1257–9 (1958) CA 53: 2744bGoogle Scholar
  381. C 381.
    Effect of concentration on the polarization of the fluorescence of rigid solutions. Kawski, A. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 6: 533–9 (1958) CA 53: 2781aGoogle Scholar
  382. C 382.
    The dependence of emission anisotropy of fluorescence on the concentration of luminescent molecules in plexiglass luminophors. Kawski, A. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 6: 671–5 (1958) CA 54: 14970cGoogle Scholar
  383. C 383.
    Fluorescence spectra, term assignments, and crystal field splittings of rare earth activated phosphors. Keller, S.P. J. Chem. Phys. 29: 180–7 (1958) CA 52: 17980bGoogle Scholar
  384. C 384.
    Quenching, stimulation, and exhaustion studies on some infrared stimulable phosphors. Keller, S.P., and Pettit, GJ3. Phys. Rev. Ill: 1533–9 (1958) CA 53: 2815bGoogle Scholar
  385. C 385.
    Determination of the relative fluorescence intensity and fluorescence yield by means of polarization measurementa Ketskemety, I. Acta Univ. Szeged., Acta Phys. Chem. 4: 18–20 (1958) CA 53: 13775bGoogle Scholar
  386. C 386.
    The relation between the absorption and polarization spectra of a fluorescent morin compound. Ketskemety, I., Marek, N., and Sarkany,B. Acta Univ. Szeged., Acta Phys. Chem. 4: 21–9 (1958) CA 53: 9811hGoogle Scholar
  387. C 387.
    Ultraviolet fluorescence of pyridoxine, indole, and some of their derivatives. Khan-Magometova, I.D. Biofizika 3: 558–61 (1958) CA 53: 1918bGoogle Scholar
  388. C 388.
    Reaction of quinoline and iodine with quinaldine and with 2,6-dimethylquino-line. King, C., and Abrarmo, S.V. J. Org. Chem. 23: 1926–8 (1958) CA 53: 1 1382dGoogle Scholar
  389. C 389.
    Dependence of the excited-state duration of organoluminophors on the wave length of the exciting light. Kislyak, G.M. Opt. i Spektroskopiya 5: 297–301 (1958) CA 53: 19l7gGoogle Scholar
  390. C 390.
    Dependence of the lifetime of the excited state of trypaflavine in formic acid on the wave length of the excitation light. Kislyak, G.M. Izv. Krymsk. Ped. Inst. 1957, 29: 358–69 (1958) CA 55: 14057dGoogle Scholar
  391. C 391.
    Results on the fluorescence of gases excited by high-energy charged particles. Koch, L., and Lesuer, R. Comm. Energie At. (France), Rappt. 869, 7 pp. (1958) CA 53: 2 1140aGoogle Scholar
  392. C 392.
    Determination of benzanthrone in air. Kogan, I.B. Zavodsk. Lab. 24: 291–3 (1958) CA 54: 1 1859eGoogle Scholar
  393. C 393.
    Fluorescence of powdered vegetable drugs under ultraviolet radiation. Kokoski, C.J., Kokoski, R.J., and Slama, F.J. J. Am. Pharm. Assoc. 47: 715–17 (1958) CA 53: 1639bGoogle Scholar
  394. C 394.
    Influence of polar molecules on the electronic spectra of acridone. Kokubun, H. Z. Physik. Chem. 17: 281–91 (1958) CA 55: 2272dGoogle Scholar
  395. C 395.
    Synthesis of polyarylenalkyls. IX. Sys-thesis and transarylation of monofluoro-and monochloro-diphenylmethanes. Kolesnikov, G.S., Korshak, V.V., and Smirnova, T.V. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1958: 1123–6 (1958)Google Scholar
  396. C 396.
    Effect of preliminary annealing on the heat luminescence of X-rayed sodium chloride crystals. Kolevatykh, G.V., Polonskii, A.M., and Solononyok, R.E. Nauchn. Zap., Odessk. Gos. Ped. Inst., Fiz.-Mat. Fak. 22: 29–42 (1958) CA 55: 26601bGoogle Scholar
  397. C 397.
    Fluorescent reactions with 8-quinolinol. Korenman, I.M., and Avrova, N.F. Tr. po Khim. i Khim. Tekhnol. 1: 138–43 (1958) CA 54: 6393gGoogle Scholar
  398. C 398.
    Fluorescent reactions of beryllium and aluminum. Korenman, I.M., and Grishin, IA. Tr. po Khim. i Khim. Tekhnol. 1(2): 383–8 (1958) CA 54: 15079cGoogle Scholar
  399. C 399.
    Characteristics of fluorescein complex-ons. Korbl, J., Vydra, F., and Pribil, R. Talanta 1: 138–41 (1958) CA 53: 5952iGoogle Scholar
  400. C 400.
    Hydroxyanthraquinones as reagents for germanium. Korenman, I.M., Kurina, N.V., and Emelin, EA. Tr. po Khim i Khim. Tekhnol. 1: 134–7 (1958) CA 53: 19692eGoogle Scholar
  401. C 401.
    Measurement of absorption and fluor-escence spectra on paper chromato-grams. Determination of specific activities of earbon–14-labeled compounds on chromatography paper. Korte, F., and Weitkamp, H. Angew. Chem. 70: 434–7 (1958) CA 53: 1 2830bGoogle Scholar
  402. C 402.
    Calculation of the influence of reabsorp-tion in luminescence spectra of pheo-phytin and chlorophyll. Kravtsov, L.A., and Ivanov, N.P. Inzh.-Fiz. Zh., Akad. Nauk Belorussk. SSR 1958: 45–52 (1958) CA 52: 1 1567dGoogle Scholar
  403. C 403.
    Fluorescence yield of sodium salicylate in the ultraviolet and X-ray spectrum. Krokowski, E. Naturwissenschaften 45: 509–10 (1958) CA 53: 7778aGoogle Scholar
  404. C 404.
    The ultraviolet absorption and fluorescence spectra of various heterocyclic N-oxides. Kubota, T., and Miyazaki, H. Nippon Kagaku Zasshi 79: 916–37 (1958) CA 53: 15760fhiGoogle Scholar
  405. C 405.
    Synthesis of dienic acids from a-pyrones. Kudryashov, L.I., and Kochetkov, N.K. Zh. Obshch. Khim. 28: 2448–52 (1958) CA 53: 3202hGoogle Scholar
  406. C 406.
    Application of chromatography. XXXVI. Biosynthesis of riboflavine. 2. Ribo-flavine-synthesizing enzyme extracted from Eremothecium oshbyii. Kuwada, S., Masuda, T., Kishi, T., and Osai, M. Chem. Pharm. Bull. 6: 618–24 (1958) CA 54: 24768dGoogle Scholar
  407. C 407.
    Dependence of the quenching of fluorescence in solution by absorbing substances on the viscosity of the solvent. Kuznetsova, L.A., and Sveshnikov, B.Y. Opt. i Spektroskopiya 4: 55–9 (1958) CA 52: 15246eGoogle Scholar
  408. C 408.
    Influence of concentration on the absorption spectrum and the fluorescence spectrum of organic substances in solution. Lavorel, J. J. Chim. Phys. 55: 905–10 (1958) CA 53: 2ll65fGoogle Scholar
  409. C 409.
    Synthesis of 6-hydroxyfluoran, B-D-galactopyranoside; its use as substrate for B-galactosidase; design of a micro-f luor ophotometer. Lazo, J.S. Anales. Fac. Quirn. Farm., Univ. Chile 10: 158–65 (1958) CA 54: 6707dGoogle Scholar
  410. C 410.
    The synthesis of secondary phosphates and arsenates of uranium. Leonova, E.N. Tr. Inst. Geol. Rudn. Mestorozhd., Petrogr., Mineralog. i Geokhim. 1958 (30): 37–55 (1958) CA 52: 2 1472gGoogle Scholar
  411. C 411.
    Association of molecules of Rhodamine 6G and crystal violet in concentrated water solutions. Levshin, L.V., and Suvorov, V.S. Opt. i Spektroskopiya 4: 678–81 (1958) CA 53: 2780dGoogle Scholar
  412. C 412.
    (3-y correlations with resonance fluorescence. Lewis, R.R., and Curtis, R.B. Phys. Rev. 110: 910–14 (1958) CA 52: 16939aGoogle Scholar
  413. C 413.
    Reciprocal energy and reciprocal energy gradients between highly polar molecules and dipole migration. Lippert, E. Z. Physik. Chem. 6: 125–8 (1956); Chem. Zentr. 129: 2975 (1958) CA 54: 1986dGoogle Scholar
  414. C 414.
    The angular distribution of intensity and polarization ratio of the fluorescence of anthracene crystals. Lipsett, F.R., and Tardiff, L. Can. J. Phys. 36: 1438–41 (1958) CA 53: 5 IdGoogle Scholar
  415. C 415.
    Effect of the degree of dispersion of some fluorescent substances on the fluorescence intensity. II. Uranium in acetone-water mixtures. Lucatu, E. Comun. Acad. Rep. Populare Romine 8: 1021–6 (1958) CA 52: 67aGoogle Scholar
  416. C 416.
    Field emission from excited color centers. Luty, F. Z. Physik 153: 247–56 (1958) CA 53: 2804aGoogle Scholar
  417. C 417.
    The efficiency of latent image formation from the low-temperature luminescence of silver chloride. Makishima, S., Tomotsu, T., and Hayakawa, S. Photographic Sensitivity, Tokyo Symp., 125–53 (1958) CA 52: 16l00hGoogle Scholar
  418. C 418.
    Electronic spectra of quinoline and isoquinoline and the mechanism of fluorescence quenching in these molecules. Mataga, N. Bull. Chem. Soc. Japan 31: 459–62 (1958) CA 53: 1916gGoogle Scholar
  419. C 419.
    Solvent effects on the fluorescence of some a-electron systems — naphthyl-amine and naphthol. Mataga, N. Bull. Chem. Soc. Japan 31: 481–6 (1958) CA 54: 18066hGoogle Scholar
  420. C 420.
    Fluorescence quenching due to the interaction between 7r-electron systems in the excited state and acid-base relation: nitrogen heterocycles, naphthyl-amine, and naphthol in aqueous and alcoholic solution. Mataga, N. Bull. Chem. Soc. Japan 31: 487–91 (1958) CA 53: 8805dGoogle Scholar
  421. C 421.
    Fluorescence of diamonds excited by X rays. Matthews, I.G. Proc. Phys. Soc. 72: 1074–80 (1958) CA 54: 19175bGoogle Scholar
  422. C 422.
    Yeast uridine diphosphogalactose–4-epimerase, correlation between activity and fluorescence. Maxwell, E.S., de Robichon-Szulmajster, H„ and Kalckar, H.M. Arch. Biochem. Biophys. 78: 407–15 (1958) CA 53: 8297cGoogle Scholar
  423. C 423.
    Energy transfer in molecular complexes of sym-trinitrobenzene with polyacenes. I. General considerations. McGlynn, S.P., and Boggus, J.D. J. Am. Chem. Soc. 80: 5096–101 (1958) CA 53: 3877bGoogle Scholar
  424. C 424.
    Delayed light action spectra of several algae in visible and ultraviolet light. McLeod, G.C. J. Gen. Physiol. 42: 243–50 (1958) CA 53: 83l8iGoogle Scholar
  425. C 425.
    Incorporation of the carbon 14 of adenine into a pteridine derivative by Eremothecium ashbyii. McNutt, W.S., and Forrest, H.S. J.Am. Chem. Soc. 80: 951–2 (1958) CA 52: 931IfGoogle Scholar
  426. C 426.
    Enhancement of phosphorescence ability upon aggregation of dye molecules. McRae, E.G., and Kasha, M. J. Chem. Phys. 28: 721–2 (1958) CA 52: ll567fGoogle Scholar
  427. C 427.
    Infrared fluorescence of copper-activated zinc sulfide phosphors. Meijer, G. Phys. Chem. Solids 7: 153–8 (1958) CA 53: 6784gGoogle Scholar
  428. C 428.
    The quenching of the fluorescence of anthracene. Melhuisch, W.H., and Metcalf, W.S. J. Chem. Soc. 1958: 480–2 (1958) CA 52: 5124bGoogle Scholar
  429. C 429.
    1,2,4-triazines. VIII. A new synthesis of the fluorescent 1,2,4-triazines. Metze, R. Chem. Ber. 91: 1863–6 (1958) CA 53: 3237bGoogle Scholar
  430. C 430.
    Luminescence measurements on vari-ous Acridine Orange derivatives. Methke, E., and Zanker, V. Z. Physik. Chem. 18: 375–90 (1958) CA 55: 5121eGoogle Scholar
  431. C 431.
    Fluorescence of tetracycline antibiotics in bone. Milch, R.A., Rail, D.P., and Tobie, J.E. J. Bone Joint Surg. 40A: 897–910 (1958) CA 52: 17530eGoogle Scholar
  432. C 432.
    The activation of Cdl2 by Pbl2. Monod-Herzen, G. Compt. Rend. 246: 2605–7 (1958) CA 52: 19496eGoogle Scholar
  433. C 433.
    Zinc oxide — a reactive pigment. Morley-Smith, C.T. J. Oil Colour Chemists’ Assoc. 41: 85–97 (1958) CA 53: 8658gGoogle Scholar
  434. C 434.
    Phosphorescence spectrum of benzo–3, 4-pyrene in solution gelled at 180°. Muel, B., and Hubert-Habart, M. J. Chim. Phys. 55: 377–83 (1958) CA 52: 19513dGoogle Scholar
  435. C 435.
    Fluorescence spectrophotometry of crude oils. Mukashev, Z.A., and Shmais, I.I. Uch. Zap., Kazakhsk. Gos. Univ., Geol. i Geogr. 37: 140–4 (1958) CA 53: 1281aGoogle Scholar
  436. C 436.
    Photometric titration with photoelectric spectrophotometer. Murakami, K., and Kimura, S. Bunko Kenkyu 6(4): 36–41 (1958) CA 53: 7681gGoogle Scholar
  437. C 437.
    Fluorescent derivatives from the reac-tion of ethylenediamine with adrenaline and norepinephrine. Nadeau, G., and Joly, L.P. Nature 182: 180–1 (1958) CA 53: 1638bGoogle Scholar
  438. C 438.
    Fluorometric determination of sulfate ion and spectrophotometric determinations of thorium with the help of trihy-droxyfluorene derivatives. Nazarenko, VA., and Shustova, M.B. Zavodsk. Lab 24: 1344–6 (1958) CA 54: 13985fGoogle Scholar
  439. C 439.
    Fluorometry of vegetable oils. Nemirovshy, B. Rev. Fis. 10(3): 5–14 (1958) CA 55: 4993cGoogle Scholar
  440. C 440.
    Particularities of difurylpolyene fluor-escence. Neopchatykh, P.F. Izv. Akad. Nauk SSSR, Ser. Fiz. 22: 1417–19 (1958) CA 53: 2784bGoogle Scholar
  441. C 441.
    Intensities in the spectra of polyatomic molecules. Neporent, B.S., and Bakhshiev, N.G. Opt. i Spektroskopiya 5: 634–45 (1958) CA 53: 3867fGoogle Scholar
  442. C 442.
    The confirmation of existence of per-sistent phosphorescence of calcium tungstate phosphor containing alkali or alkali-earth oxide impurities. Nishikawa, K. Kogyo Kagaku Zasshi 61: 266–7 (1958) CA 53: 19587bGoogle Scholar
  443. C 443.
    Fluorometric analysis. X. Fluorescence of metal quinolinolates and their adaptability in fluorometric analysis. XI. Fluorescence of metal salts of 8-quinolinol derivatives. Nishikawa, N. Nippon Kagaku Zasshi 79: 1003–7, 1007–10 (1958) CA 53: 89l7dGoogle Scholar
  444. C 444.
    Fluorometric analysis. IX. Determin-ation of gallium with 5,7-dihalo–8-quinolinol. Nishikawa, Y. Nippon Kagaku Zasshi 79: 631–7 (1958) CA 53: 6896eGoogle Scholar
  445. C 445.
    Fluorometric analysis. VII. Determin-ation of gallium in silicate rocks with 8 -hydr oxyquinaldine. Nishikawa, Y. Nippon Kagaku Zasshi 79: 236–8 (1958) CA 52: 13531cGoogle Scholar
  446. C 446.
    Fluorimetric determination of gallium with Eriochrome Red B. Nishikawa, Y. Bunseki Kagaku 7: 549–53 (1958) CA 54: 16277eGoogle Scholar
  447. C 447.
    Identity tests for petroleum products. II. Nojima, S., and Hiroshi, A. Kagaku To Sosa 11(2): 59–66 (1958) CA 53: 7563eGoogle Scholar
  448. C 448.
    Application of fluorescence to micro-scopic observation of ore. Okuda, T. Suiyokaishi 13: 660 (1958) CA 53: 1 2097fGoogle Scholar
  449. C 449.
    Fluorometric identification of pyridine nucleotide changes in photosynthetic bacteria and algae. Olson, J.M. U.S. At. Energy Comm. BNL 5l2(C–28), 316–24 (1958) CA 53: 2220ldGoogle Scholar
  450. C 450.
    Diffusion of activators in luminescent ZnS. Ortmann, H. Semicond. Phosphors, Proc. Intern. Colloq., Garmisch-Pertenkirchen 1956: 535–7 (1958) CA 54: 10546dGoogle Scholar
  451. C 451.
    Mechanism of reduction of nicotinamide derivatives. Paiss, Y., and Stein, G. J. Chem. Soc. 1958: 2905–9 (1958) CA 53: 92 leGoogle Scholar
  452. C 452.
    Fluorescence spectra of uranyl acetate solutions. Pant, D.D., and Khandelwal, D.P. Current Sci. 27: 242 (1958) CA 53: 5866fGoogle Scholar
  453. C 453.
    Direct recording of fluorescence excitation spectra. Parker, CA. Nature 182: 1002–4 (1958) CA 53: 4898iGoogle Scholar
  454. C 454.
    Comparative electrical and optical measurements on natural calcium fluoride crystals. Peibst, H., and Lemke, H. Z. Physik. Chem. 208: 188–209 (1958) CA 52: 13432gGoogle Scholar
  455. C 455.
    Pteridines. VII. Methylations of hy-droxpteridines. Pfleiderer, W. Chem. Ber. 91: 1671–80 (1958) CA 53: 1365iGoogle Scholar
  456. C 456.
    The possibility that several phosphorescent levels exist in organoluminofors. Piliporvich, VA., and Sveshnikov, B.Y. Dokl. Akad. Nauk SSSR 119: 59–61 (1958) CA 53: 278ldGoogle Scholar
  457. C 457.
    Setup for detailed investigation of decay curves of phosphorescence with duration period, 0.1 second. Pilipovich, VA. Opt. i Spektroskopiya 4: 116–18 (1958) CA 52: 6924fGoogle Scholar
  458. C 458.
    Decay law for the phosphorescence of organoluminophors. Pilipovich, VA., and Sveshnikov, B.Y. Opt. i Spektroskopiya 5: 290–6 (1958) CA 53: 10994aGoogle Scholar
  459. C 459.
    New data on uranium minerals in the U.S.S.R. Polikarpova, VA., and Ambartsumyan, Z.L. Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva, 1958 2: 286–309 (1958) CA 53: 2946eGoogle Scholar
  460. C 460.
    The analysis of food dyes through fluorescence. Popovici, M. Rev. Ind. Aliment., Produse Vegetale 1958: 7–8, 19–24 (1958) CA 53: H682hGoogle Scholar
  461. C 461.
    Energy transfer from the triplet state in solution. Porter, G., and Wright, M.R. J. Chim. Phys. 55: 705–12 (1958) CA 53: 4899bGoogle Scholar
  462. C 462.
    Autunite in the syenite of Biella. Potenza, M.F. Rend. Soc. Mineral. Ital. 14: 215–23 (1958) CA 53: 2947cGoogle Scholar
  463. C 463.
    Fluorescence of adsorbed water. Przibram, K. Nature 182: 520 (1958) CA 53: 2813gGoogle Scholar
  464. C 464.
    Phosphorescence spectra of some aro-matic acids at liquid-air temperature. Pyatnitskii, BA. Izv. Akad. Nauk SSSR, Ser. Fiz. 22: 1304–6 (1958) CA 53: 2782bGoogle Scholar
  465. C 465.
    Fluorescence reaction for the detection of boric acid. Raju, NA., and Neelakantam, K. Current Sci. (India) 27: 482 (1958) CA 53: 1 2934hGoogle Scholar
  466. C 466.
    Geochemistry of the fluorite occurrences of the Thuringian Forest. Rentzsch, J. Geologie 7: 924–34 (1958) CA 53: 6929fGoogle Scholar
  467. C 467.
    Semiquantitative determination of co-proporphyrin in urine. Ribeiro, BA., and Stettiner, H.MA. Arquiv. Fac. Hig. Saude Publica Univ. Sao Paulo 12: 165–80 (1958) CA 54: 1 2244bGoogle Scholar
  468. C 468.
    Anatomical and fluorescence-optical investigations of seeds of Popaveraceae. Roder, I. Oesterr. Botan. Z. 104: 370–81 (1958) CA 53: 8315fGoogle Scholar
  469. C 469.
    Natural antioxidants in the leaves of olive trees, Roncero, A.V., and Vela, F.M. Grosas y Aceites 8: 247–9 (1958) CA 52: 1 2090hGoogle Scholar
  470. C 470.
    Interaction of riboflavine, flavine mono-nucleotide, and flavine adenine di-nucleotide with various metal ions: riboflavine-catalyzed photochemical reduction of ferric ion and photooxida-tion of ferrous ion. Rutter, W.J. Acta Chem. Scand. 12: 438–46 (1958) CA 53: 14165eGoogle Scholar
  471. C 471.
    Fluorescent lamp. Schwing, J., and Schiazzano, G. U.S. 2,838,707, June 10, 1958 CA 52: 15270bGoogle Scholar
  472. C 472.
    Energy transfer in organic crystals. Schmillen, A. Semicond. Phosphors, Proc. Intern. Colloq., Garmisch-Partenkirchen 1956: 445–50 (1958) CA 54: 23774gGoogle Scholar
  473. C 473.
    Energy transfer in polyacene solid solutions. Schmillen, A. Z. Physik 150: 123–33 (1958) CA 53: 2 1205cGoogle Scholar
  474. C 474.
    Experiments with 4-thiopyrones and with 2,2’,6,6f-tetraphenyl–4,4’-dipyryl-ene. The piezochromism of diflavylene. Schonberg, A., Elkaschef, M., Nosseir, M., and Sidky, M.M. J. Am. Chem. Soc. 80: 6312–15 (1958) CA 53: 1 1359dGoogle Scholar
  475. C 475.
    Influence of the sulfonic acid group on chemical reactions. V. Desulfonability and fluorescence colors of aminonaph-thalenesulfonic acid as a function of the sulfonic acid group position. Schriever, K., Bamann, E., and Kraus, C. Chem. Ber. 91: 414–7 (1958) CA 52: 18331eGoogle Scholar
  476. C 476.
    Fluorescence of extracts from Cheli-donium ma jus. Semenova, M.N. Aptechn. Delo 7: 26–7 (1958) CA 53: 20698hGoogle Scholar
  477. C 477.
    Fluorimetric determination of tellurium with Rhodamine. Shcherbov, C.D.P., and Irankova, A.I. Zavods. Lab 24: 1346–9 (1958) CA 54: 13979fGoogle Scholar
  478. C 478.
    Fluorometric determination of gallium in germanium. Shigematsu, T. Bunseki Kagaku 7: 787–8 (1958) CA 53: 19693hGoogle Scholar
  479. C 479.
    Nature of the inactive absorption during anti-Stokes excitation of fluorescence. Shirokov, V.I. Opt. i Spektroskopiya 5: 478–9 (1958) CA 53: 1918dGoogle Scholar
  480. C 480.
    Elementary processes in the upper at-mosphere and their manifestation in emissions. Shklovski, I.S. Ann. Geophys. 14: 414–24 (1958) CA 53: 4892aGoogle Scholar
  481. C 481.
    Simultaneous observation of the Raman effect and fluorescence. Shorygin, P.P., and Ivanova, T.M. Dokl. Akad. Nauk SSSR 121: 70–3 (1958) CA 54: 23785cGoogle Scholar
  482. C 482.
    Luminescence and absorption of pyrene and 3,4-benzopyrene in frozen solutions of normal paraffins. Shpol’skii, E.V., and Girdzhiyanskaite, E.A. Opt. i Spektroskopiya 4: 620–30 (1958) CA 53: 2781iGoogle Scholar
  483. C 483.
    Diimidazole derivatives. Siegrist, A.E., and Ackermann, F. Swiss 332,807 (1958) CA 53: 576gGoogle Scholar
  484. C 484.
    Some color and fluorescence detection reactions of steroids. Siblikova, O., and Hais, I.M. Cesk. Farm. 7: 1–13 (1958) CA 52: 10495fGoogle Scholar
  485. C 485.
    Spin-orbit coupling in the 3A2–1A1 transition of formaldehyde. Sidman, J.W. J. Chem. Phys. 29: 644–52 (1958) CA 53: 2765hGoogle Scholar
  486. C 486.
    Fluorescent color effects. Siegrist, A.E. U.S. 2,837,485 (1958) CA 52: 1 2576cGoogle Scholar
  487. C 487.
    The possibility of occurrence of fluor-escence in molecules. Simon, Z. Acad. Rep. Populare Romine, Studii Cercetari Fiz. 9: 469–81 (1958) CA 54: 14935hGoogle Scholar
  488. C 488.
    Oxidation of aromatic amines. VI. Persulfate oxidation of carcinogenic aromatic amines. Sims, P. J. Chem. Soc. 1958: 44–7 (1958) CA 52: 10979gGoogle Scholar
  489. C 489.
    Photosorption of oxygen on silica gel and crystalline quartz. Solonitsyn, Y.P. Zh. Fiz. Khim. 32: 1241–7 (1958) CA 52: 16898eGoogle Scholar
  490. C 490.
    Delayed fluorescence in naphthalene crystals at 4°K. Sponer, H., Kanda, Y., and Blackwell, LA. J. Chem. Phys. 29: 721 (1958) CA 53: 2781cGoogle Scholar
  491. C 491.
    Spectral changes accompanying binding of Acridine Orange by polyadenylic acid. Steiner, R.F., and Beers, R.F. Science 127: 335–6 (1958) CA 52: 107l7fGoogle Scholar
  492. C 492.
    Some effects of intramolecular vibrational energy transfer in complex fluorescent molecules. Stevens, B. Can. J. Chem. 36: 96–101 (1958) CA 52: 19442dGoogle Scholar
  493. C 493.
    Notes on a blue fluorescent substance in urine. Stevens, D.S. Naturwissenschaften 45: 212 (1958) CA 52: 16532gGoogle Scholar
  494. C 494.
    Structure and tautomerism of the esters of several substituted pyruvic acids. Stock, A.M., Donahue, W.E., and Amstutz, E.D. J. Org. Chem. 23: 1840–8 (1958) CA 53: 10219aGoogle Scholar
  495. C 495.
    Investigations of fluorescence of tissue cultures. I. Metachromic vital fluorescence with Acridine Orange. Stoekinger, L. Z. Naturforsch. 13: 407–9 (1958) CA 52: 20354aGoogle Scholar
  496. C 496.
    Fluorescent decay of Csl (Tl) for particles of different ionization density. Storey, R.S., Jack, W., and Ward, A. Proc. Phys. Soc. 72: 1–8 (1958) CA 54: 23963cGoogle Scholar
  497. C 497.
    Reactions in the chlorophyll series. Glaucorhodine. Strell, M., Kalojanoff, A., and Koniger, M. Ann. Chem. 614: 205–11 (1958) CA 53: 4296bGoogle Scholar
  498. C 498.
    Photochemical behavior of alkali-organic addition compounds, dissolved in organic liquids. EE. Increase in the electrical conductivity on irradiation. Suhrmann, R., and Matejec, R. Z. Physik. Chem. 263–75 (1958) CA 52: 8752dGoogle Scholar
  499. C 499.
    Diffusion theory for the kinetics of bi-molecular reactions in solutions. Sveshnikov, B.Y., and Kuznetsova, LA. Dokl. Akad. Nauk SSSR 121: 1045–7 (1958) CA 54: 23643aGoogle Scholar
  500. C 500.
    Kinetics of fluorescence quenching of solutions with foreign substances. Sveshnikov, B.Y., Shirokov, V.M., Kuznetsova, LA., and Kodryashov, P.I. Izv. Akad. Nauk SSSR, Ser. Fiz. 22: 1047–50 (1958) CA 53: 856aGoogle Scholar
  501. C 501.
    Dependence of the long afterglow polar-ization of organic substances on the viscosity of the solution. Sveshnikov, B.Y., and Kudryashov, P.I. Izv. Akad. Nauk SSSR, Ser. Fiz. 22: 1403–6 (1958) CA 53: 2783cGoogle Scholar
  502. C 502.
    Mechanical printing of daylight fluores-cent compositions. Switzer, J.L., and Switzer, R.C. U.S. 2,845,023, July 29, 1958 CA 52: 17753dGoogle Scholar
  503. C 503.
    Washing of powdered material with a minimum amount of liquid. Tarbes, P. Fr. 1,163,806 (1958) CA 54: 19050eGoogle Scholar
  504. C 504.
    Nonenzymic browning. Telegdy-Kovats, L., and Rajky, A. Nahrung 2: 893–909 (1958) CA 53: 20856iGoogle Scholar
  505. C 505.
    Indole. XI. Conversion of heteroauxin ((3 -phenylethylamide) into a pyrrocoline derivative with polyphosphorie acid. Thesing, J., and Funk, F.H. Chem. Ber. 91: 1546–51 (1958) CA 53: 368cGoogle Scholar
  506. C 506.
    9-Phenanthrylboric acid, a new lumin-escent organoboron compound. Thielens, G. Naturwissenschaften 45: 543 (1958) CA 53: 10l48iGoogle Scholar
  507. C 507.
    An antibiotic produced by a Bacillus sp. active against hemophilus pertussis (Bordetella pertussis). Tiffin, A.I. Nature 181: 907–8 (1958) CA 52: 1647liGoogle Scholar
  508. C 508.
    Dependence of the fluorescence spectra of solutions of meso-substituted anthracene on the concentration of a dissolved substance. Tishchenko, G.A., Sveshnikov, B.Y., and Cherkasov, A.S. Opt. i Spektroskopiya 4: 631–6 (1958) CA 53: 2782gGoogle Scholar
  509. C 509.
    The applications of fluorescence spectra. Titeica, R. Analele Acad. Rep. Populare Romine, Vol. VII, Anexa. Prima Consfatuire Tara Spectroscopie Apl., Bucharest 1957: 77–92 (1958) CA 53: 13763cGoogle Scholar
  510. C 510.
    Formal analysis of the theory of two-step excitation of phosphorescence and photoconductivity. II. Relaxation relations. Tolstoi, N.A., and Shatilov, A.V. Opt. i Spektroskopiya 5: 590–600 (1958) CA 53: 28l6gGoogle Scholar
  511. C 511.
    Separation of uranium from thorium by means of ion exchange and the fluori-metric determination of uranium. Tomic, E., Ladenbauer, I.M., and Pollack, M. Z. Anal. Chem. 161: 28–38 (1958) CA 53: 129cGoogle Scholar
  512. C 512.
    Activation of the fluorescence by polymers and photooxidation-reduction. Tomita, G., and Takeyama, H. Kagaku 28: 528 (1958) CA 53: 6755eGoogle Scholar
  513. C 513.
    Phosphoryl chloride enhancement of fluorescence of steroids in sulfuric acid. Touchstone, J.C., Keisman, RA., Marcantonis, A.F., and Greene, J.W. Anal. Chem. 30: 1707 (1958) CA 53: 3346bGoogle Scholar
  514. C 514.
    Acridine derivatives. I. Synthesis of l-nitro–2-methoxy–9-chloroaeridine. Troshchenko, A.T. Zh. Obshch. Khim. 28: 2207–13 (1958) CA 53: 2230hGoogle Scholar
  515. C 515.
    Oxidation of lysergic acid derivatives in the 2,3-position. Troxler, F. Planta Med. 6: 399–401 (1958) CA 53: 16105gGoogle Scholar
  516. C 516.
    Pteridines. XV. Improved synthesis and constitution of erythropterin. Tschesche, R., and Ende, H. Chem. Ber. 91: 2074–81 (1958) CA 53: 4289gGoogle Scholar
  517. C 517.
    Quantum efficiency of F-center fluorescence in potassium chloride, van Doom, C.Z. Philips Res. Rept. 13: 296–300 (1958) CA 52: l5258iGoogle Scholar
  518. C 518.
    Fluorescence and photoconduction of silver-activated cadmium sulfide. Vangool, W. Philips Res. Rept. 13: 157–66 (1958) CA 52: 1 1578gGoogle Scholar
  519. C 519.
    Marking of proteins with fluorescent dye. Vehleke, H. Naturwissenschaften 45: 87 (1958) CA 52: 1 2045cGoogle Scholar
  520. C 520.
    Fluorescence spectra and polarization of glyceraldehyde–3-phosphate and lactic dehydrogenase coenzyme complexes. Velick, S.F. J. Biol. Chem. 233: 1455–67 (1958) CA 53: 6754iGoogle Scholar
  521. C 521.
    Fluorescent substances from Droso-phila melanogaster. VII. Synthesis and properties of L-erythro-and D-threo–2-amino-G-hydroxy–8(dihydroxypropyl) pteridine. Viscontini, M., and Raschig, H. Helv. Chim. Acta 41: 108–13 (1958) CA 52: 13738bGoogle Scholar
  522. C 522.
    The polarization of the fluorescence of conjugated polyethylenimine. Wahl, P. J. Polymer Sci. 29: 375–80 (1958) CA 52: 19444gGoogle Scholar
  523. C 523.
    Fluorescence excitation spectrum of organic compounds in solution. I. Sys-tems with quantum yield independent of the exciting wavelength. Weber, G., and Teale, F.W.J. Trans. Faraday Soc. 54: 640–8 (1958) CA 53: 1917eGoogle Scholar
  524. C 524.
    Kinetics of fluorescence conversion. Weller, A. Z. Physik. Chem. 15: 438–53 (1958) CA 52: ll590dGoogle Scholar
  525. C 525.
    The investigation of fast reactions of excited molecules on the basis of fluorescence conversion and quenching. Weller, A. Z. Physik. Chem. 18: 163–80 (1958) CA 55: 6ll2iGoogle Scholar
  526. C 526.
    Fluorometric analysis. White, C.E. Anal. Chem. 30: 729–34 (1958) CA 52: 9847bGoogle Scholar
  527. C 527.
    Mechanism of formate activation. Whiteley, H.E., Osborn, M.J., and Huennekens, F.M. J.Am. Chem. Soc. 80: 757–8 (1958) CA 52: 9311hGoogle Scholar
  528. C 528.
    Fluorescence activation spectra of a diphosphopyridine nuc leotide -dependent dehydrogenase. Winer, A JD., and Schwert, G.W. Science 128: 660–1 (1958) CA 53: 3320aGoogle Scholar
  529. C 529.
    Fluorescence spectra of ternary com-plexes of dehydrogenases with reduced diphosphopyridine nucleotide (DPNH) and reduced substrates. Winer, A.D., and Schwert, G.W. Biochim. Biophys. Acta 29: 424–25 (1958) CA 53: 469iGoogle Scholar
  530. C 530.
    Synthesis of 2-azaindolizidine and 2,3-substituted derivatives. Winterfeld, K., and Schuler, H. Naturwissenschaften 45: 492 (1958) CA 53: 16133hGoogle Scholar
  531. C 531.
    The lowest electronic excitation state of anthracene crystals. Wolf, H.C. Z. Naturforseh. 13: 414–19 (1958) CA 52: 19495gGoogle Scholar
  532. C 532.
    Fluorescence and dyeing characteris-tics of fluorescent whitening dyes of the triazinylstilbene series, in. Combined derivatives of different amino or hy-droxyl groups. Yabe, A., and Hayashi, M. Kogyo Kagaku Zasshi 61: 78–82 (1958) CA 53: 16542fiGoogle Scholar
  533. C 533.
    Determination of fluorescence of fla-vines on paper strips. Yagi, K., and Okuda, J. Chem. Pharm. Bull. 6: 659–62 (1958) CA 54: 1674IdGoogle Scholar
  534. C 534.
    Fluorescence of naphthalimide derivatives. Consideration of the mirror-image relation between fluorescence and absorption spectra. Yasuda, K., Inukai, K., and Ito, K. Nippon Kagaku Zasshi 79: 897–9 (1958) CA 53: 48fGoogle Scholar
  535. C 535.
    Advances in applications of organic fluorescent compounds. Yoshida, Z. Kagaku No Ryoiki 12: 198–204 (1958) CA 52: 18959hGoogle Scholar
  536. C 536.
    Measurements of the relative quantum yields of the fluorescence of acridine and fluorescein dyes. Zanker, V., Hammensee, H., and Haibach, T. Z. Angew. Phys. 10: 357–61 (1958) CA 52: 19461bGoogle Scholar
  537. C 537.
    Effect of temperature on the fluorescence spectra of phthalimide derivatives. Zelinskii, V.V., and Kolobkov, V.P. Opt. i Spektroskopiya 5: 423–7 (1958) CA 53: 10955iGoogle Scholar
  538. C 538.
    Ratio of phosphorescence and fluorescence quantum yields and the fluorescence band frequency. Zelinskii, V.V., and Kolobkov, V.P. Soviet Phys. “Doklady” 3: 361–4 (1958) CA 53: 18626eGoogle Scholar
  539. C 539.
    Effect of the structure of organic mole-cules on the probability of a transition into the metastable state. Zelinskii, V.V., Kolobkov, V.P., and Reznikova, I.I. Dokl. Akad. Nauk SSSR 121: 315–8 (1958) CA 54: 23512gGoogle Scholar
  540. C 540.
  541. C 541.
    Procedure for the study of X-ray fluor-escence spectra of alkali-halide crystal phosphors in the visible spectrum. Zolotavev, GJK. Uch. Zap., Odessk. Gos. Ped. Inst., Fiz.-Mat. Fak. 22: 67–70 (1958) CA 55: 25454eGoogle Scholar
  542. C 542.
    Electronic spectrum of 4,4’-bis(dimeth-yl-amino)fuchsone and related triphenyl-methane dyes. Adam, F.C., and Simpson, W.T. J. Mol. Spectry. 3: 363–80 (1959) CA 55: 9043fGoogle Scholar
  543. C 543.
    The absorption and fluorescence of thin layers of anthracene. Agubieeanu, I., and Gheorghita-Oancea, C. Comun. Acad. Rep. Populäre Romine 9: 545–9 (1959) CA 54: 5262iGoogle Scholar
  544. C 544.
    Luminescence of dyes absorbed on certain semiconductors. Akimov, IA. Zh. Nauchn. i Prikl. Fotogr. i Kinematog. 4: 64–6 (1959) CA 53: 1576lfGoogle Scholar
  545. C 545.
    The fluorescence of (Zn,Co) S phosphors. A Ibers, K. Monatsber. Deut. Akad. Wiss. Berlin 1: 93–5 (1959) CA 54: 8308iGoogle Scholar
  546. C 546.
    Quenching effects and the afterglow of chlorophyll. Albrecht, A.O., Denison, W.C., Livingston, L.G., and Mandeville, C.E. J. Franklin Inst. 268: 278–82 (1959) CA 55: 15ll6dGoogle Scholar
  547. C 547.
    Why a limit to optical bleach fluorescence ? Allen, E. Soap Chem. Specialties 35: 51–3 (1959) CA 53: 16543hGoogle Scholar
  548. C 548.
    Effects of added gases on the intensities of thallium-sensitized fluorescence. Anderson, RA. Univ. Microfilms Mic 59–1520 (1959) CA 53: 1862liGoogle Scholar
  549. C 549.
    Naphthalene derivatives in inorganic analysis. VII. Nitronaphthols as fluorometric reagents for stannous tin. Anderson, J.RA., Costoulas, A.J., and Garnett, J.L. Anal. Chim. Acta 20: 236–42 (1959) CA 54: 2090hGoogle Scholar
  550. C 550.
    Action of Phenylhydrazine on Mannich bases from benzyl-ideneacetone. Andrisano, R., and Chieriei, L. Gazz. Chim. Ital. 89: 505–16 (1959) CA 54: 121l6eGoogle Scholar
  551. C 551.
    Analysis and recovery of uranium from low-grade ores. Arden, T.V. At. Energy Res. Estab., Rept. R2862, 41 pp. (1959) CA 53: 21422hGoogle Scholar
  552. C 552.
    Differential fluorescence in living rat eggs treated with Acridine Orange. Austin, C.R., and Bishop, M.W.H. Exptl. Cell Res. 17: 35–43 (1959) CA 55: 2755fGoogle Scholar
  553. C 553.
    Effect of A1 on the green emission of CdS. Avinor, M. Physica 25: 1095–6 (1959) CA 54: 205l6gGoogle Scholar
  554. C 554.
    The metastable state of dye molecules. Baczynski, A., and Czajhowski, M. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 7: 357–60 (1959) CA 54: 10509eGoogle Scholar
  555. C 555.
    Crystal structure of hurlbutite. Bakakin, V.V., and Belov, N.V. Dokl. Akad. Nauk SSSR 125: 383–5 (1959) CA 53: 197l0iGoogle Scholar
  556. C 556.
    The internal field and the position of the electronic absorption and emission bands of polyatomic organic molecules in solution. Bakhshiev, N.G. Opt. i Spektroskopiya 7: 52–61 (1959) CA 54: 238l5eGoogle Scholar
  557. C 557.
    Rays of fluorescent emission and of light absorption in pure cadmium sulfide crystals frozen to 4.2°K. Bancie-Grillot, M., Gross, E.F., Grillot, E., and Razbirine, B.S. Compt. Rend. 248: 86–9 (1959) CA 53: 1 2013dGoogle Scholar
  558. C 558.
    The ultraviolet fluorescence of guanine in solution and on paper chromatograma Barskii, I.Y. Biokhimiya 24: 823–5 (1959) CA 54: 15505cGoogle Scholar
  559. C 559.
    Demonstration of chloroquine or chlor-oquine derivatives in tissues. Baumer, A., Par, H., and Conrads, H. Z. Rheumaforsch. 18: 433–40 (1959) CA 54: 6959aGoogle Scholar
  560. C 560.
    A new type of fluorometer. Measurements of decay periods of fluorescence of Acridine Yellow solutions as a function of concentration. Bauer, R., and Rozwadowski, M. Bull. Acad. Polon. Sci., Ser. Sci., Math., Astron. Phys. 7: 365–8 (1959) CA 54: 10509dGoogle Scholar
  561. C 561.
    Spectrophotofluorometric assay of griseofulvin. Bedford, C., Child, K.J., and Tomick, E.G. Nature 184, Suppl. No. 6, 364–5 (1959) CA 54: 15512gGoogle Scholar
  562. C 562.
    Effect of electron irradiation on natural organic substances in the electron microscope and electron diffractograph. Belavtseva, E.M. Kristallografiya 4: 421–2 (1959) CA 57: 4134dGoogle Scholar
  563. C 563.
    Delayed luminescence of dibenzyl and diphenylamine crystals for photo-and /3-exeitation. Belikova, T.P. Opt. i Spektroskopiya 6: 117–18 (1959) CA 53: 1 2856eGoogle Scholar
  564. C 564.
    New method for the study of the chemi-luminescence at simultaneous fluorescence. Bersis, D.S. Z. Physik. Chem. 22: 328–35 (1959) CA 54: 7335iGoogle Scholar
  565. C 565.
    Reaction of cis-and trans-stilbene–2-carboxylic acids with peroxy acids. Berti, G. J. Org. Chem. 24: 934–8 (1959) CA 54: 2 2609eGoogle Scholar
  566. C 566.
    Contact photocopying of fluorescent fractions in ultraviolet light. (A. photo-graphic technique for the detection of fluorescent light.) Betke, K., Clotten, R., and Schiebe, G. Klin. Wochschr. 37: 403 (1959) CA 54: 1 1128eGoogle Scholar
  567. C 567.
    Estrogenic factor. Bickoff, E.M., and Booth, A. N. U.S. 2,890,116 (1959) CA 53: 1554aGoogle Scholar
  568. C 568.
    Sulfur compounds in the kerosine boiling range of Middle East distillates. Occurrence of a bicyclic thiophene and a thienyl sulfide. Birch, S.F., Cullum, T.V., Dean, R.A., and Redford, D.G. Tetrahedron 7: 311–18 (1959) CA 54: 7678fGoogle Scholar
  569. C 569.
    Crystal fluorescence of carcinogens and related organic compounds. Birks, J.B., and Cameron, A.J.W. Proc. Roy. Soc. (London), Ser. A 249: 297–317 (1959) CA 54: 17045eGoogle Scholar
  570. C 570.
    Energy transfer in fluorescent plastic solutions. Birks, J.B., and Kuchela, K.N. Discussions Faraday Soc. No. 27: 57–63 (1959) CA 54: 14936dGoogle Scholar
  571. C 571.
    Polarization of fluorescence in cadmium sulfide and zinc sulfide single crystals. Birman, J.L. Phys. Rev. Letters 2: 157–9 (1959) CA 53: 8826gGoogle Scholar
  572. C 572.
    Fluorescence and photochemical action in uranyl nitrate solution. Bist, H.D. J. Sci. Ind. Res. 18B: 387–8 (1959) CA 54: 18065hGoogle Scholar
  573. C 573.
    The glow discharge in a mixture of butane and bromine. Bodarea, E., and Popovici, C. Comun. Acad. Rep. Populare Romine 9: 1249–56 (1959) CA 54: 2l952gGoogle Scholar
  574. C 574.
    Determination of the critical molecule distance for concentration depolarization of fluorescence. Bojarski, L., and Kawsky, A. Ann. Physik 5: 31–4 (1959) CA 53: 4147eGoogle Scholar
  575. C 575.
    Fluorescence spectra of frozen crystalline solutions of simple aromatic hydrocarbons. Bolotnikova, T.N. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 29–31 (1959) CA 53: 1 1988dGoogle Scholar
  576. C 576.
    Interpretation of the fluorescence spectrum of naphthalene. Bolotnikova, T.N. Opt. i Spektroskopiya 7: 44–51 (1959) CA 54: 238l5dGoogle Scholar
  577. C 577.
    Spectroscopy of some simple aromatic hydrocarbons in frozen crystalline solutions. Bolotnikova, T.N. Opt. i Spektroskopiya 7: 217–22 (1959) CA 54: 8276eGoogle Scholar
  578. C 578.
    Experimental sample of a phase fluor-ometer. Boneh-Bruevich, A.M., Karazin, V.A., Molchanov, V.A., and Shirokov, V.I. Pribory i Tekhn. Eksperim. 1959: 53–6 (1959) CA 53: 2 1142gGoogle Scholar
  579. C 579.
    A new type of fluorometer. Borisov, A.Y., and Tumerman, L.A. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 97–101 (1959) CA 53: 1 1990dGoogle Scholar
  580. C 580.
    Fluorescence decay of thallium-activated inorganic scintillation crystals with particles of various ionization density. Bormann, M., Anderson-Lindstrom, G., Neuert, H., and Pollehn, H. Z. Naturforsch. 14a: 681–2 (1959) CA 53: 2 1200cGoogle Scholar
  581. C 581.
    The effect of temperature on fluorescence of solutions. Bowen, E.J., and Sahu, J. J. Phys. Chem. 63: 4–7 (1959) CA 53: 7761aGoogle Scholar
  582. C 582.
    Viscosity and temperature effects in fluorescence. Bowen, E.J. Discussions Faraday Soc. No. 27, 40–2 (1959) CA 54: 14930eGoogle Scholar
  583. C 583.
    The effect of viscosity on the fluorescence yield of solutions. Bowen, E.J., and Miskin, S.F.A. J. Chem. Soc. 1959: 3172–3 (1959) CA 54: 16l40dGoogle Scholar
  584. C 584.
    The relation between the fluorescence and the structure of luminescent indicators and reagents. Bozhevol’nov, EA. Tr. Vses. Nauchn.-Issled. Inst. Khim. Reaktivov No. 23, 147–65 (1959) CA 54: 23723bGoogle Scholar
  585. C 585.
    Determination of zinc and cadmium. Bozhevol’nov, E.A., Dziomko, V*M., and Serebyakova,G.U. U.S.S.R. 120,029 (1959) CA 54: 20676aGoogle Scholar
  586. C 586.
    Solar Lyman fluorescence mechanism in the upper atmosphere. Brandt, J.C. Astrophys. J. 130: 228–40 (1959) CA 53: 21135fGoogle Scholar
  587. C 587.
    Hydroxytetracenequinones. Brockman, H., and Muller, W. Chem. Ber. 92: 1164–70 (1959) CA 53: 17076iGoogle Scholar
  588. C 588.
    Medium with negative absorption coef-ficient. Butaeva, FA., and Fabukant, VA. Issled. po Eksperim. i Teor. Fiz., Akad. Nauk SSSE, Fiz. Inst. 1959: 62–70 (1959) CA 53: 1056gGoogle Scholar
  589. C 589.
    Solution techniques in fluorescent X-ray spectrography. Campbell, W.J., Leon, M., and Thatcher, J.W. U.S. Bur. Mines Rept. Invest. No. 5497, 24 pp. (1959) CA 53: 2l369iGoogle Scholar
  590. C 590.
    Preparation of 6H–6-oxo–5,lO,ll-trioza-phenanthrene. Carboni, S., and Pardi, M. Ann. Chim. 49: 1220–7 (1959) CA 54: 883ÜGoogle Scholar
  591. C 591.
    Electronic quenching of OH (2∑+) in flames and its significance in the interpretation of rotational relaxation. Carrington, T. J. Chem. Phys. 30: 1087–95 (1959) CA 53: 16687bGoogle Scholar
  592. C 592.
    Rotational transfer in the fluorescence spectrum of OH (2∑+). Carrington, T. J. Chem. Phys. 31: 1418–19 (1959) CA 54: 7334iGoogle Scholar
  593. C 593.
    Fluorometer CISE-CRl, a device for determinations on solids and liquids. Cerrai, E., and Rossi, G. Energia Nucl. (Milan) 6: 399–408 (1959) CA 54: 1942eGoogle Scholar
  594. C 594.
    Changes in fluorescence in a frog sartorius muscle following a twitch. Chance, B., and Jobs is, F. Nature 184, Suppl. No. 4, 195–6 (1959) CA 54: 6982dGoogle Scholar
  595. C 595.
    Differential microfluorimeter for the localization of reduced pyridine nucleotide in living cells. Chance, B., and Legallais, V. Rev. Sci. Instr. 30: 732–5 (1959) CA 54: 13757eGoogle Scholar
  596. C 596.
    Fluorescence measurements of mito-chondrial pyridine nucleotide in aero-biosis and anaerobiosis. Chance, B., and Thorell, B. Nature 184: 931–4 (1959) CA 54: 13218aGoogle Scholar
  597. C 597.
    Synthesis of furano compounds. XVII. Synthesis of coumestrol. Chatterjea, J.N. J. Indian Chem. Soc. 36: 254–6 (1959) CA 54: 10987iGoogle Scholar
  598. C 598.
    Concentration quenching of fluorescence in solutions. Chandhuri, K.D. Z. Physik 154: 34–42 (1959) CA 53: 5866aGoogle Scholar
  599. C 599.
    Reactions of hexamethylenetetramine. Checchi, S. Gazz. Chim. Ital. 89: 2151–62 (1959) CA 55: 5499eGoogle Scholar
  600. C 600.
    Fluorescence of some salicyloyl hydra-zones. Chen, P.S. Anal. Chem. 31: 296–8 (1959) CA 53: 1 2923hGoogle Scholar
  601. C 601.
    The effect of ¿-toluidene on the quantum yield of the photooxidation and the photodimerization of some anthracene derivatives. Cherkasov, A.S., and Vember, T.M. Opt. i Spektroskopiya 7: 321–5 (1959) CA 54: 8237aGoogle Scholar
  602. C 602.
    Absorption and fluorescence spectra and fluorescence quantum yield of some methyl-and methylmesoarylanthracenes. Cherkasov, A.S. Opt. i Spektroskopiya 7: 326–31 (1959) CA 54: 8277eGoogle Scholar
  603. C 603.
    Effect of subsituting groups on the position of absorption and fluorescence spectra of anthracene derivatives. Cherkasov, A.S. Opt. i Spektroskopiya 6: 496–502 (1959) CA 55: 10056cGoogle Scholar
  604. C 604.
    Influence of substituting groups on the position of the absorption and fluorescence spectra of derivatives of anthracene. Cherkasov, A.S. Opt. Spectry. 6: 315–18 (1959) CA 55: 15115aGoogle Scholar
  605. C 605.
    Effect of oxygen on the photochemical transformation and the concentration quenching of fluorescence of some an-thracene derivatives. Cherkasov, A.S., and Vember, T.M. Opt. i Spektroskopiya 6: 503–11 (1959) CA 55: 1 1076cGoogle Scholar
  606. C 606.
    Effect of the conjugating of the anthrcene nucleus with the double bind of an alkenyl substituent on the fluorescence and absorption spectra. Cherkasov, A.S. Dokl. Akad. Nauk SSSR 125: 848–51 (1959) CA 55: 10068fGoogle Scholar
  607. C 607.
    Transpositions in the series of the 5-hydroxyflavanones. I. 5,6,7-and 5,7,8-substituted flavanones. Chopin, J., Chadenson, M., Grenier, G., and Bouillant, M. Bull. Soc. Chim. France 1959: 1585–96 (1959) CA 54: 1 1009bGoogle Scholar
  608. C 608.
    Transformation of trans-o-hydroxy-cinnamic acids into the corresponding coumarins. Cingolani, E. Gaz. Chim. Ital. 89: 999–1008 (1959) CA 54: 226l7dGoogle Scholar
  609. C 609.
    Effects of alternating and continuous electric fields on the luminescence of certain zinc sulfides excited by a radiation. Coche, A., and Henck, R. J. Phys. Radium 20: 827–9 (1959) CA 54: 2974iGoogle Scholar
  610. C 610.
    a-Cyanostyrene. Colonge, J., Dreux, J., and Regeand, J.P. Bull. Soc. Chim. France 1959: 1244–7 (1959) CA 54: 6628cGoogle Scholar
  611. C 611.
    Green fluorescence of guanidinium compounds with ninhydrin. Conn, R.B., and Davis, R.B. Nature 183: 1053–5 (1959) CA 53: 15854hGoogle Scholar
  612. C 612.
    Synthesis of 2, 3:6, 7-dibenzodiphenylene. Curtis, R.F., and Viswanath, G. J. Chem. Soc. 1959: 1670–6 (1959) CA 53: 21845gGoogle Scholar
  613. C 613.
    Intermolecular bonds by resonance mesomery. XI. Fluorescence spectra, reflection spectra, and fluorescence relaxation times in crystalline molecu-lar compounds. Czekalla, J., Schmillen, A., and Mager, K.J. Z. Elektrochem. 63: 623–6 (1959) CA 53: 2 1148fGoogle Scholar
  614. C 614.
    Correction: Phosphorescence spectra and relaxation times of aromatic hydrocarbons and their donor-acceptor complexes. Czekalla, J., Briegleb, G., Herre, W., and Vahlensieck, H.J. Z. Elektrochem. 63: 1197 (1959) CA 53: 5243fGoogle Scholar
  615. C 615.
    Luminous spots on electrodes in insu-lating oil gaps. Dakin, T.W., and Berg, D. Nature 184: 120 (1959) CA 54: 2047hGoogle Scholar
  616. C 616.
    Theory of the temporal growth of ionization in gases involving the action of metastable atoms and trapped radiation. Davidson, P.M. Proc. Roy. Soc. (London), Ser. A 249: 237–47 (1959) CA 54: 19166dGoogle Scholar
  617. C 617.
    Spectrophotometry of the edible oils. n. DeFrancesco, F. Olii Minerali, Grassi Saponi, Colori Vernici 36: 73–6 (1959) CA 53: 2 2587fGoogle Scholar
  618. C 618.
    The use of fluorescence microspectro-graphy in histochemistry. DeLerma, B. Compt. Rend. Assoc. Anatomistes 103: 523–32 (1959) CA 59: 5977hGoogle Scholar
  619. C 619.
    Absorption and fluorescence spectra of uranium salts and other solids; spectra of molecules containing tritium. IX. Dieke, G.H. U.S. At. Energy Comm. NYO-S090, 12 pp. (1959) CA 57: 13308bGoogle Scholar
  620. C 620.
    A contribution to the method of fluoro-photometric determination of adrenaline and noradrenaline in serum. Dienstbier, E., and Balik, J. Casopis Lekaru Ceskych 98: 16–20 (1959) CA 54: 8974fGoogle Scholar
  621. C 621.
    Simple experimental method to determine the intensity of secondary fluorescence. Dombi, J., Hevesi, J., and Horvai, R. Acta Univ. Szeged., Acta Phys. Chem. 5: 20–5 (1959) CA 54: 13 853iGoogle Scholar
  622. C 622.
    Quenching of excited metal atoms. I. Excited thallium atoms produced by the photolysis of thallous iodide vapor, using an a. c. spark source. Dowling, D.J., and Warhurst, E. Trans. Faraday Soc. 55: 532–6 (1959) CA 54: 2934hGoogle Scholar
  623. C 623.
    Quenching of excited metal atoms. II. Excited thallium and sodium atoms produced by photodissociation using a single spark technique. Dowling, D.J., Jones, G.R.H., and Warhurst, E. Trans. Faraday Soc. 55: 537–43 (1959) CA 54: 2935aGoogle Scholar
  624. C 624.
    Fluorescent impurities in liquid paraffin and organic solvents. Druckrey, H., Schmahl, D., and Preussmann, R. Arzneimittel-Forsch. 9: 600–4 (1959) CA 54: 3058gGoogle Scholar
  625. C 625.
    Photoluminescence of phthalic and benzoic acid esters. Dubinskii, I.B. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 116–18 (1959) CA 53: 1 1990fGoogle Scholar
  626. C 626.
    The sensitized fluorescence of 2-naphthylamine. A study in transfer of electronic energy. Dubois, J.T. J. Phys. Chem. 63: 8–11 (1959) CA 53: 7761cGoogle Scholar
  627. C 627.
    2, 5-bis(Benzimedazol-2-yl)thiophenes. Duennenberger, M., Siegrist, A.E., and Maeder, E. Ger. 1,109,177 (1959) CA 53: 10157gGoogle Scholar
  628. C 628.
    Evolution of the spectra of Nova RS Ophiuchi after the 1958 outburst. Dufay, J., Block, M., Bertand, C., and Dufay, M. Compt. Rend. 249: 631–3 (1959) CA 54: 2927eGoogle Scholar
  629. C 629.
    Decay of the phosphorescence of cement and organic oxide phosphors. Dvorovenko, V.K. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 139–41 (1959) CA 53: 1 1991eGoogle Scholar
  630. C 630.
    Structure of erosinin (Norton and Hans-berry’s “Compound I”). Eisenbeiss, J., and Schmid, H. Helv. Chim. Acta 42: 61–6 (1959) CA 53: 20052cGoogle Scholar
  631. C 631.
    Monoacetylphenylenediamine. Ermili, A., and Guiliano, R. Gazz. Chim. Ital. 89: 517–25 (1959) CA 54: 1 2107cGoogle Scholar
  632. C 632.
    The depolarization of the sodium resonance fluorescence. Ermisch, W., and Seivert, R. Ann. Physik 2: 393–402 (1959) CA 53: 18622bGoogle Scholar
  633. C 633.
    Dependence of the probability of energy transfer in sensitized phosphorescence upon the oscillator strength of triplet-singlet transition in the molecule of an energy acceptor. Ermolaev, V.L. Opt. i Spektroskopiya 6: 642–7 (1959) CA 53: 19983fGoogle Scholar
  634. C 634.
    Phosphorescence and fluorescence quantum output of some 1-derivatives of naphthalene solutions at –196°. Ermolaev, V.L., and Svitashev, K.K. Opt. i Spektroskopiya 7: 664–7 (1959) CA 54: 10507fGoogle Scholar
  635. C 635.
    Activation of the fluorescence of chlorophyll and its analogs. Eustigneev, V.B. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 74–7 (1959) CA 53: 1 2417eGoogle Scholar
  636. C 636.
    Response of plastic scintillators to protons. Evans, H.C., and Bellamy, E.H. Proc. Phys. Soc. 74: 483–5 (1959) CA 54: 20546iGoogle Scholar
  637. C 637.
    Phosphorescence spectra of some aro-matic hydrocarbons at various temperatures. Fadeeva, M.S. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 147–9 (1959) CA 53: 1 1991hGoogle Scholar
  638. C 638.
    Milk as an eluant of polycyclic aromatic hydrocarbons added to wax. Falk, H.L., Kotin, P., and Miller, A. Nature 183: 1184 (1959) CA 53: 2 2566iGoogle Scholar
  639. C 639.
    Ninhydrin and fluorescence of proteins. Faure, F. Bull. Soc. Pharm. Bordeaux 98: 187–200 (1959) CA 54: 14324bGoogle Scholar
  640. C 640.
    Some experiments related to the prob-lem of internal conversion of excitation energy in aromatic molecules and crystals. Ferguson, J. J. Mol. Spectry. 3: 177–84 (1959) CA 54: 23807fGoogle Scholar
  641. C 641.
    Unique luminescences of dry chloro-phylls. Fernandez, J., and Becker, R.S. J. Chem. Phys. 31: 467–72 (1959) CA 54: 2934gGoogle Scholar
  642. C 642.
    The in vivo staining of the lining of mouse forestomach by porphyrins and other fluorescent substances. Figge, F.H.J. J. Histochem. Cytochem. 7: 257–61 (1959) CA 53: 4803hGoogle Scholar
  643. C 643.
    Benzobisthiazoles. Finzi, G., and Grandolini, G. Gazz. Chim. Ital. 89: 2543–54 (1959) CA 55: 5470eGoogle Scholar
  644. C 644.
    Isolation and characterization of a yel-low pteridine from the blue-green alga, Anacystis nidulans. Forrest, H.S., Van Baalen, C., and Myers, J. Arch. Biochem. Biophys. 83: 508–20 (1959) CA 54: 1528eGoogle Scholar
  645. C 645.
    Transfer mechanisms of electronic excitation. Forster, T. Discussions Faraday Soc. No. 27, 7–17 (1959) CA 54: 16164bGoogle Scholar
  646. C 646.
    Investigation of an organophosphor in the preexcited state. Frackowiak, M., and Heldt, J. Acta Phys. Polon 18: 93–106 (1959) CA 54: 2935gGoogle Scholar
  647. C 647.
    Immunoelectrophoresis analysis by fluorescence. Francq, J.C., Eyquem, A., and Grabar, P. Rev. Franc. Etudes Clin. Biol. 4: 821–2 (1959) CA 54: 8962cGoogle Scholar
  648. C 648.
    Long range energy transfer and self-absorption in fluorescent solutions. Freeark, C.W., and Hardwick, E.R. J. Phys. Chem. 63: 194–8 (1959) CA 53: 10956fGoogle Scholar
  649. C 649.
    Cathodoluminescence of zinc sulfide and zinc cadmium sulfide activated with rare-earth elements. Fridman, S.A., and Shchaenko, V.V. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory) Akad. Nauk Est. SSR, Moscow 1958: 288–97 (1959) CA 55: lll07gGoogle Scholar
  650. C 650.
    The fluorescence spectra of the photo-reduced forms of chlorophyll and pheo-phytin. Gachkovskii, V.F. Biofizika 4: 16–23 (1959) CA 57: 14156cGoogle Scholar
  651. C 651.
    Fluorescent organosilicon polymers. George, P.J. U.S. 2,910,495 (1959) CA 54: 7225iGoogle Scholar
  652. C 652.
    Optical excitation of paramagnetic reso-nance in an excited state of Cr+3 in aluminum oxide. Geschwind, S., Collins, R.J., and Schawlow, A.L. Phys. Rev. Letters 3: 545–8 (1959) CA 54: 8297bGoogle Scholar
  653. C 653.
    Isoquinoline derivatives. V. Ghosh, T.N., and Bhattacharya, B. J. Indian Chem. Soc. 36: 425–8 (1959) CA 54: 9926fGoogle Scholar
  654. C 654.
    The wave length and temperature dependence of the fluorescence efficiency and the primary photochemical yield in hexofluoroacetone vapor. Giacometti, G., Okabe, H., and Stearie, E.W.R. Proc. Roy. Soc. (London), Ser. A 250: 287–300 (1959) CA 54: 19l59fGoogle Scholar
  655. C 655.
    Evaluating rate constants in the Jablon-ski model of excited species in rigid glasses. Gilmore, E.H., and Lim, E.C. J. Phys. Chem. 63: 15–16 (1959) CA 53: 8825gGoogle Scholar
  656. C 656.
    The diffusion of light in solutions of quinine sulfate. Giurgea, M., Ghita, C., and Musa, M. Acad. Rep. Populare Romine, Studii Cercetari Fiz. 10: 457–64 (1959) CA 54: 14880dGoogle Scholar
  657. C 657.
    Studies in the azole series. VII. Reactions of imidazoles with isocyanates. Gompper, R., Hoyer, E., and Herlinger, H. Chem. Ber. 92: 550–63 (1959) CA 53: 13139iGoogle Scholar
  658. C 658.
    Spot tests for aromatic compounds with 2,4,7-tr initr of luor enone. Gordon, H.T., and Huraux, M.J. Anal. Chem. 31: 302–7 (1959) CA 53: 1 2955fGoogle Scholar
  659. C 659.
    Isolation and characterization of some fluorescent substances in the skin of the frog, Rana nigromaculata. Goto, T. Dobutsugaku Zasshi 68: 286–90 (1959) CA 54: 1758hGoogle Scholar
  660. C 660.
    Fluorescence of crystalline substances and of solutions excited by X-rays: applications to analysis. Graulier, M. Bull. Soc. Chim. France 1959: 1715–21 (1959) CA 54: 10645hGoogle Scholar
  661. C 661.
    Fluorescent emission ascribable to ex-citon annihilation in pure CdS crystals. Grillot, E., and Bancie-Grillot, M. Phys. Chem. Solids 8: 187–90 (1959) CA 53: 1 2014fGoogle Scholar
  662. C 662.
    Emission near the absorption edge and other emission effects of GaN. Grimmeiss, H.G., and Koelmans, H. Z. Naturforsch. 14a: 264–71 (1959) CA 53: 1 2856aGoogle Scholar
  663. C 663.
    Paper chromatographic studies for the differentiation of species and strains. Taxonomy of red ants. Groesswald, K., and Schmidt, G. Umschau 1959, 94 pp. (1959) CA 54: 15978eGoogle Scholar
  664. C 664.
    Primary processes in the photochemistry of eosin. Grosweiner, L.I., and Zwicker, E.F. J. Chem. Phys. 31: 1141–2 (1959) CA 54: 8237cGoogle Scholar
  665. C 665.
    Influence of a magnetic field on the lines of blue fluorescence or of luminous absorption of certain crystals of CdS cooled to 4.2°K. Gross, E.F., Grillot, E., Zakhartchenia, B.P., and Bancie-Grillot, M. Compt. Rend. 248: 213–16 (1959) CA 53: 1 2013dGoogle Scholar
  666. C 666.
    Luminescence of dyes of the porphine series. Gurinovich, G.P. Tr. Inst. Fiz. i Mat., Akad. Nauk Belor-ussk. SSR 1959: 111–30 (1959) CA 55: 2666ldGoogle Scholar
  667. C 667.
    The polarization limit of complex molecule luminescence. Gurinovich, G.P., Sarzhevskii, A.M., and Sevehenko, A.N. Opt. i Spektroskopiya 7: 668–76 (1959) CA 54: 10506fGoogle Scholar
  668. C 668.
    3-Phenyl-7-aminocoumarin derivatives. Haecisermann, H. U.S. 2,881,186 (1959) CA 54: 10l05iGoogle Scholar
  669. C 669.
    Fluorescence in aerosols. Harmon, J., and Voldisch, R. Paint, Oil, Chem. Rev. 112(15): 6–7 (1959) CA 53: 2 2985bGoogle Scholar
  670. C 670.
    Fluorescence of tetracycline in experi-mental ulcers and regenerating tissue injuries. Hakkinen, J., and Hartiala, K. Ann. Med. Exptl. Biol. Fenniae 37: 115–20 (1959) CA 54: 3676aGoogle Scholar
  671. C 671.
    Isolation and structure of the fluorescent substances formed in the oxidative reaction of epinephrine and norepinephrine with ethylenediamine. Harley-Mason, J., and Laird, A.H. Tetrahedron 7: 70–6 (1959) CA 53: 4603iGoogle Scholar
  672. C 672.
    Photochemical reduction of thionine. VI. The photochemical thionine-hydroquinone system. Havemann, R., and Pietsch, H. Z. Physik. Chem. 211: 257–66 (1959) CA 54: 8237bGoogle Scholar
  673. C 673.
    Unusual temperature dependence of fluorescence of uranyl ions imbedded in ice. Hayakawa, S., and Hirata, M. J. Chem. Phys. 30: 330 (1959) CA 53: 10994cGoogle Scholar
  674. C 674.
    Flavonoids. I. Aluminum salts of flavonols. Hayashiya, K. Nippon Nogeikagaku Kaishi 33: 174–6 (1959) CA 53: 1427fGoogle Scholar
  675. C 675.
    Spectrophotofluorometry of reserpine, other Rauwolfia alkaloids, and related compounds. Haycock, R.P., Sheth, P.B., and Mader, W.J. J. Am. Pharm. Assoc. 48: 479–85 (1959) CA 53: 20700gGoogle Scholar
  676. C 676.
    The photolysis and fluorescence of acetone and acetone-biacetyl mixture. Heicklen, J., and Noyes, WA, J. Am. Chem. Soc. 81: 3858–63 (1959) CA 54: 4146cGoogle Scholar
  677. C 677.
    The fluorescence and phosphorescence of biacetyl vapor and acetone vapor. Heicklen, J. J. Am. Chem. Soc. 81: 3863–6 (1959) CA 53: 4146eGoogle Scholar
  678. C 677a.
    Absorption and fluorescence spectra of some mono-and dihydroxy-naphthalenes. Hercules, D. M., and Rogers, L. B. Spectrochim. Acta, 1959: 393–408 (1959) CA 53: 19566iGoogle Scholar
  679. C 678.
    Influence of long-wave ultraviolet light and 3-radiation on the fluorescence of anthracene in various solvent media. Herforth, L., and Stolz, W. Monatsber. Deut. Akad. Wiss. Berlin 1: 415–19 (1959) CA 54: 1 2774fGoogle Scholar
  680. C 679.
    Influence of extractives on eucalypt pulping and paper-making. Hillis, W.E., and Carle, A. Appita 13: 74–81; Discussion, 81–3 (1959) CA 54: 888fGoogle Scholar
  681. C 680.
    (Aluminum with hydroxyazo dyes.) Holzbecher, Z. Collection Czech. Chem. Commun. 24: 1457 (1959)Google Scholar
  682. C 681.
    Fluorescence of the metal salts of sali-eylaldehyde condensation products. Holzbecher, Z. Collection Czech. Chem. Commun. 24: 3915–19 (1959) CA 54: 10542hGoogle Scholar
  683. C 682.
    Fluorescence-microscopy of the potato tuber. I. Primary fluorescence of protein crystals. Holzl, J., and Bancher, E. Protoplasma 50: 297–302 (1959) CA 55: 5667aGoogle Scholar
  684. C 683.
    The blue-fluorescing substance in the hair of albino rats. Hotta, K., Hashimoto, A., Tuboi, S., and Ishiguro, I. Seikagaku 31: 218–23 (1959) CA 54: 3730cGoogle Scholar
  685. C 684.
    Effect of some elements on the quality of luminophors for fluorescent lamps of the calcium halophosphate type. Hrabal, L. Chem. Prumysl 9: 129–31 (1959) CA 54: 1 1717cGoogle Scholar
  686. C 685.
    Effect of infrared radiation on phos-phorescence of ZnS • Cu • Sm. Hsu, J.C., Wang, H.M., Chung, K.I., and Harang, M.Y. Wu Li Hsueh Pao 15: 550–8 (1959) CA 54: 20517gGoogle Scholar
  687. C 686.
    Copper and tin activated halophosphate phosphors. Hunt, B.E., and McKeag, A.H. J. Electrochem. Soc. 106: 1032–6 (1959) CA 54: 2960bGoogle Scholar
  688. C 687.
    Fluorescence of coumarin derivatives. I. Fluorometric analysis of warfarin. Ichimura, Y. Yakugaku Zasshi 79: 1079–82 (1959) CA 53: 227l0dGoogle Scholar
  689. C 688.
    Fluorescent substances. Ide, H. Japan 308 (1959) CA 53: 19588aGoogle Scholar
  690. C 689.
    Arsenate fluorescent substances. Ide, H., Kuritsa, K., and Matsunaga, K. Japan 505 (1959) CA 53: 19588dGoogle Scholar
  691. C 690.
    Lifetime of phosphorescence of substituted naphthalenes. Iguchi, K. J. Chem. Phys. 30: 319–20 (1959) CA 53: 10956iGoogle Scholar
  692. C 691.
    New cold cathode using magnesium oxide. Imai, T., Mizushima, Y., and Igarashi, Y. J. Phys. Soc. Japan 14: 979–80 (1959) CA 54: 1 1702dGoogle Scholar
  693. C 692.
    Fluorometric analysis. IV. Fluorometric analysis. IV. Fluorometric determination of gallium with 8-quinolinol. Ishibashi, M., Shigematsu, T., and Nishikawa, Y. Bull. Inst. Chem. Res., Kyoto Univ. 37: 191–7 (1959) CA 54: 7426gGoogle Scholar
  694. C 693.
    Optical bleaching and optically bleached fabrics investigated with the photoelectric fluorometer. Jorder, H. Melliand Textilber. 40: 1190–4 (1959) CA 54: 1857iGoogle Scholar
  695. C 694.
    Analysis of the fluorescence spectrum of europium ethyl sulfate. Judd, B.R. Mol. Phys. 2: 407–14 (1959) CA 55: 17250aGoogle Scholar
  696. C 695.
    Analysis of the fluorescence spectrum of neodymium chloride. Judd, B.R. Proc. Roy. Soc. (London), Ser. A 251: 134–42 (1959) CA 54: 17078cGoogle Scholar
  697. C 696.
    “Ballistic” method for studying the decay of phosphorescence. Kaminskii, M.G. Opt. i Spektroskopiya 6: 103–6 (1959) CA 53: 12829iGoogle Scholar
  698. C 697.
    The triplet-singlet emission spectra of phenanthrene and related compounds in EPA and in petroleum ether at 90°K. Kanda, Y., and Shimada, R. Spectrochim. Acta 1959: 211–24 (1959) CA 53: 19565cGoogle Scholar
  699. C 698.
    Fluorescent substance of pterin-like nature produced by aspergillus fungi. VII. Conditions for production of the substance. Kaneko, Y. Compt. Rend. Soc. Biol. 153: 887–9 (1959) CA 54: 4752gGoogle Scholar
  700. C 699.
    Luminescence of cerium-containing glasses. Karapetyan, G.O. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 1382–6 (1959) CA 54: 6333eGoogle Scholar
  701. C 700.
    Condensation of halonaphthalic anhy-drides with resorcinol. Karishin, A.P., and Kustol, D.M. Zh. Obshch. Khim. 29: 2241–3 (1959) CA 54: 1 1008dGoogle Scholar
  702. C 701.
    Oxygen quenching of the fluorescence of heated adsorbates of the series of anthraquinone derivatives. Karyakin, A.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 32–6 (1959) CA 53: 1 1988iGoogle Scholar
  703. C 702.
    Chemiluminescence of lucigenin and its derivatives. Karayakin, A.V. Opt. i Spektroskopiya 7: 122–4 (1959) CA 54: 23816eGoogle Scholar
  704. C 703.
    Mechanism of the recombination luminescence of alkali halide crystal phos-phors. Kats, M.L. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Moscow 1958: 130–6 (1959) CA 55: 10095dGoogle Scholar
  705. C 704.
    Phosphorescence and thermal stimulation of KBr-In phosphors. Kats, M.L. Opt. i Spektroskopiya 6: 237 (1959) CA 54: 9509eGoogle Scholar
  706. C 705.
    Effect of light on the autoxidation of fats. I. Bleaching, fluorescence, and yellowing. Kaufmann, H.P., and Vogelmann, M. Farbenchemiker 61: 6–10 (1959) CA 53: 23004dGoogle Scholar
  707. C 706.
    The effect of light radiation on the autoxidation of fats. I. Bleaching, fluor-escence, and yellowing. Kaufmann, H.P., and Vogelmann, M. Fette, Seifin, Anstrichmittel 61: 206–10 (1959) CA 54: 927aGoogle Scholar
  708. C 707.
    Isolation of D-lactoflavine and isoxan-thopterin from the skin of the fire sala-mander. Kauffmann, T., and Vogt, K. Chem. Ber. 92: 2855–61 (1959) CA 54: 5684gGoogle Scholar
  709. C 708.
    Low-temperature fluorescence spectra and crystal-field splittings of rare-earth-activated strontium sulfide phosphors. Keller, S.P., and Pettit, G.D. J. Chem. Phys. 30: 434–41 (1959) CA 53: 1 2013fGoogle Scholar
  710. C 709.
    Variation of valence state of europium in strontium sulfide phosphors. Keller, S.P. J. Chem. Phys. 30: 556–60 (1959) CA 53: 1 2013cGoogle Scholar
  711. C 710.
    Optical spectra of rare-earth-activated BaTiO3. Keller, S.P., and Pettit, GJD. J. Chem. Phys. 31: 1272–7 (1959) CA 53: 5258iGoogle Scholar
  712. C 711.
    Phosphor with fluorescence larger than the energy gap. Keller, S.P., and Pettit, G.D. Phys. Rev. 113: 785–6 (1959) CA 53: 13795eGoogle Scholar
  713. C 712.
    Optical properties of activated and un-activated hexagonal zinc sulfide single crystals. Keller, S.P., and Pettit, G.D. Phys. Rev. 115: 526–36 (1959) CA 54: 8300fGoogle Scholar
  714. C 713.
    Sensitized fluorescence in mixed solutions. Ketskemety, I. Acta Phys. Acad. Sci. Hung. 10: 429–39 (1959) CA 54: 1 2774hGoogle Scholar
  715. C 714.
    Role of iron in D-amino acid oxidase. I. Fluorescence of flavine adenine di-nucleotide. Kihara, T. Osaka Daigaku Igaku Zasshi 11: 321–3 (1959) CA 53: 10348dGoogle Scholar
  716. C 715.
    Effect of reabsorption on the duration of fluorescence for organic materials. Kilin, S.F., and Rozman, I.M. Opt. i Spektroskopiya 6: 70–7 (1959) CA 53: 1 2856hGoogle Scholar
  717. C 716.
    Influence of high pressure on the spectral characteristics of some crystal phosphors. Kirs, Y.Y., and Laissar, A.I. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Moscow 1958: 59–65 (1959) CA 55: 8069fGoogle Scholar
  718. C 717.
    Decay law for the phosphorescence of trypaflavine in formic acid. Kislyak, G.M. Opt. i Spektroskopiya 6: 226–8 (1959) CA 54: 1 1697bGoogle Scholar
  719. C 718.
    The law of the extinction of the phos-phorescence of trypaflavine in formic acid. Kislyak, G.M. Opt. i Spektroskopiya 6: 226–8 (1959) CA 60: 3630aGoogle Scholar
  720. C 719.
    Dependence of the lifetime of the excited state of organic luminescent substances on the wave length of the exciting light, n. Kislyak, G.M. Izv. Akad. Nauk SSSE, Ser. Fiz. 23: 119–21 (1959) CA 53: 1 1990iGoogle Scholar
  721. C 720.
    The temperature dependence of the fluorescence of photoconductors. Klaseno, H.A. Phys. Chem. Solids 9: 185–97 (1959) CA 55: 10095eGoogle Scholar
  722. C 721.
    Theory of the formation of adsorption mixed crystals and the inclusion of fluorescent organic compounds. Kleber, W. Freiberger Forschungsh. B37: 11–28 (1959) CA 54: 20399aGoogle Scholar
  723. C 722.
    Incorporation mechanism in the formation of adsorption mixed crystals. Kleber, W. Z. Physik. Chem. 212: 222–32 (1959) CA 54: 2861bGoogle Scholar
  724. C 723.
    The fluorescence of binary and ternary germanates of Group n elements. Koelmans, H., and Verhagen, C.M.C. J. Electrochem. Soc. 106: 677–82 (1959) CA 53: 17682fGoogle Scholar
  725. C 724.
    Studies on eleetroehemically excited molecules by fluorescence spectrum. Kokubun, H. Bunko Kenkyu 7(4): 1–14 (1959) CA 57: 5476bGoogle Scholar
  726. C 725.
    Fluorescence of milk and butter. Konev, S.V., and Kozunin, I.I. Byul. Nauchn.-Tekhn. Inform. Vses. Nauchn.-Issled. Inst. Zhivotnovodstva 1959: 14–18 (1959) CA 55: 1 1693gGoogle Scholar
  727. C 726.
    Fluorescence reaction spectra of proteins. Konev, S.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 90–3 (1959) CA 53: 1 2370gGoogle Scholar
  728. C 727.
    Thermochromic effects and constitution of unsymmetrieal (hydroxyalkylamino)-p -benzoquinones. Konig, K. Chem. Ber. 92: 257–67 (1959) CA 53: 1 1287iGoogle Scholar
  729. C 728.
    Detection of secondary a-hydroxy-ethylamines by fluorescence, polaro-graphy, paper chromatography, and thermochromy. Konig, K.H., and Berg, H. Z. Anal. Chem. 166: 92–100 (1959) CA 53: 16829cGoogle Scholar
  730. C 729.
    Thermochromic effects and constitution of unsymmetrieal (hydroxyalkylamino) -£-benzoquinones. n. Variations in the quinone and the amino alcohol component. Konig, K.H., and Letsch, G. Chem. Ber. 92: 1789–97 (1959) CA 53: 4455bGoogle Scholar
  731. C 730.
    Photoelectrical zero method for taking fluorescence spectra. Kortum, G., and Hess, W. Z. Physik. Chem. 19: 142–55 (1959) CA 53: 1068iGoogle Scholar
  732. C 731.
    The Gudden-Pohl effect of ZnS:Cu. Kotera, Y., and Naraoka, K. J. Electrochem. Soc. 106: 1066 (1959) CA 54: 2960cGoogle Scholar
  733. C 732.
    Quantum-mechanical calculation of adiabatic potentials for the luminescence center in KCl-Tl by the one-oscillator approximation. Kristofel, N.N. Akad. Nauk Est. SSR 1959: 3–36 (1959) CA 54: 4218bGoogle Scholar
  734. C 733.
    A new synthesis of porphine. Krol, S. J. Org. Chem. 24: 2065–7 (1959) CA 54: 1 1047bGoogle Scholar
  735. C 734.
    The action of ultrasonics on the lumin-escence of phosphors. Kudryavtsev, B.B., Medvedev, A.N., and Ponomavev, A.P. Primenenie Ul’traakustiki k Issled. Veshchestva 1959: 139–45 (1959) CA 55: 24266hGoogle Scholar
  736. C 735.
    Electron irradiation effects in CdS. Kulp, BA., and Kelley, R.H. Proc. Conf. Nucl. Radiation Effects Semi-cond. Devices, Mater. Circuits, 2nd, New York 1959: 131–4 (1959) CA 59: 14664eGoogle Scholar
  737. C 736.
    Effect of the concentration of fluorescent substances on the efficacy of fluorescence inhibitors. Lavorel, J. J. Chem. Phys. 55: 911–15 (1959) CA 53: 1 1986hGoogle Scholar
  738. C 737.
    Effect of rigid media on photochemical processes in benzene. Leach, S. Intern. Symp. Free Radical Stab., Wash-ngton, D.C. 4: 1–12 (1959) CA 54: 15071cGoogle Scholar
  739. C 738.
    Photochemical decomposition of benzene in a rigid medium. Leach, S., Migiridicyan, E., and Grajcar, L. J. Chim. Phys. 56: 749–60 (1959) CA 54: 7298dGoogle Scholar
  740. C 739.
    The application of fluorescence to problems of glass manufacturing. Leblanc, J., Taylor, E., and Poole, J.P. Glastech. Ber., Sonderband 32(1): 29–32 (1959) CA 54: 14607fGoogle Scholar
  741. C 740.
    Polarization of fluorescence in zinc sulfide and cadmium sulfide single crystals. Lempicki, G. Phys. Rev. Letters 2: 155–7 (1959) CA 53: 8826gGoogle Scholar
  742. C 741.
    Nature of fluorescence of uranium in fused sodium fluoride. Le Roux, H. Nature 183: 1180–1 (1959) CA 53: 14685dGoogle Scholar
  743. C 742.
    Formation of luminescent polymers in concentrated solutions of Acridine Orange and an investigation of their optical properties. Levshin, V.L., and Klyuev, YA. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 15–18 (1959) CA 53: 11987ÌGoogle Scholar
  744. C 743.
    Fluorescence spectra for aromatic hy-drocarbons of the diphenyl series and for their oxygen and sulfur analogs. Levshin, V.L., Mamedov, K.I., Sergienko, S.R., and Pustil’nikova, S.D. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1959: 1571–8 (1959) CA 54: ll695fGoogle Scholar
  745. C 744.
    Cells and solvents for the measurement of temperature dependence of electronic spectra. Lippert, E., Luder, W„ and Moll, F. Spectrochim. Acta 1959: 378–89 (1959) CA 53: 1957lgGoogle Scholar
  746. C 745.
    Polarization and relaxation effects in the temperature dependence of the absorption and fluorescence spectra of aromatic compounds in polar solvent. Lippert, E., Luder, W., and Moll, F. Spectrochim. Acta 1959: 858–69 (1959) CA 54: 5243eGoogle Scholar
  747. C 746.
    Measurement of fluorescence spectra with spectrophotometers and comparison standards. Lippert, E., Nagele, W., Seibold-Blankenstein, I., Staiger, U., and Voss, W. Z. Anal. Chem. 170: 1–18 (1959) CA 54: 2935iGoogle Scholar
  748. C 747.
    Investigation of the process of chloro-phyll formation and of its state in plant leaves by means of fluorescence spectra. Litvin, F.F., and Krasnovskii, A.S. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 82–5 (1959) CA 53: 13291dGoogle Scholar
  749. C 748.
    Anthracene and its derivatives, sensitizers of photochemical reactions. Livingston, R. J. Chim. Phys. 55: 887–91 (1959) CA 53: 1 2016fGoogle Scholar
  750. C 749.
    Photochemical autoxidation of anthra-cene. Livingston, R., and Rao, S.V. J. Phys. Chem. 63: 794–9 (1959) CA 53: 2 1089bGoogle Scholar
  751. C 750.
    Action of ultraviolet irradiation on reserpine. Ljungberg, S. J. Pharm. Belg. 14: 115–25 (1959) CA 54: 1803cGoogle Scholar
  752. C 751.
    The fluorescence of amino acids in aqueous solutions. Longin, P. Compt. Rend. 248: 1971–3 (1959) CA 53: 14685hGoogle Scholar
  753. C 752.
    Mechanism of the photochemical activity of isolated chloroplasts. IV. Fluorescence yield against velocity relations in the Hill reaction of chloroplast fragments. Lumry, R., Mayne, B., and Spikes, J.D. Discussions Faraday Soc. No. 27, 149–60 (1959) CA 54: 14378dGoogle Scholar
  754. C 753.
    Recombination luminescence of alkali halide phosphors, activated with mercury-like ions. Lushchik, C.B., Kyaembre, K.F., and Yaek, I.V. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Moscow 1958: 117–29 (1959) CA 55: 10095fGoogle Scholar
  755. C 754.
    Luminescence spectra of high molecular weight petroleum hydrocarbons. Mamedov, K.I. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 126–30 (1959) CA 53: 13561gGoogle Scholar
  756. C 755.
    Photochemical isomerization of fluor-escent whitening agents of stilbene series. Mashio, F., and Kimura, Y. Kogyo Kagaku Zasshi 62: 113–18 (1959) CA 57: 848liGoogle Scholar
  757. C 756.
    New fluorescence colorimetric technique using diaphragms. Mosser, M.L. Feingeraetetechnik 8: 505–10 (1959) CA 54: 9378bGoogle Scholar
  758. C 757.
    Imine and imine-d radicals trapped in argon, krypton, and xenon matrixes at 4.2°K. McCarty, M., and Robinson, G.W. J. Am. Chem. Soc. 81: 4472–6 (1959) CA 54: 2932iGoogle Scholar
  759. C 758.
    Autoluminophors. Meckelburg, E. Chem. Rundschau 12: 688–9 (1959) CA 54: 10542iGoogle Scholar
  760. C 759.
    2-and 3-phenylthianaphthenes. Middleton, S. Australian J. Chem. 12: 218–33 (1959) CA 53: 2 1871gGoogle Scholar
  761. C 760.
    Fluorescence spectra of gasolines. Mihul, C., Ruscior, C., Pop, V., Schwartz, F.R., and Radvlescu, GA. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 122–5 (1959) CA 53: 13565dGoogle Scholar
  762. C 761.
    Photoreduction of acridine dyes. Millich, F., and Oster, G. J.Am. Chem. Soc. 81: 1357–63 (1959) CA 53: 13799aGoogle Scholar
  763. C 762.
    Bile pigment. I. Properties of dihydro-bilirubin. Mitsumoto, T. Okayama Igakkai Zasshi 71: 7185–91 (1959) CA 54: 24971bGoogle Scholar
  764. C 763.
    Mechanism of spherosome fluorescence with oxazines and other basic dyes. Mix, M. Protoplasma 50: 434–70 (1959) CA 55: 5632fGoogle Scholar
  765. C 764.
    Organic analysis. XIII. Estimation of hexose with 5-hydroxy-l(2H)-naphtha-lenone. Momose, T., and Ohkura, Y. Chem. Pharm. Bull. 7: 31–4 (1959) CA 54: 18196cGoogle Scholar
  766. C 765.
    Electroluminescent phosphors. Morrison, G.H., Palilla, F.C., and Zloczower, W. U.S. 2,999,818 (1959) CA 54: 2082gGoogle Scholar
  767. C 766.
    Fluorimetric microdetection of tetra-phenylborate. Mukherji, A.K., and Sant, B.E. Mikrochim. Acta 1959: 370–1 (1959) CA 54: 24129fGoogle Scholar
  768. C 767.
    Absorption and phosphorescence spectra of mono-and diazanaphthalenes (w –7r -phosphorescence following n–7r-absorption in the diazanaphthalenes). Muller, R., and Dorr, F. Z. Elektrochem. 63: 1150–6 (1959) CA 54: 5243gGoogle Scholar
  769. C 768.
    Phenoxazine. I. Oxidation products of phenoxazine. Musso, H. Chem. Ber. 92: 2862–73 (1959) CA 54: 5657gGoogle Scholar
  770. C 769.
    Orcein dyes. IX. Fluorescence of orcein dyes. Musso, H., and Matthies, H.G. Naturwissenschaften 46: 15 (1959) CA 53: 1 1842eGoogle Scholar
  771. C 770.
    Peculiarities in the luminescence of orthodisubstituted aromatic hydrocarbons. I. Absorption spectra and fluorescence spectra of the anilides of salicylic and o-methoxybenzoic acids. Naboikin, Y.V., Paulova, E.N., and Zadorozhnyi, BA. Opt. i Spektroskopiya 6: 366–71 (1959) CA 55: 10055eGoogle Scholar
  772. C 771.
    Peculiarities in the luminescence of ortho-disubstituted aromatic hydrocarbons. n. Fluorescence of methyl 3-hydroxy–2-naphthoate and methyl 3-methoxy–2-naphthoate. Naboikin, Y.V., Zadorozhnyi, B.H., and Pavlova, E.N. Opt. i Spektroskopiya 6: 492–5 (1959) CA 55: 16140bGoogle Scholar
  773. C 772.
    Thermodynamic barrier to micelle formation and breakdown. I. Hexade-cyltrimethylammonium salts. Nash, T. J. Colloid Sci. 14: 59–73 (1959) CA 53: 9782hGoogle Scholar
  774. C 773.
    Addition of triethylaluminum to tolan. Nesmeyanov, A.N., Borisov, A.E., and Savel’eva, I.S. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1959: 1034–6 (1959) CA 54: 1367aGoogle Scholar
  775. C 774.
    Hyper conjugation and fluorescence be-havior. Neunhoeffer, O., Alsdorf, G., and Ulrich, H. Chem. Ber. 92: 252–5 (1959) CA 53: 10187dGoogle Scholar
  776. C 775.
    Acylations with the acid chlorides of 2,5-diphenylfuran–3,4-dicarboxylic acid and 2,5-dimethy]f uran–3,4-dicarboxylic acid and related compounds. Nightingale, D.V., and Sukornick, B. J. Org. Chem. 24: 497–500 (1959) CA 53: 2 1870fGoogle Scholar
  777. C 776.
    Fluorescence of various dyes, with special reference to their characteristics as standards for fluorometric determination. Nihongi, T., and Iwasaki, S. Tokyo Jikeikai Ika Daigaku Zasshi 74: 949–52 (1959) CA 54: 17045iGoogle Scholar
  778. C 777.
    Paper chromatography of natural deri-vatives of a-and y-benzopyrone and tanning substances. Nikonov, G.K. Med. Prom. SSSR 12: 16–21 (1959) CA 53: 14094bGoogle Scholar
  779. C 778.
    The effect of some impurities of afterglow of CaW04 phosphor. Nishikawa, K.Kogyo Kagaku Zasshi 62: 1635–6 (1959) CA 57: 15950dGoogle Scholar
  780. C 779.
    The synthesis of carbazoles from 3-vinylindoles with tetracyanoethylene. Noland, W.E., Kuryla, W.C., and Lange, R.F. J. Am. Chem. Soc. 81: 6010–17 (1959) CA 54: 6683hGoogle Scholar
  781. C 780.
    Lactic dehydrogenase. VII. Fluorescence spectra of ternary complexes of lactic dehydrogenase, reduced diphos-phopyridine nucleotide, and carboxylic acids. Novoa, W.B., Winer, A.D., Glaid, A.J., and Schwert, G.W. J. Biol. Chem. 234: 1155–61 (1959) CA 53: 14186gGoogle Scholar
  782. C 781.
    Spectroscopic studies of molecular problems — normal coordinates analysis as a tool for elucidating molecular structure — iron pentacarbonyl — n—IT transitions — alkyl nitrites and rotary dispersions. O’Dwyer, M.F. Dissertation, Florida State University (1959) CA 54: 6303gGoogle Scholar
  783. C 782.
    Changes of fats during cooking. Ogawa, Y., Saito, N., Suga, K., and Togari, A. Eiyo To Shokuryo 12: 83–7 (1959) CA 59: 1 2091dGoogle Scholar
  784. C 783.
    Investigation of Candida with the fluoro-microscope. II. Influence of various chemicals and antibiotics on Candida albicans. Ohira, I., Ohashi, S., Iwasaki, F., and Endo, T. Chemotherapy (Tokyo) 7: 164–8 (1959) CA 53: 20269bGoogle Scholar
  785. C 784.
    Fluorescence of some metal chelate compounds of 8-quinolinol. I. Effect of metallic ions and solvent on spectrum and quantum yield. Ohnesorge, W.E., and Rogers, L.B. Spectrochim. Acta 1959: 27–40 (1959) CA 53: 13775fGoogle Scholar
  786. C 785.
    Intermolecular energy transfer and concentration depolarization of fluorescent light. Ore, A. J. Chem. Phys. 31: 442–3 (1959) CA 54: 2935bGoogle Scholar
  787. C 786.
    Phosphorescence of sodium acetate. Osada,K. J. Chem. Phys. 30: 1363–4 (1959) CA 53: 17684aGoogle Scholar
  788. C 787.
    Photoreduction of dyes in rigid media. I. Triphenylmethane dyes. Oster, G., Joussot-Dubien, J., and Broyde, B. J.Am. Chem. Soc. 81: 1869–72 (1959) CA 53: 18643dGoogle Scholar
  789. C 788.
    The (5-phenyl–2-oxazolyl) pyridines as fluorescent pH indicators. Oh, D.G. U.S. At. Energy Comm. LA–2252, 28 pp. (1959) CA 53: 1 1000gGoogle Scholar
  790. C 789.
    Quenching of the phosphorescence of organic dyes by electrolyte ions. Pankeeva, A.E. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 112–115 (1959) CA 53: 1 1992bGoogle Scholar
  791. C 790.
    Absorption and fluorescence spectra of uranyl nitrate solutions at room temp-erature. Pant, D.D., and Khandelwal, D.P. Proc. Indian Acad. Sci. 50A: 323–35 (1959) CA 54: 1493OfGoogle Scholar
  792. C 791.
    Temperature dependence of fluorescence bands of uranyl nitrate solutions. Pant, D.D., Khandelwal, D.P., and Bist, H.D. Current Sci. 28: 483–4 (1959) CA 54: 19156aGoogle Scholar
  793. C 792.
    Fluorescence spectra of uranyl Per-chlorate solutions at room temperature. Pant, D.D., and Khandelwal, D.P. J. Sei. Ind. Research 18B: 126–7 (1959) CA 53: 2 1165cGoogle Scholar
  794. C 793.
    Photolysis of thionine in rigid medium. Parker, CA., and Rees, W.T. J. Chim. Phys. 56: 761–70 (1959) CA 54: 7297gGoogle Scholar
  795. C 794.
    Raman spectra in spectrofluorimetry. Parker, CA.. Analyst 84: 446–53 (1959) CA 54: 155fGoogle Scholar
  796. C 795.
    Nitrogen mustard analogs of antimalarial drugs. Peck, R.M., Preston, R.K., and Greech, H.F. J.Am. Chem. Soc. 81: 3984–9 (1959) CA 55: 53 6i and 53 8eGoogle Scholar
  797. C 796.
    Aspects of absorption spectra and decay kinetics of the metastable triplet state. Pekkarinen, L. Suomen Kemistilehti 32A: 267–74 (1959) CA 54: 1 1697aGoogle Scholar
  798. C 797.
    Fluorescence spectra in crystallized solutions at 77°K. Pesteil, L., and Ciais, A. Compt. Rend. 249: 528–30 (1959) CA 54: 2935eGoogle Scholar
  799. C 798.
    Effect of the solvent on the electron spectra of phthalimides. Pikulik, L.G. Tr. Inst. Fiz. i Mat., Akad. Nauk Belorussk. SSR 1959: 167–75 (1959) CA 55: 20615gGoogle Scholar
  800. C 799.
    The phosphorescence of solid nitrogen. Pilon, A.M. Compt. Rend. 249: 1492–3 (1959) CA 54: 1 1693eGoogle Scholar
  801. C 800.
    Fluorescence in the 8-quinolinol family and the n–7r transition. Popovych, O., and Rogers, L.B. Spectrochim. Acta 1959: 584–92 (1959) CA 54: 6303fGoogle Scholar
  802. C 801.
    Intramolecular and intermolecular energy conversion involving change of multiplicity. Porter, G., and Wright, M.R. Discussions Faraday Soc. No. 27, 18–27 (1959) CA 54: 14937cGoogle Scholar
  803. C 802.
    Some characteristics of large band gap compound semiconductors. Prener, J.S., and Williams, F.E. Phys. Chem. Solids 8: 461–4 (1959) CA 53: 1 2850gGoogle Scholar
  804. C 803.
    Luminescence of stilbene crystals at 20°K. Prikhotiko, A.F., and Fugol, I.Y. Opt. i Spektroskopiya 7: 35–43 (1959) CA 54: 238l5iGoogle Scholar
  805. C 804.
    Widely distributed blue fluorescence of organic origin. Przibram, K. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Anz. 1959(11): 205–12 (1959) CA 54: 16193gGoogle Scholar
  806. C 805.
    Vibrational structure of phosphores-cence spectra of aromatic acids at the temperature of liquid oxygen. Pyatnitskii, BA. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 135–8 (1959) CA 53: 1 1991bGoogle Scholar
  807. C 806.
    Filter cigarets. Pyriki, C., and Moldenhauer, W. Pharm. Zentralhalle 98: 503–12 (1959) CA 54: 3864iGoogle Scholar
  808. C 807.
    Fluorescent response of cesium iodide crystals to heavy ions. Quinton, A.R., Anderson, C.E., and Knox, W.J. Phys. Rev. 115: 886–7 (1959) CA 54: 9526cGoogle Scholar
  809. C 808.
    Fluorimetric determination of boron with resacetophenone as a reagent. Rao, G.C., and Appalarju, N. Z. Anal. Chem. 167: 325–9 (1959) CA 53: 18742iGoogle Scholar
  810. C 809.
    Pressure effects in luminescence: Isobaric experiments on Nal (Tl). Reiffei, L. Phys. Rev. 114: 1493–9 (1959) CA 54: 6333fGoogle Scholar
  811. C 810.
    Ethynylation of an o-benzoquinone. Ried, W., Wesselburg, K., and Schmidt, K.H. Naturwissenschaften 46: 142–3 (1959) CA 53: 16018dGoogle Scholar
  812. C 811.
    Particle selection in crystals of Csl (Tl). Robertson, J.C., and Ward, A. Proc. Phys. Soc. 73: 523–5 (1959) CA 55: 147cGoogle Scholar
  813. C 812.
    The influence of intermolecular inter-action on the ultraviolet spectra of aromatic compounds. Romantsova, G.I. Tr. Nauchn.-Issled. Fiz.-Khim. Inst. 1959: 107–17 (1959) CA 54: 23836dGoogle Scholar
  814. C 813.
    Ultraviolet fluorescence of quinine sulfate for detection of phosphate ester spots on paper. Rorem, E.S. Nature 183: 1739–40 (1959) CA 53: 19706iGoogle Scholar
  815. C 814.
    Photoconduction and cis-trans isomer-ism in ß -carotene. Rosenberg, B. J. Chem. Phys. 31: 238–46 (1959) CA 53: 1086fGoogle Scholar
  816. C 815.
    Molecular phosphorescence at the temperature of liquid nitrogen: structure of the vibrations of various aromatic and heterocyclic derivatives. Rousset, A., Lochet, R., and Dubarry, J.C. Compt. Rend. 248: 54–7 (1959) CA 53: 11986iGoogle Scholar
  817. C 816.
    Transfers of activation of molecular crystals arising from retarded fluorescence of impurities in solid solution. Rousset, A., Lochet, R., Lacueille, R., and Moyer, Y. Compt. Rend. 248: 2045–8 (1959) CA 53: 1668 9eGoogle Scholar
  818. C 817.
    Luminescence spectra of some dicar-bonic acids at various temperatures. Ryazanova, E.F. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 193–6 (1959) CA 53: 1 1991gGoogle Scholar
  819. C 818.
    Phosphorescent decay of zinc sulfides. Soddy, J. J. Phys. Radium 20: 890–7 (1959) CA 54: 2959gGoogle Scholar
  820. C 819.
    Electron capture by low-lying levels of attachment in zinc sulfide phosphors activated by copper and cobalt. Saichenko, Y.M. Alma-Ata. Sbornik 1959: 93–6 (1959) CA 54: 2076aGoogle Scholar
  821. C 820.
    Colorimetric and fluorometric deter-mination of aluminum. Sandell, E.B. Colorimetric Determination of Traces of Metals pp. 219, 304, Interscience, N,Y. (1959)Google Scholar
  822. C 821.
    Phase equilibriums and manganese-activated fluorescence in the system Zn3(P04)-Mg3(P04)2. Sarver, J.F., Katnock, F.L., and Hummel, FA. J. Electrochem. Soc. 106: 960–3 (1959) CA 54: 2020dGoogle Scholar
  823. C 822.
    Luminescence method for determining the volumes of the solvate shells of molecules in solutions. Sarzhevskii, A.M., and Sevchenko, A.N. Zh. Fiz. Khim. 33: 2410–13 (1959) CA 54: 2 1998dGoogle Scholar
  824. C 823.
    Electronic spectra of exchange-coupled ion pairs in crystals. Schawlow, A.L., Wood, D.L., and Clogston, A.M. Phys. Rev. Letters 3: 271–3 (1959) CA 54: 4170bGoogle Scholar
  825. C 824.
    The constitution of the red and the colorless form of the quinolylmethanes. Scheibe, G., and Riess, W. Chem. Ber. 92: 2189–98 (1959) CA 54: 3423hGoogle Scholar
  826. C 825.
    Near-ultraviolet spectrum of crystalline durene. Schnepp, O., and McClure, D.S. J. Chem. Phys. 30: 874–8 (1959) CA 53: 15758cGoogle Scholar
  827. C 826.
    A measuring method for investigating fluorescent decay processes. Schutz, H. Z. Physik 156: 27–37 (1959) CA 53: 2 1200dGoogle Scholar
  828. C 827.
    Theory of radiation diffusion. EE. The nonstationary and stationary fluorescence. Seiwert, R. Optik 16: 358–70 (1959) CA 53: 2 1165bGoogle Scholar
  829. C 828.
    Calculation of the degree of polarization of the resonance fluorescence in the presence of radiation diffusion. Seiwert, R., and Ermisch, W. Ann. Physik 5: 4–14 (1959) CA 53: 4138fGoogle Scholar
  830. C 829.
    Quantum yield in the oxidation of firefly luciferin. Seliger, H.H., and McElroy, W.D. Biochem. Biophys. Res. Commun. 1: 21–4 (1959) CA 54: 10006aGoogle Scholar
  831. C 830.
    Limiting polarization of fluorescence. Sevchenko, A.N., Gurinovich, G.P., and Sarzhevskii, A.M. Dokl. Akad. Nauk SSSR 126: 979–82 (1959) CA 55: 19473iGoogle Scholar
  832. C 831.
    The symmetry of the porphyrin molecules. Sevchenko, A.N., Gurinovich, G.P., and Solov’ev, K.N. Dokl. Akad. Nauk SSSR 128: 510–13 (1959) CA 55: 1 2030hGoogle Scholar
  833. C 832.
    Spectroscopic investigation of uranyl compounds. Sevchenko, A.N., and Volod’ko, L.V. Inzh.-Fiz. Zh., Akad. Nauk Belorussk. SSR 1959: 63–71 (1959) CA 55: 18293dGoogle Scholar
  834. C 833.
    Fluorescent determination of inorganicsubstances. I. Fluorescent reaction of gallium with Rhodamine S and Rhoda-mine GG. Shcherbov, D.P., Solov’yan, I.T., Ivankova, A.I., and Drobachenko, A.V. Tr. Kazakhsk. Nauchn.-Issled. Inst. MineraPn. Syr’ya 1: 188–95 (1959) CA 55: 7142fGoogle Scholar
  835. C 834.
    Fluorescence studies of coenzyme binding to beef-heart lactic dehydro-genase. Shifria, S., Kaplan, N.O., and Ciotti, M.M. J. Biol. Chem. 234: 1555–62 (1959) CA 53: 16255eGoogle Scholar
  836. C 835.
    Effect of the position and of the nature of the substitute on the fluorescence spectra of anthraquinone derivatives in frozen solutions. Shigorin, D.N., Shcheglova, N.A., and Nurmukhametov, R.N. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 37–9 (1959) CA 53: 1 1989cGoogle Scholar
  837. C 836.
    The effect of the position and the nature of substituting groups on the fluorescence spectra of anthraquinone derivatives in frozen solutions. Shigorin, D.N., Shcheglova, N.A., Nurmukhametov, R.N., and Dokonikhin, N.S. Dokl. Akad. Nauk SSSR 120: 1242–5 (1959) CA 53: 15761bGoogle Scholar
  838. C 837.
    An artificial comet. Shklovskii, I.S., Esipov, V.F., Kurt, V.G., Moroz, V.I., and Shcheglov, P.V. Astron. Zh. 36: 1073–7 (1959) CA 54: 10499hGoogle Scholar
  839. C 838.
    Vibrational analysis of the phosphorescence spectrum of coronene. Shpol’skii, E.V., and Klimova, LA. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 23–8 (1959) CA 53: 1 1988bGoogle Scholar
  840. C 839.
    Diimidazoles. Siegrist, A.E., and Duennenberger, M. U.S. 2,899,440 (1959) CA 55: 575bGoogle Scholar
  841. C 840.
    Pyrrole derivatives. Siegrist, A.E., and Duennenberger, M. U.S. 2,091,480, Aug. 25, (1959) CA 55: 1659bGoogle Scholar
  842. C 841.
    Diimidazole derivatives. Siegrist, A.E., and Ackermann, F. Swiss 332,135 (1959) CA 54: 19716gGoogle Scholar
  843. C 842.
    (Fluorometrie determination of beryllium.) Sill, C.W., and Willis, C.P. Anal. Chem. 31: 598 (1959)Google Scholar
  844. C 843.
    Nonradiative transitions of 2-naphthyl-amine. Simon, Z. Acad. Rep. Populäre Romine, Studii Cereetari Fiz., Inst. Fiz. At. Inst. Fiz. 10: 317–28 (1959) CA 54: 7341hGoogle Scholar
  845. C 844.
    Relation between quenching of the fluor-escence of sensitizers by Pinakryptol Green and photographic activity. Smirnov, B.R., and Moshkovskii, Y.S. Zh. Nauchn. i Prikl. Fotogr. i Kinematogr. 4: 234–5 (1959) CA 53: 2 1301fGoogle Scholar
  846. C 845.
    Some optical measurements on calcium fluoride. Sorlich, P., Karras, H., and Kühne, K. Sitzber. Deut. Akad. Wiss. Berlin, Kl. Math., Phys. Tech. 1959, No. 2, 26 pp. (1959) CA 54: 21994cGoogle Scholar
  847. C 846.
    Chromatography of polycyclic aromatic hydrocarbons on acetylated paper. Spotswood, T.M. J. Chromatog. 2: 90–4 (1959) CA 53: 2 1435aGoogle Scholar
  848. C 847.
    Measurement of radiative lifetimes. I. An apparatus for measurement of milli-microsecond radiative lifetimes of gas-phase molecules. II. The radiative lifetime of the BOu+ state of 12 by two absolute absorption methods. Stafford, F.E. U.S. At. Energy Comm. UCR 8854: 1–96 (1959) CA 54: 1 1718bGoogle Scholar
  849. C 848.
    Furocoumarins. Stanley, W.L., and Vannier, S.H. U.S. 2,889,337 (1959) CA 53: 2 2021aGoogle Scholar
  850. C 849.
    New occurrences of coumarin derivatives in Fraxinus ornus. Steinegger, E., and Brantschen, A. Pharm. Acta Helv. 34: 334–44 (1959) CA 54: 7064iGoogle Scholar
  851. C 850.
    Energy transfer in aromatic vapors; the benzene-sensitized fluorescence of anthracene vapor at 2652 A. Stevens, B. Discussions Faraday Soc. No. 27, 34–9 (1959) CA 54: 14937eGoogle Scholar
  852. C 851.
    Quenching and vibrational-energy transfer of excited iodine molecules. Stevens, B. Can. J. Chem. 37: 831–4 (1959) CA 53: 16681ÌGoogle Scholar
  853. C 852.
    Effect of the electronic structure of the cation upon fluorescence in metal–8-quinolinol complexes. Stevens, H.M. Anal. Chim. Acta 20: 389–96 (1959) CA 53: 19661hGoogle Scholar
  854. C 853.
    Ultraviolet fluorescence of proteins. Teale, F.W.J., and Weber, G. Biochem. J. 72, 15 pp. (1959) CA 55: 24847hGoogle Scholar
  855. C 854.
    Solvent influence on phosphorescence spectra of sulfobenzoic and bromoben-zoic acids at low temperature. Teplyakov, PA.. Izv. Vysshikh Uchebn. Zavedenii, Fiz. 1959: 102–6 (1959) CA 54: 6302eGoogle Scholar
  856. C 855.
    Phosphorescence spectra of alcoholic solutions of aminobenzoic, sulfobenzoic, and bromobenzoic acids at low temperature. Teplyakov, PA. Izv. Vysshikh Uchebn. Zavedenii, Fiz. 1959: 135–9 (1959) CA 53: 19567gGoogle Scholar
  857. C 856.
    Exciton spectrum of cadmium sulfide. Thomas, D.G., and Hopfield, J.J. Phys. Rev. 116: 573–82 (1959) CA 54: 14971cGoogle Scholar
  858. C 857.
    Fluorescence induction phenomena in granular and lamellate chloroplasts. Thomas, J.B., and Juboer, J.F.W. J. Phys. Chem. 63: 39–44 (1959) CA 53: 8319eGoogle Scholar
  859. C 858.
    Discharge lamps and phosphors. Thomas, M.J., and Butler, K.H. U.S. 2,901,647 (1959) CA 53: 1132iGoogle Scholar
  860. C 859.
    A method of measuring temperature utilizing the thermal sensibility of fluorescent colors. Thureau, P. Publ. Sci. Tech. Min. Air No. 349, 131 pp. (1959) CA 54: 7321dGoogle Scholar
  861. C 860.
    Investigation of the spectral distribution of the luminescence decay time of ruby by the method of the pulse taumeter. Tolstoi, NA., and Tkachuk, A.M. Opt. i Spektroskopiya 6: 659–64 (1959) CA 53: 16712iGoogle Scholar
  862. C 861.
    Formal analysis of the theory of two-step excitation of phosphorescence and photoc onduc tiv ity. Tolstoi, NA. Opt. i Spektroskopiya 6: 665–71 (1959) CA 53: 16713aGoogle Scholar
  863. C 862.
    Usefulness of the thiosulfate method of zinc sulfide production for the synthesis of luminescent materials. Tombak, M.I., Popova, A.V., Komar, O.F., and Bundel, A A. ïzv. Akad. Nauk SSSR, Ser. Fiz. 23: 1363–9 (1959) CA 54: 6331iGoogle Scholar
  864. C 863.
    Molecular weights of sugar beet araban fractions. Tomimatsu, Y., Palmer, K.J., Goodban, A.E., and Ward, W.H. J. Polymer Sci. 36: 129–39 (1959) CA 53: 19520hGoogle Scholar
  865. C 864.
    The mechanism of photosensitized oxidation-reduction reactions. Tomita, G., and Takeyama, N. Kagaku 29: 662 (1959) CA 54: 20433aGoogle Scholar
  866. C 865.
    Fluorescence of deoxyribonucleic acid isolated from tissue of irradiated ani-mals. Toropova, G.P., and Pozdnyakov, A.L. Med. Radiol. 4: 57–60 (1959) CA 53: 19001aGoogle Scholar
  867. C 866.
    Phosphoryl chloride enhancement of fluorescence and absorbance of estrogens in sulfuric acid. Touchstone, J.C., Greene, J.W., and Kukovetz, W.R. Anal. Chem. 31: 1693–6 (1959) CA 54: 473 9iGoogle Scholar
  868. C 867.
    Fluorescence of the azulenium ions. Treibs, W„ and Scholz, M. Z. Physik. Chem. 212: 118–21 (1959) CA 54: 2007iGoogle Scholar
  869. C 868.
    Copper activated calcium orthophos-phate and related phosphors. Uehara, Y., Kobuke, Y., and Masuda, I. J. Electrochem. Soc. 106: 200–5 (1959) CA 54: 8826iGoogle Scholar
  870. C 869.
    Capture centers and nonisothermal relaxation processes in ammonium halide crystal phosphors. Uibo, L.Y. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Moscow 1958: 164–70 (1959) CA 55: 8070cGoogle Scholar
  871. C 870.
    Evaluation of colorants by spectropho-tometric methods. Ulrich, W.F., Kelley, F., and Nelson, D.C. Paint Ind. Mag. 741: 11–12 (1959) CA 53: 8657eGoogle Scholar
  872. C 871.
    Fluorescence of tryptophan derivatives in trifluoroacetic acid. Uphaus, RA., Grossweiner, L.I., Katz, J.J., and Kopple, K.D. Science 129: 641–2 (1959) CA 53: 13215iGoogle Scholar
  873. C 872.
    Study of photoelectric detection in pulsed operation. Application to spec-trometry of the Raman effect. Valentin, F. Ann. Phys. 4: 1239–90 (1959) CA 54: 9497aGoogle Scholar
  874. C 873.
    Influence of hydrogen on the red ZnS-Cu fluorescence. vanGool, W., and Cleiren, A.P.D.M. J. Electrochem. Soc. 106: 672–6 (1959) CA 53: 17683aGoogle Scholar
  875. C 874.
    The identification of belladonna leaves and tincture based on the fluorescence of chrysatronic acid. Varady, J. Gyogyszereszet 3: 296–300 (1959) CA 59: 10470hGoogle Scholar
  876. C 875.
    Absorption spectra and luminescence of cerium-containing glasses. Vargin, V.V., and Karapetyan, G.O. Glastech. Ber. 32: 443–50 (1959) CA 54: 8278iGoogle Scholar
  877. C 876.
    Self-absorption and trapping of sharp-line resonance radiation in ruby. Varsanyi, F., Wood, D.L., and Schawlow, A.L. Phys. Rev. Letters 3: 544–5 (1959) CA 54: 8296fGoogle Scholar
  878. C 877.
    Monochromatieally excited fluorescence in rare-earth salts. Varsanyi, F., and Dieke, G.H. J. Chem. Phys. 31: 1066–70 (1959) CA 54: 7336aGoogle Scholar
  879. C 878.
    Application of thermography in the investigation of zinc sulfide. Vasil’eva, E.G., and Fridman, SA. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 1347–50 (1959) CA 54: 6332eGoogle Scholar
  880. C 879.
    Instrumental method for measuring fluorescence and a study of fluorescent ruthenium polyamine complexes. Veening, H. Univ. Microfilms Mic 59–1653 (1959) CA 53: 18626cGoogle Scholar
  881. C 880.
    Fluorometric analysis of coenzyme binding and thiol interactions of glyceraldehyde–3-phosphate and lactic dehydrogenases. Velick, S.F. Sulfur Proteins, Proc. Symp. Falmouth, Mass. 1958: 267–78 (1959) CA 53: 18ll6fGoogle Scholar
  882. C 881.
    Mutual influence of some 9-monoderi-vatives of anthracene on the quantum yields of their photochemical transformations and fluorescence. Vember, T.M., and Cherkasov, A.S. Opt. i Spektroskopiya 6: 232–4 (1959) CA 54: 9491bGoogle Scholar
  883. C 882.
    Microscope phase fluorimeter for de-termining the fluorescence lifetimes of fluorochromes. Venetta,, B.D. Rev. Sci. Instr. 30: 450–7 (1959) CA 54: 13757cGoogle Scholar
  884. C 883.
    Estimation of ergot alkaloids in cultures of claviceps purpurea. Vining, L.C., and Tober, WA. Can. J. Microbiol. 5: 441–51 (1959) CA 54: 2664fGoogle Scholar
  885. C 884.
    Fluorescent substances from Drosophi-la melanogaster. XIII. Further contributions to the elucidation of the structure of the sepiapterins and the droso-pterins. Viscontini, M., and Mohlmann, E. Helv. Chim. Acta 42: 1679–83 (1959) CA 54: 4939hGoogle Scholar
  886. C 885.
    Fluorescence of aromatic amino acids in solutions, crystals, and proteins. Vladimirov, Y.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 86–9 (1959) CA 53: 1 2370eGoogle Scholar
  887. C 886.
    Ultraviolet absorption and fluorescence spectra of radicals produced by high-frequency discharge in vapors of toluene and octadeuterriated toluene and trapped at low temperature. Vocher, M., and Lortie, Y. J. Chim. Phys. 56: 732–5 (1959) CA 54: 6301gGoogle Scholar
  888. C 887.
    Additional absorption and fluorescence in activated alkali halide phosphors and the lattice energy. Vorab’ev, A A. Nauchn. Dokl. Vysshei Shkoly, Fiz.-Mat. Nauki 1959: 149–50 (1959) CA 54: 2 1986iGoogle Scholar
  889. C 888.
    Phthaladehyde as a reagent. Wachsmuth, H., Denissen, R., and van Koeckhoven, L. J. Pharm. Belg. 14: 386–91 (1959) CA 54: 15834fGoogle Scholar
  890. C 889.
    Reactions of ergotamine. Wachsmuth, H., and van Koeckhoven, L. J. Pharm. Belg. 14: 461–2 (1959) CA 54: 15834eGoogle Scholar
  891. C 890.
    Uranium-prospecting with the ultraviolet lamp. Walenta, K. Z. Erzbergbau Metallhuettenw. 12: 51–5 (1959) CA 53: 9920gGoogle Scholar
  892. C 891.
    Emission and absorption spectra of molecules of Acridine Yellow in the pre excited state. Walerys, H. Bull. Acad. Polon. Sei., Ser. Sei., Math., Astron. Phys. 7: 47–9 (1959) CA 53: 18626bGoogle Scholar
  893. C 892.
    Luminescence of copper-activated calcium and strontium orthophosphates. Wanmaker, W.L., and Bakker, C. J. Eleetrochem. Soc. 106: 1027–32 (1959) CA 54: 2960gGoogle Scholar
  894. C 893.
    Polarization of the ultraviolet fluorescence and electronic energy transfer in proteins. Weber, G„ and Teale, F.W.J. Biochem. J. 72: 15–16 (1959) CA 55: 24847iGoogle Scholar
  895. C 894.
    Comparison of concentration measure-ments of sulfur dioxide and fluorescent pigment. Wedin, B., Fressling, N., and Aurivillius, B. Advan. Geophys. 6: 425–7 (1959) CA 54: 3811cGoogle Scholar
  896. C 895.
    Fluorescence of some coumarins. Whellock, E. J.Am. Chem. Soc. 81: 1348–52 (1959) CA 54: 14938dGoogle Scholar
  897. C 896.
    Effect of pH on fluorescence of tyrosine, tryptophan, and related compounds. White, A. Biochem. J. 71: 217–20 (1959) CA 53: 5867bGoogle Scholar
  898. C 897.
    Solid-state high-intensity monochromatic light sources. Wieder, I. Rev. Sci. Instr. 30: 995–6 (1959) CA 54: 19028cGoogle Scholar
  899. C 898.
    Metalfluorochromic indicators. Wilkins, D.H. Talanta 2: 277–8 (1959) CA 54: 7411cGoogle Scholar
  900. C 899.
    Polarization of the phosphorescence of naphthalene and phenanthrene. Williams, R. J. Chem. Phys. 30: 233–7 (1959) CA 53: 10956gGoogle Scholar
  901. C 900.
    Fluorescence of some aromatic compounds in aqueous solution. Williams, R.T. J. Roy. Inst. Chem. 83: 611–26 (1959) CA 54: 2935hGoogle Scholar
  902. C 901.
    Absorption and fluorescence polarization spectra of some mono-and diamin-oacridines at low temperatures. Wittwer, A., and Zanker, V. Z. Physik. Chem. 22: 417–39 (1959) CA 54: 7338cGoogle Scholar
  903. C 902.
    Excitation spectra of the recombination luminescence of crystalline alkali halide phosphors. Yaek, I.V. Tr. Inst. Fiz. i Astron., Akad. Nauk Est. SSR 1959: 166–95 (1959) CA 54: 2 2038cGoogle Scholar
  904. C 903.
    Fluorescence of flavine enzymes. Yama, M.T. Osaka Daigaku Igaku Zasshi 11: 4311–17 (1959) CA 54: 14339aGoogle Scholar
  905. C 904.
    Fluorescence of naphthalimide derivatives. Effect of substituents on the radiation transition probability and the radiationless transition probability. Yasuda, K., Inukai, K., and Ito, K. Nippon Kagaku Zasshi 80: 960–2 (1959) CA 53: 2 1165hGoogle Scholar
  906. C 905.
    Fluorescence spectra of substituted naphthalimides. Solvent effect. Yasuda, K., Okabe, K., Inukai, K., and Ito, K. Nippon Kagaku Zasshi 80: 962–5 (1959) CA 53: 2 1166aGoogle Scholar
  907. C 906.
    Recent results of absorption fluorescence and fluorescence-polarization measurements on the Acridine Orange cation, a further contribution to the problem of metachromasia of the vital stain. Zanker, V., Held, M., and Rammensee, H. Z. Naturforsch. 14b: 789–801 (1959) CA 54: 14938gGoogle Scholar
  908. C 907.
    Further spectroscopic data on the deep color of 9-substituted acridines. Zanker, V., and Reichel, A. Z. Elektrochem. 63: 1133–40 (1959) CA 54: 5243cGoogle Scholar
  909. C 908.
    Afterglow of zinc sulfide on excitation with an electron beam of small current density. Zavrazhin, A.G., and Blazhevich, A.I. Materialy VII Soveshch. po Lyuminest. (Kristallofosfory), Akad. Nauk Est. SSR, Moscow 1958: 316–22 (1959) CA 55: 10095aGoogle Scholar
  910. C 909.
    Relation between the transition probability of complex organic molecules to the metastable state and the spectral composition of the emitted radiation. Zelinskii, V.V., Kolobkov, V.P., and Reznikova, 1.1. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 1269–72 (1959) CA 54: 7336cGoogle Scholar
  911. C 910.
    Temperature quenching of fluorescence. Zelinskii, V.V., Kolobkov, V.P., and Krasnitskaya, N.D. Opt. i Spektroskopiya 6: 417–19 (1959) CA 55: 10059cGoogle Scholar
  912. C 910a.
    Connection of the electronic absorption spectra and of the radiation of solutions of organic sub-stances with the chemical nature of the solvent. Zelinskii, V.V. Kolobkov, V.P., and Reznikova, I.I. Tr. Soveshch., Moscow 1958: 262–6 (1959) CA 54: 2 1998bGoogle Scholar
  913. C 911.
    Dependence of the polarization of the fluorescence of molecular crystals on the wave length of emission radiation. Zhevandrov, N.D., Gribkov, V.I., and Varfolomeeva, V.N. Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 57–61 (1959) CA 53: 1 1989fGoogle Scholar
  914. C 912.
    Universal scale for the action of solvents on the electron spectra of organic compounds. Zhmyreva, I.A., Zelinskii, V.V., Kolobkov, V.P., and Krasnitskaya, N.D. Dokl. Akad. Nauk SSSR 129: 1089–92 (1959) CA 55: 26658fGoogle Scholar
  915. C 913.
    Absorption and S-S luminescence spectra of aromatic crystals at 20°K: benzene, hexadeuterobenzene, naphthalene, octadeuteronaphthalene. Zmerli, A. J. Chim. Phys. 56: 387–404 (1959) CA 54: 347iGoogle Scholar
  916. C 914.
    The T-S luminescence spectra of aromatic crystals at 20°K: benzene, hexadeuterobenzene, naphthalene, octadeuteronaphthalene. Zmerli, A. J. Chim. Phys. 56: 405–17 (1959) CA 54: 347hGoogle Scholar
  917. C 915.
    Phosphorescence spectra of some phenols at liquid-oxygen temperature. Zudin, A A, Izv. Akad. Nauk SSSR, Ser. Fiz. 23: 142 (1959) CA 53: 1 1989iGoogle Scholar

Copyright information

© Plenum Press Data Division 1967

Authors and Affiliations

  • Richard A. Passwater
    • 1
  1. 1.Fluorescence InstrumentationAmerican Instrument CompanySilver SpringUSA

Personalised recommendations