Advertisement

(1954–1956)

  • Richard A. Passwater

Keywords

Nauk SSSR Fluorescence Spectrum Zinc Sulfide Cadmium Sulfide Fluorescent Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B 1.
    B 1 The determination of quality in fish by means of fluorescent compounds. Aker, H., and Appleman, M.D. Bacteriol. Proc. 54: 18–19 (1954) CA 51: 15829aGoogle Scholar
  2. B 2.
    B 2 The storage of energy in some activated alkali halide phosphors. Albrecht, H.O., and Mandeville, C.E. J. Franklin Inst. 257: 353–68 (1954) CA 54: 11195cGoogle Scholar
  3. B 3.
    B 3 Lining electron-tube envelopes with fluorescent materials. Anderson, J.T., and Ward, H.F. U.S. 2,676,894, April 27, 1954 CA 48: 9814cGoogle Scholar
  4. B 4.
    B 4 Fluorescent substance. Aoki, Y. Japan 967 (1954) CA 45: 13444cGoogle Scholar
  5. B 5.
    B 5 Fluorescence of adsorbed dyes, especially of Acridine Orange on aluminum oxide. Bandow, F. Z. Physik. Chem. 1: 63–8 (1954) CA 48: 9205iGoogle Scholar
  6. B 6.
    B 6 Energy transfer between chromophore and protein in phycoeyanin. Bannister, T.T. Arch. Biochem. Biophys. 49: 222–33 (1954) CA 48: 7093cGoogle Scholar
  7. B 7.
    B 7 Fluorescence of organic single crystals at low temperatures. III. Fluorene. Barbaron, M., and Pesteil, P. Compt. Rend. 238: 1400–2 (1954) CA 48: 10438hGoogle Scholar
  8. B 8.
    B 8 A supposed Raman spectrum of gaseous bromine. Barrow, R.F. J. Chem. Phys. 2: 1775 (1954) CA 49: 722dGoogle Scholar
  9. B 9.
    B 9 Fluorescent screens for cathode-ray tubes. Bayford, L.J.C., and Seats, P. U.S. 2,681,293, June 15, 1954 CA 48: 11200aGoogle Scholar
  10. B 10.
    B 10 Stabilization of the phosphorescence of the organic fluorescent adsorbates. Bernanose, A., Comte, M., and Vouaux, P. J. Chim. Phys. 51: 400–1 (1954) CA 49: 7390cGoogle Scholar
  11. B 11.
    B 11 Carbazole fluorescence. Bernanose, A., and Marquet, G. J. Chim. Phys. 51: 255–9 (1954) CA 48: 1343 8iGoogle Scholar
  12. B 12.
    B 12 Organic electroluminescence and phos-phorescence. Bernanose, A., and Michon, F. J. Chim. Phys. 51: 622–3 (1954) CA 49: 4409bGoogle Scholar
  13. B 13.
    B 13 Temperature dependence of organic scintillation materials. Birks, J.B. Phys. Rev. 95: 277 (1954) CA 48: 9824cGoogle Scholar
  14. B 14.
    B 14 Energy transfer in organic phosphors. Birks, J.B. Phys. Rev. 94: 1567–73 (1954) CA 48: 9205bGoogle Scholar
  15. B 15.
    B 15 Raman and fluorescence spectra of o -and p-bromotoluene in the solid state at low temperatures. Biswas, D.C. Indian J. Phys. 28: 423–30 (1954) CA 51: 7865iGoogle Scholar
  16. B 16.
    B 16 Fluorescence spectra of organic crystals. Birks, J.B., and Wright, G.T. Proc. Phys. Soc. 67B: 657–63 (1954) CA 49: 728fGoogle Scholar
  17. B 17.
    B 17 The fluorescence of some phenolic steroid urinary extracts in connection with the hydrolytic procedure (hydrochloric acid or glucuronidase). Bompiani, A. Boll. Soc. Ital. Biol. Sper. 30: 865–8 (1954) CA 49: 12563bGoogle Scholar
  18. B 18.
    B 18 Spectrophotometry of the fluorescence of 11 -deoxyc or tic o s te rone, 11 -hydroxy-corticosterone, and 17-hydroxy-ll-dehydrocorticosterone in color reactions in various solvents. Bompiani, A. Boll. Soc. Ital. Sper. 30: 868–71 (1954) CA 49: 12563cGoogle Scholar
  19. B 19.
    B 19 The spectrophotometric character of the fluorescence of 16-ketoestradiol in color reactions in various solvents. Bompiani, A. Boll. Soc. Ital. Biol. Sper. 30: 871–3 (1954) CA 49: 12563dGoogle Scholar
  20. B 20.
    B 20 The yield of fluorescence of the vapors and solutions of substituted phthalimides. Borisevich, HA., Zelinskii, V.V., and Neporent, B.S. Dokl. Akad. Nauk SSSR 94: 37–9 (1954) CA 50: 6l96fGoogle Scholar
  21. B 21.
    B 21 Action of foreign gases on the fluores-cence of vapors of aromatic compounds. Borisevich, N.A. Dokl. Akad. Nauk SSSR 99: 695–8 (1954) CA 49: 15499iGoogle Scholar
  22. B 22.
    B 22 Fluorescence quenching in solution and in the vapor state. Bowen, E.J. Trans. Faraday Soc. 50: 90–102 (1954) CA 48: 12560eGoogle Scholar
  23. B 23.
    B 23 Fluorescence. Bowen, E.J. J. Oil Colour Chemists1 Assoc. 37: 264–7 (1954) CA 48: 11903eGoogle Scholar
  24. B 24.
    B 24 The fluorescence spectra of coronene and 1,12-benzoperylene at low temperatures. Bowen, E.J., and Brocklehurst, B. J. Chem. Soc. 1954: 3875–8 (1954) CA 49: 3667hGoogle Scholar
  25. B 25.
    B 25 An experimental study of the transfer of energy of excitation between unlike molecules in liquid solution. Bowen, E.J., and Livingston, R. J.Am. Chem. Soc. 76: 6300–4 (1954) CA 49: 5131iGoogle Scholar
  26. B 26.
    B 26 Polarization correction in the deceleration of fast electrons of 3 to 15 MeV. Breitling, G., and Glocker, R. Naturwissenschaften 41: 471–2 (1954) CA 49: 10759dGoogle Scholar
  27. B 27 Emission of the forbidden bands (3S+–3Sg) of 02. Broida, H.P., and Gaydon, A.G. J. Phys. Radium 15: 385–7 (1954) CA 48: lll87eGoogle Scholar
  28. B 28 Phosphorescence of atoms and molecules of solid nitrogen at 4.2°K. Broida, H.P., and Pellam, J.R. Phys. Rev. 95: 845–6 (1954) CA 48: 1 1932hGoogle Scholar
  29. B 29 The fluorescence of liquid egg. I. The relation between the fluorescence and the mustiness of frozen whole egg. Brooks, J. Food Technol. 8: 400–5 (1954) CA 50: ll548iGoogle Scholar
  30. B 30.
    B 30 Fluorescence analytical investigation on secondary uranium minerals. Bultemann, H.W. Neues Jahrb. Mineral., Abhandl. 86: 155–62 (1954) CA 49: 2957gGoogle Scholar
  31. B 31 Energy transfer from solvents to solute in liquid organic solutions under ultra-violet excitation. Cohen, S.G., and Weinreb, A. Phys. Rev. 93: 1117 (1954) CA 48: 6838eGoogle Scholar
  32. B 32 Luminescent substances. Compagnie des Lampes. Fr. 1,077,637 (1954) CA 53: 13801hGoogle Scholar
  33. B 33.
    B 33 Luminescence characteristics of some scintillating crystals. Cook, J.R., and Mahmoud, KA. Proc. Phys. Soc. 67B: 817–24 (1954) CA 49: 1439dGoogle Scholar
  34. B 34.
    B 34 The fluorescence of biaeetyl vapor at 4358 A. Coward, N.A., and Noyes, WA. J. Chem. Phys. 22: 1207–10 (1954) CA 48: 13439dGoogle Scholar
  35. B 36 Stimulation of calcium oxide phosphorescence. Crozet, A., and Janin, J. Compt. Rend. 239: 1031–4 (1954) CA 49: 5l30eGoogle Scholar
  36. B 37 Type lib diamonds. Custers, J.F.H. Physica 20: 183–4 (1954) CA 52: 5121c and CA 48: 1 1932gGoogle Scholar
  37. B 38 Kinetics of the coloration and lumines-cence of vitreous silica induced by ir-radiation with X-and y-rays, with ob-servations on related phenomena. Dainton, F.S., and Rowbottom, J. Trans. Faraday S oc. 50: 480–93 (1954) CA 49: 728bGoogle Scholar
  38. B 39 A browning reaction between thiamine and glucose, de Lange, P. Nature 173: 1040–1 (1954) CA 48: 116621Google Scholar
  39. B 40 Spectrophotometric analysis of the fluorescence of the pigmented material of the “residual body” (corpora lutea) of Onthoptera. DeLerma, B. Boll. Soc. Ital. Biol. Sper. 30: 1311–14 (1954) CA 49: 12737aGoogle Scholar
  40. B 41 Microspectrography of the fluorescence of the pigmented material of the “residual body” (corpora lutea) of insects. DeLerma, B. Boll. Soc. Ital. Biol. Sper. 30: 1309–11 (1954) CA 49: 12736iGoogle Scholar
  41. B 42.
    B 42 Phenomenon of luminescence in mineralogy. Deribere, M. Bull. Soc. Franc. Mineral. Crist. 77: 939–52 (1954) CA 49: 61bGoogle Scholar
  42. B 43.
    B 43 Emission spectra of electroluminescent substances with multiple activators. Destriau, G. J. Phys. Radium 15: 13–15 (1954) CA 48: 6260eGoogle Scholar
  43. B 44.
    B 44 Theory of concentration quenching in inorganic phosphors. Dexter, D.L., and Schulman, J.H. J. Chem. Phys. 22: 1063–70 (1954) CA 48: 12559gGoogle Scholar
  44. B 45.
    B 45 Luminescence of photographic silver halide emulsions at low temperatures. Dorfner, K.R., and Joos, G. Sitzber. Math.-Naturw. Kl. Bayer. Akad. Wiss. Muenchen. 1953: 63–7 (1954) CA 49: 8715fGoogle Scholar
  45. B 46.
    B 46 Derivatives of o-hydroxyquinoline. Dorier, P., Tronche, P., and Blanquet, P. Trav. Soc. Pharm. Montpellier 14: 152–5 (1954) CA 50: 1011aGoogle Scholar
  46. B 47.
    B 47 A twin-beam null-point fluorimeter for the analysis of liquid samples. Dowdall, J.P., and Stretch, H. Analyst 79: 651–5 (1954) CA 49: 77IdGoogle Scholar
  47. B 48.
    B 48 Fluorescence phenomena during germination of Brassiceae. Eifrig, H. Ber. Deut. Botan. Ges. 67: 300–10 (1954) CA 49: 5597cGoogle Scholar
  48. B 49.
    B 49 A comparison of the intensities of the Raman effect and fluorescence. Eisenbrand, J. Optik 11: 557–61 (1954) CA 49: 5965fGoogle Scholar
  49. B 50.
    B 50 X-ray-induced photo stimulated conductivity in magnesium oxide. Eisenstein, A.S. Phys. Rev. 93: 1017–18 (1954) CA 48: 6818cGoogle Scholar
  50. B 51.
    B 51 The longlived phosphorescent components of thallium-activated sodium iodide. Emigh, C.R., and Megill, L.R. Phys. Rev. 93: 1190–4 (1954) CA 48: 6837gGoogle Scholar
  51. B 52.
    B 52 Quenching and degree of polarization of fluorescence in solutions. Epple, R., and Forster, T. Z. Elektrochem. 58: 783–7 (1954) CA 49: 7987gGoogle Scholar
  52. B 53.
    B 53 The photooxidation of 6,13 -diphenylpent-acene and 5,7,12,14-tetraphenylpentacene. Etienne, A., and Beauvois, C. Compt. Rend. 239: 64–6 (1954) CA 50: 3375cGoogle Scholar
  53. B 54.
    B 54 The phosphorescence spectra of naph-thalene and some simple derivatives. Ferguson, J., Iredale, T., and Taylor, J A, J. Chem. Soc. 1954: 3160–5 (1954) CA 49: 2869bGoogle Scholar
  54. B 55 A fluorometer for solutions. Fletcher, M.H., and Warner, E.R. U. S. Geol. Surv., Circ. No. 311, 9 pp. (1954) CA 48: 13278iGoogle Scholar
  55. B 56.
    B 56 Basic theory and fundamentals of fluorescent X-ray spectrographs analysis. Friedman, H., Birks, L.S., and Brooks, E.J. Symp. Fluorescent X-ray Spectrographs Anal., ASTM Spec. Tech. Publ. 157: 3–26 (1954) CA 48: 9257hGoogle Scholar
  56. B 57.
    B 57 Activation and deactivation of fluores-cence in electronic systems. IV. Activation and deactivation of fluorescence in fluorescein derivatives. Fujimori, E. J. Chem. Soc. Japan 75: 24–7 (1954) CA 48: 4982aGoogle Scholar
  57. B 58.
    B 58 Energy transfer by means of collision in liquid organic solutions under high-energy and ultraviolet excitations. Furst, M., and Kallmann, H. Phys. Rev. 94: 503–7 (1954) CA 48: 8058bGoogle Scholar
  58. B 59 New fluorimeter for the determination of uranium. Galvanek, P., and Morrison, T.J. U.S. At. Energy Comm. ACCO–47 (1954) CA 49: 6bGoogle Scholar
  59. B 60 Anisotrophy of fluorescence of some organic crystals. Ganguly, S.C., and Chaudhury, N.K. Phys. Rev. 95: 1148–52 (1954) CA 48: 1 2560dGoogle Scholar
  60. B 61 Energy transfer in irradiated solutions of mixed phosphors. Germann, F.E.E., Brown, F.T., Wissell, R., and Waugh, T.D. Science 120: 540–2 (1954) CA 49: 4410iGoogle Scholar
  61. B 62 Luminescent screens. Gier, J JD. U.S. 2,665,220 (1954) CA 48: 6264bGoogle Scholar
  62. B 63 Behavior of optical bleaching agents on cellulosic materials. Glarum, S.N., and Penner, S.E. Am. Dyestuff Reptr. 43, Proc. Am. Assoc. Textile Chemists Colorists P310–14 (1954) CA 48: 9072cGoogle Scholar
  63. B 64 The fluorescence reactions of steroids. Goldzieher, J.W., Bodenchuk, J.M., andNolan, P. Anal. Chem. 26: 853–6 (1954) CA 48: lll96fGoogle Scholar
  64. B 65 Roots. I. Properties and distribution of fluorescent constituents in Avena roots. Goodwin, R.H., and Pollock, B.M. Am. J. Botany 41: 516–20 (1954) CA 48: 1 2255dGoogle Scholar
  65. B 66.
    B 66 Investigation of polarizational charact-eristics of luminescence of complex organic compounds by the photoelectric method. Gribkov, V.I., and Zhevandrov, N.D. Dokl. Akad. Nauk SSSR 98: 565–8 (1954) CA 50: 1471cGoogle Scholar
  66. B 67.
    B 67 Fluorescence and thermoluminescence of ice. Grossweiner, L.I., and Matheson, M.S. J. Chem. Phys. 22: 1514–26 (1954) CA 49: 60hGoogle Scholar
  67. B 68.
    B 68 The fluorescence of gases on impact of fast particles. Grun, A.F. Z. Naturforsch. 9a: 55–63 (1954) CA 48: 8058cGoogle Scholar
  68. B 69.
    B 69 Investigation of energy transfer and quenching processes in gases on excit-ation with fast particles. Grun, A.E., and Schopper, E. Z. Naturforsch. 9a: 134–47 (1954) CA 48: 8657hGoogle Scholar
  69. B 70.
    B 70 Luminescence studies on fluorite and other minerals. Haberlandt, V.H. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Sitzber., Abt. I 163: 375–99 (1954) CA 49: 12969fGoogle Scholar
  70. B 71.
    B 71 Slow component in decay of fluors. Harrison, F.B. Nucleonics 12: 24–5 (1954) CA 48: 6839cGoogle Scholar
  71. B 72.
    B 72 Salt effects on the rates of fast reactions in aqueous solutions. Harty, W.E., and Rollefson, G.K. J. Am. Chem. Soc. 76: 4811–15 (1954) CA 49: 2841aGoogle Scholar
  72. B 73.
    B 73 Identification of cardiac glycosides and aglycones in Strophanthus seeds by paper chromatography. Heftmann, E., Berner, P., Hayden, A.L., Miller, H.K., and Mosettig, E. Arch. Biochem. Biophys. 37: 329–39 (1954) CA 48: 1293leGoogle Scholar
  73. B 74.
    B 74 Molecular-weight determination of high polymer chains by fluorescence and spectroscopic methods. Heintz, E. J. Phys. Radium 15: 219–21 (1954) CA 48: 7986hGoogle Scholar
  74. B 75.
    B 75 Secondary radiation effects in the photo-graphic action of Qf-rays. Herz, R.H. Strahlentherapie 94: 455–9 (1954) CA 48: 1345leGoogle Scholar
  75. B 76.
    B 76 Elimination of the fluorescence of estro-gens in urinary extracts by hydrogen peroxide. Heusghem, C. Nature 173: 1043–4 (1954) CA 48: 11535dGoogle Scholar
  76. B 77.
    B 77 The luminescence of high polymers. Hinrichs, I.H. Z. Naturforsch. 9a: 617–24 (1954) CA 49: 2873bGoogle Scholar
  77. B 78.
    B 78 Fluorescence spectra of the condensation products of salicylaldehyde and their salts. Holzbecher, Z. Chem. Listy 48: 1160–6 (1954) CA 48: 13543dGoogle Scholar
  78. B 79.
    B 79 Fluorimetry. Indemans, A.W.M. Chem. Weekblad. 50: 236–40 (1954) CA 48: 8691dGoogle Scholar
  79. B 80.
    B 80 Fluorometrie analyses. I. Trial construction of fluorophotometer and fluorocolorimetric determination of aluminum with morin. Ishibashi, M., Shigematsu, T., and Nakegawa, Y. Japan Analyst 3: 294–6 (1954) CA 49: 14561aGoogle Scholar
  80. B 81.
    B 81 Organic phosphors having metallic com-pounds as the phosphorescent bodies. Iwaski, R. J. Chem. Soc. Japan, Pure Chem. Sect. 75: 524–30 (1954) CA 48: 8057cGoogle Scholar
  81. B 82.
    B 82 Dye-gelatin phosphors. II. The lifetime of phosphorescence. Iwaki, R. J. Chem. Soc. Japan, Pure Chem. Sect. 75: 843–8 (1954) CA 48: 11196dGoogle Scholar
  82. B 83.
    B 83 Yield of anti-Stokes fluorescence of dye solutions. Jablonski, A. Acta Phys. Polon. 13: 239–42 (1954) CA 49: 8705aGoogle Scholar
  83. B 84.
    B 84 Measurement of fluorescent spectra. Jatkar, S.K.K., and Mattoo, B.N. J. Univ. Poona, Sci. Technol. 6: 67–73 (1954) CA 49: 15498gGoogle Scholar
  84. B 85 The Raman and fluorescence spectra of allyl diglycol carbonate. Jeppesen, MA. Phys. Rev. 98: 1211 (1954) CA 50: 10513bGoogle Scholar
  85. B 86.
    B 86 Influence of condensing oxygen on the fluorescence and absorption spectra of anthraquinone derivatives in the adsorbed state. Karyakin, A.V., and Terenin, A.N. Dokl. Akad. Nauk SSSR 97: 479–82 (1954) CA 49: 12970hGoogle Scholar
  86. B 87.
    B 87 Organic phosphorescence. I. Kato, S., and Koizumi, M. Bull. Chem. Soc. Japan 27: 189–94 (1954) CA 49: 7390eGoogle Scholar
  87. B 88.
    B 88 Fluorescence spectra of crude oils and their fractions in the liquid state and on a chromatographic column. Kats, M.L., and Sidorov, N.K. Uch. Zap. Saratovsk. Gos Univ. Vypusk Fiz. 40: 3–59 (1954) CA 54: 10291fGoogle Scholar
  88. B 89 Fluorophotometer for determination of uranium in fused sodium fluoride pellets. Kelley, M.T., Hemphill, H.L., and Collier, D.M. U.S. At. Energy Comm. ORNL–1445, 15 pp. (1954) CA 48: 8596iGoogle Scholar
  89. B 90 Spectro-photoelectric colorimetry. Ketelaar, J A A. Chem. Weekblad. 50: 225–30 (1954) CA 48: 8689iGoogle Scholar
  90. B 91 Model VI transmission fluorimeter for determination of uranium. Kinser, CA. U.S. Geol. Surv., Circ. No. 330, 9 pp. (1954) CA 48: 9813fGoogle Scholar
  91. B 92 The theory of colored glass. Kocik, J. Sklar Keram. 4: 255–62 (1954) CA 50: 10359fGoogle Scholar
  92. B 93 Influence of the addition of high-molecular electrolytes upon the absorption spectra and fluorescence of organic dyestuffs. n. Koizumi, M., and Mataga, N. Bull. Chem. Soc. Japan 27: 194–7 (1954) CA 49: 7382cGoogle Scholar
  93. B 94 Light-filter combination for observation of fluorescence in entire spectral range. Kolbel, H. Naturwissenschaften 41: 550 (1954) CA 49: 12l35iGoogle Scholar
  94. B 95.
    B 95 Photochromy of dehydrobianthrones. Kortum, G., Theilacker, W., and Braun, V. Z. Physik. Chem. 2: 179–96 (1954) CA 49: 722bGoogle Scholar
  95. B 96.
    B 96 Studies on the oxy-acid phosphors, n. Vanadate phosphors. Kotera, Y., and Sekine, T. Bull. Chem. Soc. Japan 27: 13–18 (1954) CA 49: 7986eGoogle Scholar
  96. B 97.
    B 97 The origin of the fluorescence in self-activated zinc sulfide, cadmium sulfide, and zinc oxide. Kroger, FA., and Vink, H.J. J. Chem. Phys. 22: 250–2 (1954) CA 48: 5655aGoogle Scholar
  97. B 98.
    B 98 Investigation on zinc sulfide crystals. Krumbiegel, J. Z. Naturforsch. 9a: 903–4 (1954) CA 49: 5l30gGoogle Scholar
  98. B 99 Fluorescent film. Kubota, C., and Higashide, F. Japan 8440, Dec. 21, 1954 CA 50: 9162gGoogle Scholar
  99. B 100.
    B 100 Optical properties of cadmium sulfide in glass. Kuwabara, G. J. Phys. Soc. Japan 9: 992–6 (1954) CA 50: 1462dGoogle Scholar
  100. B 101.
    B 101 Absorption and fluorescence of crystal violet, methyl violet, and malachite green. Laffitte, E., and Dubreuil, Y. Compt. Rend. 238: 787–9 (1954) CA 48: 865lhGoogle Scholar
  101. B 102.
    B 102 Luminescence of vitreous silica. Lautout, M. Compt. Rend. 238: 2409–10 (1954) CA 48: 13438dGoogle Scholar
  102. B 103.
    B 103 Surface states of cadmium sulfide. Liebson, S.H. J. Electrochem. Soc. 101: 359–62 (1954) CA 50: 5liGoogle Scholar
  103. B 104.
    B 104 Spectroscopic investigation of the fluorescence of nitro compounds. Lippert, E. Z. Physik. Chem. 2: 328–35 (1954) CA 49: 8704iGoogle Scholar
  104. B 105.
    B 105 The influence of the solvent on the electronic spectra of intramolecular ionic aromatic compounds. Lippert, E., and Moll, F. Z. Elektrochem. 58: 718–24 (1954) CA 49: 7976cGoogle Scholar
  105. B 106.
    B 106 Fluorescent spectra of solid solutions of naphthalene with added anthracene. Lipsett, F., and Dekker, A.J. Nature 173: 736–7 (1954) CA 48: 9813aGoogle Scholar
  106. B 107.
    B 107 Absorption spectra and fluorescence of extraction products from blood and intestine of the normal or diabetic animal. Loubatieres, A., and Boayard, P. J. Physiol. 46: 437–41 (1954) CA 49: 7l04dGoogle Scholar
  107. B 108.
    B 108 Vibration temperature in the phosphorescence spectrum of the Swan bands of the C2 molecule. Lukacs, G., and Herman, L. Compt. Rend. 239: 640–2 (1954) CA 49: 2184bGoogle Scholar
  108. B 109 Internal vibrational structure found in the low-temperature fluorescence of silver nitrate crystals. Makishima, S., and Tomotsu, T. Bull. Chem. Soc. Japan 27: 476 (1954) CA 49: 10057aGoogle Scholar
  109. B 110.
    B 110 A problem of solid-state physics. Fun-damental absorption and recombination. Makishima, S., and Tomotsu, T. Kagaku 24: 292–4 (1954) CA 48: 9205eGoogle Scholar
  110. B 111.
    B 111 Interferometric analysis of the fluor-escent spectrum of iodine vapor. Malamond, C., and Boiteux, H. Compt. Rend. 238: 778–80 (1954) CA 48: 6838fGoogle Scholar
  111. B 112.
    B 112 Influence of the addition of sodium and potassium alcohol-sulfonic esters upon the absorption spectra and fluorescence of aqueous dye solutions. Mataga, N., and K oizumi, M. J. Chem. Soc. Japan 75: 273–6 (1954) CA 48: 5648bGoogle Scholar
  112. B 113 Fluorescence measurements with the Beckamn Model DC1 spectrophotometer. McAnally, J.S. Anal. Chem. 26: 1526 (1954) CA 49: 1382hGoogle Scholar
  113. B 114.
    B 114 Excited states of the naphthalene molecule. I. Symmetry properties of the first two excited singlet states. McClure, D.S. J. Chem. Phys. 22: 1668–75 (1954) CA 49: 719fGoogle Scholar
  114. B 115.
    B 115 The band fluorescence of mercury vapor. McCoubrey, A.O. Phys. Rev. 93: 1249–60 (1954) CA 48: 6838gGoogle Scholar
  115. B 116.
    B 116 Quenching of fluorescence by flavonoids and other substances. McLaughlin, J A., and Szent-Gyorgyi, A. Enzymologia 16: 384–9 (1954) CA 49: 10066gGoogle Scholar
  116. B 117.
    B 117 Quenching of the fluorescence of an-thracene. Transition from strong to weak quenching. Melhuish, H.W., and Metcalf, W.S. J. Chem. Soc. 1954: 976–9 (1954) CA 48: 6839dGoogle Scholar
  117. B 118.
    B 118 Fluorescence of adrenaline compounds. Mesnard, P., Romain, P., and Marzat, J. Bull. Soc. Pharm. Bordeaux 92: 121–5 (1954) CA 50: 1472cGoogle Scholar
  118. B 119.
    B 119 Quenching of the fluorescence of an-thracene gas. Metcalf, W.S. J. Chem. Soc. 1954: 2485–6 (1954) CA 48: 11196cGoogle Scholar
  119. B 120 Resonance fluorescence with nuclei: rp–203 Metzger, F.R., and Todd, W.B. Phys. Rev. 95: 627 (1954) CA 50: 10545cGoogle Scholar
  120. B 121 Nuclear resonance fluorescence in mercury and the lifetime of the 411 keV excited state of mercury. Metzger, F.R., and Todd, W.B. Phys. Rev. 95: 853–4 (1954) CA 48: 1 1922aGoogle Scholar
  121. B 122.
    B 122 Physical and chemical consequences of advanced spontaneous heating in stored soybeans. Mihier, M., and Thompson, J.B. J. Agr. Food Chem. 2: 303–9 (1954) CA 48: 5396gGoogle Scholar
  122. B 123.
    B 123 Inter-and intramolecular energy transfer processes. 133. Phosphorescence bands of some carcinogenic aromatic hydrocarbons. Moodie, M.M., and Reid, C. J. Chem. Phys. 22: 252–4 (1954) CA 48: 5655dGoogle Scholar
  123. B 124.
    B 124 Spectrometric studies of the persistence of fluorescent derivatives of carcinogens in mice. Moodie, M.M., Reid, C., and Wallick, C A. Cancer Res. 14: 367–71 (1954) CA 48: 11627eGoogle Scholar
  124. B 125.
    B 125 Design and use of an integrating-type eleetrophotometer on the colorimetric and fluorometric analysis. Musha, S., and Ito, M. Japan Analyst 3: 316–20 (1954) CA 49: 14392gGoogle Scholar
  125. B 126.
    B 126 Fluorescence spectra of steroids, especially corticosteroids. Nakao, T., Aizawa, Y., and Ui, H. Jikeikai Med. J. 1: 81–94 (1954) CA 49: 15484aGoogle Scholar
  126. B 127.
    B 127 A study of anti-Stokes fluorescence of vapors of aromatic compounds. Neporent, B.S., and Borisevich, NA. Dokl. Akad, Nauk SSSR 94: 447–50 (1954) CA 50: 6925iGoogle Scholar
  127. B 128.
    B 128 Fluorescence and phosphorescence spectra of phthalimide and its derivatives in frozen solutions. Neporent, B.S., and Inyushin, A.I. Dokl. Akad. Nauk SSSR 98: 197–200 (1954) CA 49: 12970dGoogle Scholar
  128. B 129.
    B 129 Fluorescence of nitrogen dioxide. Neuberger, D., and Duncan, A.B.F. J. Chem. Phys. 22: 1693–6 (1954) CA 49: 728iGoogle Scholar
  129. B 130.
    B 130 Effect of sedormid (allylisopropylace-tyl carbamide) on the developing chick embryo. Frisch, A.W., Talman, E.L., Aldrich, R.A., Neve, RA., and Case, J.D. Proc. Soc. Exptl. Biol. Med. 85: 573–5 (1954) CA 48: 10232cGoogle Scholar
  130. B 131.
    B 131 Influence of foreign ions on intensity of fluorescence and afterglow of calcium wolframate phosphor for X-rays. Nishikawa, K. J. Chem. Soc. Japan 57: 795–7 (1954) CA 49: 10747bGoogle Scholar
  131. B 132 Fluorescent substance. Nishikawa, K., and Yamamoto, M. Japan 110 (1954) CA 48: 1 2562eGoogle Scholar
  132. B 133.
    B 133 Electrical conductivity of some con-densed aromatic hydrocarbons. Northrop, D.C., and Simpson, O. Proc. Phys. Soc. 67B: 892–4 (1954) CA 49: 5058iGoogle Scholar
  133. B 134.
    B 134 A treatment of chemical kinetics with special applicability to diffusion-controlled reactions. Noyes, R.N. J. Chem. Phys. 22: 1349–59 (1954) CA 48: 13372fGoogle Scholar
  134. B 135.
    B 135 Spectrophotometric measurements on high-pressure mercury vapor lamps. Parolini, G. Ingegnere 28: 253–8 (1954) CA 48: 1193OdGoogle Scholar
  135. B 136 Fluorescent lakes. Pecquery, R. Fr. 1,065,432 (1954) CA 52: 19177aGoogle Scholar
  136. B 137.
    B 137 The passivity of the 11-keto steroids with respect to the phenomena of halo-chromism and halofluorescence. Pesez, M. Bull. Soc. Chim. France 1954: 1070–2 (1954) CA 49: 5125cGoogle Scholar
  137. B 138.
    B 138 Fluorescence of crystalline fluorene. Pesteil, P., and Pesteil, L. Compt. Rend. 238: 75–7 (1954) CA 48: 6839bGoogle Scholar
  138. B 139.
    B 139 Fluorescence of several aromatic crystals. Discussion of the results. Pesteil, P., and Pesteil, L. Compt. Rend. 238: 226–8 (1954) CA 48: 9182iGoogle Scholar
  139. B 140.
    B 140 Fluorescence of single crystals at low temperatures. IV. Benzophenone. Pesteil, P., and Barbaron, M. Compt. Rend. 238: 1789–90 (1954) CA 48: 98l2eGoogle Scholar
  140. B 141.
    B 141 Fluorescence spectra of aromatic crystals at low temperatures. Pesteil, P., and Barbaron, M. J. Phys. Radium 15: 92–8 (1954) CA 48: 98l2gGoogle Scholar
  141. B 142.
    B 142 Polarization of the fluorescence of several organic single crystals. Pesteil, P. J. Phys. Radium 15: 407–9 (1954) CA 49: 2873fGoogle Scholar
  142. B 143.
    B 143 The triplet state in fluid solvents. Porter, G., and Windsor, M.W. Discussions Faraday Soc. 1954: 178–86 (1954) CA 49: 15469iGoogle Scholar
  143. B 144.
    B 144 Polystyrene scintillators. Prins, W., and de Waard, H. Plastica 7: 240–4 (1954) CA 48: 14289fGoogle Scholar
  144. B 145.
    B 145 Fluorescence-photometrical identification of the rectified olive oils. Prowedi, F. Olii Minerali, Grassi Saponi, Colori Vernici 31: 139–43 (1954) CA 49: 5005iGoogle Scholar
  145. B 146.
    B 146 Measurement of organic fluorescence decay times. Ravilious, C.F., Farrar, R.T., and Libson, S.H. J. Opt. Soc. Am. 44: 238–41 (1954) CA 48: 6273egGoogle Scholar
  146. B 147 Decomposition in liquid scintillation systems. Re id, C. J. Chem. Phys. 22: 1947 (1954) CA 49: 2194iGoogle Scholar
  147. B 148.
    B 148 The aromatic carbonium ions. Re id, C. J. Am. Chem. Soc. 76: 3264–8 (1954) CA 48: 11924bGoogle Scholar
  148. B 149 Pressure effects in phosphorescence. Reiffel, L. Phys. Rev. 94: 856 (1954) CA 48: 9204bGoogle Scholar
  149. B 150 Fluorometric determination of N-methylnicotinamide. Rosenthal, H.L. Science 120: 231 (1954) CA 48: 13546eGoogle Scholar
  150. B 151 Fluorescent tungstates for X-ray in-tensifying screens. Rothschild, S. Brit. 705,024, Mar. 3 (1954) CA 48: 9208cGoogle Scholar
  151. B 152.
    B 152 Photodielectric effect. Roux, J. J. Phys. Radium 15: 176–88 (1954) CA 48: 8643iGoogle Scholar
  152. B 153.
    B 153 Phosphorescence spectra of potassium chloride-thallium powder phosphor. Ruziewicz, Z. Roczniki Chem. 28: 295–6 (1954) CA 48: lll95dGoogle Scholar
  153. B 154.
    B 154 Decay of phosphorescence of long dura tion in magnesium oxide. Saksena, B. D., and Pant, L. M. Current Sci. 23: 393–4 (1954) CA 49: 12136bGoogle Scholar
  154. B 155.
    B 155 Cathodo-luminescence of MgO. Saksena, B.D., and Pant, L.M. Proc. Phys. Soc. 67B: 811–16 (1954) CA 49: 1435gGoogle Scholar
  155. B 156.
    B 156 Some experiments on the damaged Burma rice. Sakurai, Y., Shiroishi, M., Fukamachi, C. and Hayakawa, S. Shokuryo Kenkyush Kenkyu Hokoku 9: 181–6 (1954) CA 53: 11684gGoogle Scholar
  156. B 157 Fluorescent substance. Sato, Y. Japan 259 (1954) CA 48: 1 2562eGoogle Scholar
  157. B 158.
    B 158 Fluorescence and Joshi effect. Saxena, A.P., and Ramanamurti, M.V. Agra Univ. J. Res., Science 3: 233–40 (1954) CA 48: 12544cGoogle Scholar
  158. B 159.
    B 159 The relationship of absorption bands to oscillators of fixed position in chromo-phores and its application to determining the position of molecular parts in macromolecules. Scheibe, G. Z. Naturforsch. 9b: 85–9 (1954) CA 48: 9193fGoogle Scholar
  159. B 160 Fluorescence of cadmium iodide. Schlivitch, S., and Monod-Herzen, G. Compt. Rend. 238: 2071 (1954) CA 48: 1 1196aGoogle Scholar
  160. B 161.
    B 161 Behavior of bituminous substances in ultraviolet light. Schmidt, H. Erdoel Kohle 7: 428–33 (1954) CA 49: 1313fGoogle Scholar
  161. B 162.
    B 162 The quenching of the fluorescence of fluorescein. Schmillen, A. Z. Angew. Phys. 6: 260–2 (1954) CA 49: 61cGoogle Scholar
  162. B 163.
    B 163 The decay of the Acridine Orange fluorescence. Schmillen, A. Z. Naturforsch. 9a: 1036–9 (1954) CA 49: 5972gGoogle Scholar
  163. B 164.
    B 164 The chemistry of experimental chloro-ma. I. Porphyrins and peroxidases. Schultz, J., Shay, H., and Gruenstein, M. Cancer Res. 14: 157–62 (1954) CA 48: 11625fGoogle Scholar
  164. B 165.
    B 165 Paper chromatography of plant-growth regulators and allied compounds. Sen, S.P., and Leopold, A.C. Physiol. Plantarum 7: 98–108 (1954) CA 49: 13574gGoogle Scholar
  165. B 166 A method of determining the dissocia-tion energy of nitrogen. Sheehan, W.F. J. Chem. Phys. 22: 1461 (1954) CA 48: 13397aGoogle Scholar
  166. B 167.
    B 167 Fine structure of fluorescence spectra of aromatic hydrocarbons in frozen solutions. Shpol’skii, E.V., and Klimova, L.A. Izv. Akad. Nauk SSSR., Ser. Fiz. 18: 673 (1954) CA 50: 7585iGoogle Scholar
  167. B 168.
    B 168 The use of optical brighteners in the paper industry. Siegrist, A.E. Das Papier 8: 109–20 (1954) CA 48: 9062eGoogle Scholar
  168. B 169.
    B 169 Estimation of the component cardiac glycosides in digitalis plant samples. II. Deglucoglyeosides and ultraviolet fluorescence with trichloroacetic acid. Silberman, H., and Thorp, R.H. J. Pharm. Pharmacol. 6: 546–51 (1954) CA 49: 1279gGoogle Scholar
  169. B 170.
    B 170 Fluorescence transfer in condensed aromatic hydrocarbons. Simpson, O., and Northrop, D.C. Physica 20: 1122–5 (1954) CA 49: 5045hGoogle Scholar
  170. B 171.
    B 171 Fluorescence of quinoline in acid solu-tions. Sljivic, S. Z. Anal. Chem. 143: 113–14 (1954) CA 49: 6ldGoogle Scholar
  171. B 172.
    B 172 Quenching of potassium resonance radiation by hydrogen and deuterium. Smith, W.M., Stewart, J A., and Taylor, G.W. Can. J. Chem. 32: 961–8 (1954) CA 49: 5ll9iGoogle Scholar
  172. B 173.
    B 173 The formation of absorption lines with incoherent scattering of light. Sobolev, V.V. Astron. Zh. 31: 231–48 (1954) CA 48: 11930aGoogle Scholar
  173. B 174.
    B 174 The measurement of the lifetime of an excited state by optical resonance. Soleillet, P. Compt. Rend. 239: 698–700 (1954) CA 49: 5l20dGoogle Scholar
  174. B 175.
    B 175 Influence of a magnetic field on the polarization of the 2139 A resonance radiation emitted by a zinc atom. Spitzer, M. Compt. Rend. 239: 696–8 (1954) CA 49: 5120bGoogle Scholar
  175. B 176.
    B 176 Simultaneous observation of oxidation-reduction potentials and chlorophyll fluorescence of chlorella suspensions. Spruit, C.J.P., and Wassink, E.C. Biochim. Biophys. Acta 15: 357–66 (1954) CA 49: 4806dGoogle Scholar
  176. B 177.
    B 177 Reversible association processes of globar proteins. VI. The combination of trypsin with soybean inhibitor (polar-ization) . Steiner, R.F. Arch. Biochem. Biophys. 49: 71–92 (1954) CA 48: 7091hGoogle Scholar
  177. B 178.
    B 178 Possibilities of electron-vibration transformations and a study of the laws of the extinguishing fluorescent radiation of complex molecules. Stepanov, B.I. Vestsi Akad. Navuk Belarusk. SSR 1954: 60–9 (1954) CA 49: 15500bGoogle Scholar
  178. B 179.
    B 179 Color photographs of fluorescent ob-jects in ultraviolet light. Stoll, S. Chim. Anal. 36: 39–40 (1954) CA 48: 4355dGoogle Scholar
  179. B 180 Temperature dependence of light ab-sorption and fluorescence intensity in the solvatochromy of 1,2,4-trimethyl–3 -hydr oxyphenazine. Suhrmann, R., and Perkampus, H.H. Z. Physik Chem. 2: 290–311 (1954) CA 49: 6726iGoogle Scholar
  180. B 181 Quenching of the fluorescence of the eosin ion. Svirbely, W.J., and Sharpless, N.E. J. Am. Chem. Soc. 76: 1404–9 (1954) CA 48: 6261bGoogle Scholar
  181. B 182 An adaptation of the Beckman spectrophotometer for use as a fluorimeter. Swann, R.V. Analyst 79: 176–8 (1954) CA 48: 6169bGoogle Scholar
  182. B 183.
    B 183 Sulfuric acid-induced fluorescence of corticosteroids. Sweat, M.L. Anal. Chem. 26: 773–6 (1954) CA 48: 10096bGoogle Scholar
  183. B 184.
    B 184 Lanthanum oxychloride phosphors. Swindells, F.E. J. Electrochem. Soc. 101: 415–18 (1954) CA 50: 64eGoogle Scholar
  184. B 185.
    B 185 Light transducers. Szegho, C.S., and Pakswer, S. U.S. 2,680,213, June 1 (1954) CA 48: 9814dGoogle Scholar
  185. B 186 Photoconductivity effect in indium antimonide. Tauc, J., Smirous, K., and Abraham, A. Czech. J. Phys. 4: 255 (1954) CA 49: 7370dGoogle Scholar
  186. B 187.
    B 187 Energy transfer in sensitized fluores-cence of mixtures of vapors of organic compounds. Terenin, A.N., and Karyakin, A.V. Dokl. Akad. Nauk SSSR 96: 269–72 (1954) CA 49: 10067cGoogle Scholar
  187. B 188.
    B 188 Kinetics and equilibria in flavoprotein systems. I. A fluorescence recorder and its application to a study of the dissociation of the old yellow enzyme and its resynthesis from riboflavine phosphate and protein. Theorell, H., and Nygaard, A.P. Acta Chem. Scand. 8: 877–88 (1954) CA 49: 4036iGoogle Scholar
  188. B 189.
    B 189 The linkages between flavine mononucleotide (FMN) and the protein of the old yellow enzyme studied by fluores-cence measurements. Theorell, H., and Nygaard, A.P. Arkiv Kemi 7: 205–9 (1954) CA 48: 11519aGoogle Scholar
  189. B 190.
    B 190 Apparent phosphorescence of cypridina luciferin solution. Tsuji, F.I., and Harvey, E.N. Arch. Biochem. Biophys. 52: 285–6 (1954) CA 48: 13764iGoogle Scholar
  190. B 191.
    B 191 Fluorescence spectra of cuprous halides at low temperatures. Tsujikawa, I., and Kanda, E. Sci. Rept. Res. Inst., Tohoku Univ., Ser. A 6: 220–3 (1954) CA 49: 513leGoogle Scholar
  191. B 192.
    B 192 The hyperfine structure of magnetic resonance in some phosphorescent materials. Uebersfeld, J. J. Phys. Radium 15: 126–7 (1954) CA 48: 6248cGoogle Scholar
  192. B 193 Fluorescent substance. Uehara, Y., and Kofuya, Y. Japan 109 (1954) CA 48: 1 2562dGoogle Scholar
  193. B 194 Fluorescent substances. Uehara, Y., and Kofuya, Y. Japan 7574 (1954) CA 50: 5414fGoogle Scholar
  194. B 195.
    B 195 Synthetic studies on minerals. II. The reaction of sodium tungstate and calcium carbonate. Umegaki, Y., Kashiwagi, H., and Habara, T. J. Sci. Hiroshima Univ., Ser. C, 1: 79–84 (1954) CA 50: 117fGoogle Scholar
  195. B 196.
    B 196 Capillary (paper chromatography) and luminescence analysis of fern extracts and their components. Vaverane,V. Latvijas PSR Zinatnu Akad. Vestis 1954(10): 85–91 (1954) CA 49: 7188iGoogle Scholar
  196. B 197 Comparison of various phenomena connected with photosynthesis (fluores-cence, redox potentials, phosphate ex-changes, gas exchange, and others) with special reference to induction effects in chlorella. Wassink, E.L., and Spruit, C.J.P. Congr. Intern. Botan., Paris 8: 1–2 (1954* CA 48: 13842fGoogle Scholar
  197. B 198 Fluorescence of spectrum of triphenyl-methyl at 4°K. Weissman, S.I. J. Chem. Phys. 22: 155 (1954) CA 48: 43llhGoogle Scholar
  198. B 199 General base catalysis for the electro-lytic dissociation of excited naphthol. Weller, A. Z. Elektrochem. 58: 849–53 (1954) CA 49: 9388hGoogle Scholar
  199. B 200.
    B 200 Reaction of chlorophyll in amines. We ller, A., and Livingston, R. J.Am. Chem. Soc. 76: 1575–8 (1954) CA 48: 6796eGoogle Scholar
  200. B 201.
    B 201 Dependence of the polarization of the fluorescence on the concentration. Weber, G. Trans. Faraday Soc. 50: 552–5 (1954) CA 49: 1435eGoogle Scholar
  201. B 202.
    B 202 Sensitized fluorescence in organic mixed crystals. Wolf, H.C. Z. Physik 139: 318–27 (1954) CA 50: 3902dGoogle Scholar
  202. B 203.
    B 203 Cellular-physiological study of pf and fluorescence of colored plants. Yablokova, VA. Dokl. Akad. Nauk SSSR 98: 145–8 (1954) CA 49: ll55eGoogle Scholar
  203. B 204.
    B 204 The photoelectric fluorometer and its application to biochemical experiments. Yagi, K., and Tabata, T. Kagaku No Ryoiki 8: 45–53 (1954) CA 48: 8851fGoogle Scholar
  204. B 205.
    B 205 Synthesis of organic fluorescent compounds. XXXI. Yoshida, Z. J. Chem. Soc. Japan 57: 241–3 (1954) CA 49: 11620gGoogle Scholar
  205. B 206.
    B 206 Low temperature spectra of some homologous six-membered nitrogen-containing heterocyclic compounds and their development to the spectra of acridine dyes. Zanker,V. Z. Physik. Chem. 2: 52–78 (1954) CA 49: 55hGoogle Scholar
  206. B 207 The fluorescence of self-activated zinc sulfide. Addamiano, A. J. Chem. Phys. 23: 1541 (1955) CA 49: 14487hGoogle Scholar
  207. B 208.
    B 208 Absorption and fluorescence spectra of polyatomic molecules. Agranovich, V.M., and Davydov, A.S. Nauk. Zap., Kiivs’k. Derzh. Univ. 14, No. 8; Sb. Fiz. Fak. 7: 15–20 (1955) CA 51: 9309cGoogle Scholar
  208. B 209.
    B 209 Yield of resonance fluorescence of atoms. Alentsev, M.N., Antonov, Romanovskii, V.V., Stepnaov, B.I., and Fok, M.V. Zh. Eksprim. i Teor. Fiz. 28: 253–4 (1955) CA 50: 2283dGoogle Scholar
  209. B 210.
    B 210 Application of fluorescent coatings to discharge tubes. Anderson, J.T., and Ward, H.F. U.S. 2,726,966 (1955) CA 50: 6934iGoogle Scholar
  210. B 211.
    B 211 Photomultiplier study of scintillations produced in a zinc sulfide screen by Of-particles. Anthony, J.P. J. Phys. Radium 16: 182–90 (1955) CA 49: 12980dGoogle Scholar
  211. B 212.
    B 212 Luminescence ZnS (A. u). Action of Fe. Arpiarian, N. Compt. Rend. 240: 1202–5 (1955) CA 49: 12967dGoogle Scholar
  212. B 213.
    B 213 The spectral distribution of infrared stimulated phosphorescence of lead-activated zinc sulfide type phosphors. Asano, S. J. Phys. Soc. Japan 10: 903–5 (1955) CA 50: 12657eGoogle Scholar
  213. B 214 Quenching of biaeetyl fluorescence in solution. Backstrom, H.L.J., and Sandros, K. J. Chem. Phys. 23: 2197 (1955) CA 50: 2302aGoogle Scholar
  214. B 215 Fluorescent brightening agents. Badische Anilin- amp; Soda-Fabrik, A.-G. Brit. 741,798 (1955) CA 50: ll026hGoogle Scholar
  215. B 216.
    B 216 Luminescence spectroscopy of porphyrin-like molecules including the chlorophylls. Becker, R.S., and Kasha, M. J.Am. Chem. Soc. 77: 3669–70 (1955) CA 49: 12969hGoogle Scholar
  216. B 217.
    B 217 Anomalous light emission of azulene. Beer, M., and Loaguet-Higgins, H.C. J. Chem. Phys. 23: 1390–1 (1955) CA 49: 15499fGoogle Scholar
  217. B 218.
    B 218 The principles of identification and measurements of vulvar fluorescence. Benson, R.C., and Vogel, M.J. J. Clin. Endocrinol. Metab. 15: 784–800 (1955) CA 49: 13444iGoogle Scholar
  218. B 219 Quenching of the long-lifetime component of positron annihilation in benzene. Berko, S., and Zuchelli, A.J. Phys. Rev. 99: 1653 (1955) CA 51: 1 1089gGoogle Scholar
  219. B 220.
    B 220 Organic phosphorescence. Urinary elimination of acriflavine. Bernanose, A., Comte, M., and Vouaux, P. Bull. Soc. Pharm. Nancy 26: 5–11 (1955) CA 51: 5893iGoogle Scholar
  220. B 221.
    B 221 Relation between organic electrolumin-escence and concentration of active product. Bernanose, A., and Vouaux, P. J. Chim. Phys. 52: 509–10 (1955) CA 50: 16341hGoogle Scholar
  221. B 222.
    B 222 Glycosides and aglycons. CLIII. Iden-tification of glycosides and aglycons of the sulla-bufo type in paper chromatography by direct photocopies. Bernasconi, R., Sigg, H.P., and Reichstein, T. Helv. Chim. Acta 38: 1767–75 (1955) CA 50: 13063cGoogle Scholar
  222. B 223.
    B 223 Raman spectra and fluorescence of a few substituted toluenes in the solid state at different low temperatures. Biswas, D.C. Indian J. Phys. 29: 257–71 (1955) CA 51: 7865hGoogle Scholar
  223. B 224.
    B 224 Raman spectra of a few monosubstituted benzene compounds in the solid state at different low temperatures. Biswas, D.C. Indian J. Phys. 29: 503–17 (1955) CA 51: 7865bGoogle Scholar
  224. B 225.
    B 225 Stabilization of energy-rich molecules. I. Energy transfer with hydrogen. Boudart, M., and Dubois, J.T. J. Chem. Phys. 23: 223–9 (1955) CA 49: 67l7eGoogle Scholar
  225. B 226 The emission spectra of aromatic hy-drocarbons in crystalline paraffins at –180°. Bowen, E.J., and Brocklehurst, B. J. Chem. Soc. 1955: 4320–31 (1955) CA 50: 8334aGoogle Scholar
  226. B 227 Solvent quenching of the fluorescence of anthracene. Bowen, E.J., and West, K. J. Chem. Soc. 1955: 4394–5 (1955) CA 50: 8334fGoogle Scholar
  227. B 228 Photochemistry of anthracenes, m. Interrelations between fluorescence quenching, dimerization, and photo-oxidation. Bowen, E.J., and Tanner, D.W. Trans. Faraday Soc. 51: 475–81 (1955) CA 49: 13787hGoogle Scholar
  228. B 229.
    B 229 Energy transfer in rigid solvents. Bowen, E.J., and Brocklehurst, B. Trans. Faraday Soc. 51: 774–7 (1955) CA 50: 65gGoogle Scholar
  229. B 230.
    B 230 Spectrophotofluorometric assay in the visible and ultraviolet. Bowman, R.L., Caulfield, PA.., and Udenfriend, S. Science 122: 32–3 (1955) CA 49: 15290fGoogle Scholar
  230. B 231.
    B 231 Law of extinction of phosphorescence in organoluminophors. Bredel, V.V. Dokl. Akad. Nauk SSSR 103: 787–90 (1955) CA 50: 8334cGoogle Scholar
  231. B 232 Agreement of dose measurement for rapid electron rays (3–15-MeV) with X-ray dose measurement. Breitling, G., and Glocker, R. Naturwissenschaften 42: 11–12 (1955) CA 49: 1 2147hGoogle Scholar
  232. B 233 Fluorescence and average lifetime of excited OH (2S+) in flames. Broida, H.P., and Carrington, T. J. Chem. Phys. 23: 2202 (1955) CA 50: 230leGoogle Scholar
  233. B 234 Fluorescence of the serum in rats with alloxan diabetes and cataract. I. Intensity determinations. Brolin, S.E. Acta Physiol. Scand. 33: 359–69 (1955) CA 49: 15013aGoogle Scholar
  234. B 235 Fluorescence yield of chlorophyll in chlorella as a function of light intensity. Brugger, J.E. Natl. Acad. Sci. — Natl. Res. Council 1955: 113–17 (1955) CA 52: 10303cGoogle Scholar
  235. B 236.
    B 236 The spectral fluorescence and absorption of 3,4-benzopyrene in the visible region. Berg, N.O., and Norden, G. Acta Pathol. Microbiol. Scand. 36: 193–204 (1955) CA 49: 7381eGoogle Scholar
  236. B 237.
    B 237 Inhibition of horse-liver esterase by Rhodamine B. Burch, J. Biochem. J. 59: 97–110 (1955) CA 49: 6330eGoogle Scholar
  237. B 238.
    B 238 Absorption and luminescence investigation of some me soar yl and mesoalkyl anthracene derivatives. Cherkasov, A.S. Zh. Fiz. Khim. 29: 2209–17 (1955) CA 50: 13614hGoogle Scholar
  238. B 239.
    B 239 Lingual fluorescence under Wood’s light in psychiatry. Observations on 411 patients. Colombo, C., and Verga, G. Acta Vitaminol. 9: 157–62 (1955) CA 50: 886lfGoogle Scholar
  239. B 240.
    B 240 Fluorescence and phosphorescence. Dammers-de Klerk, A. Chem. Weekblad 51: 741–50 (1955) CA 50: 2301cGoogle Scholar
  240. B 241.
    B 241 Sedimentation of phosphorescent screens in cathode-ray tubes, de Boer, F., and Emmens, H. Philips’ Tech. Rundschau 16: 272–6 (1955) CA 52: 19494aGoogle Scholar
  241. B 242.
    B 242 The fluorescence of ehromoactive substances of crustaceans and insects. DeLerma, B., Dupont-Raabe, M., and Knowles, F. Compt. Rend. 241: 995–8 (1955) CA 50: 7335iGoogle Scholar
  242. B 243.
    B 243 The low temperature luminescence of silver bromide with silver sulfide addi-tion. Dorfner, K.R. Ann. Physik 6: 331–60 (1955) CA 50: 7598bGoogle Scholar
  243. B 244.
    B 244 Preparation of 1,4,6,11-tetraphenyl-naphthacene, an isomer of rubene. Douris, R.G. Compt. Rend. 240: 1113–15 (1955) CA 50: 3369fGoogle Scholar
  244. B 245.
    B 245 Yield of anti-Stokes fluorescence of very viscous dye solutions. Drabent, R., and Frackowiak, D. Acta Phys. Polon. 14: 447–54 (1955) CA 50: 16405cGoogle Scholar
  245. B 246.
    B 246 Fluorescent derivative of guanine formed during the hydrolysis of deoxyribonucleic acid. Dunn, D.B. Biochim. Biophys. Acta 18: 317–8 (1955) CA 50: 2708dGoogle Scholar
  246. B 247.
    B 247 Comparison of the luminescence of calcium silicate (Mn,Pb) and zinc beryllium silicate (Mn). Dziergwa, H., and Lange, H. Z. Physik 140: 359–69 (1955) CA 50: 6925dGoogle Scholar
  247. B 248.
    B 248 Fluorescent compounds in oat roots. Eberhardt, F. Z. Botan. 43: 405–22 (1955) CA 50: 2752eGoogle Scholar
  248. B 249.
    B 249 Distribution of fluorescing islets, adrenaline, and noradrenaline in the adrenal medulla of the hamster. Eranko, O. Acta Endocrinol. 18: 174–9 (1955) CA 49: 8435iGoogle Scholar
  249. B 250.
    B 250 Distribution of fluorescing islets, adrenaline, and noradrenaline in the adrenal medulla of the cat. Eranko, O. Acta Endocrinol. 18: 180–8 (1955) CA 49: 8436aGoogle Scholar
  250. B 251.
    B 251 Effect of insulin on chromaffin reac-tion, fluorescing islets, and catechol amines in the adrenal medulla of the rat. Eranko, O. Acta Pathol. Microbiol. Scand. 36: 219–23 (1955) CA 49: 7697gGoogle Scholar
  251. B 252.
    B 252 The extinction and the luminescence duration changes during sensitized phosphorescence of organic compounds. Ermolaev, V.L. Dokl. Akad. Nauk SSSR 102: 925–8 (1955) CA 50:3091eGoogle Scholar
  252. B 253.
    B 253 Photomagnetism of the triplet states of organic molecules (including fluores-cein). Evans, D.F. Nature 176: 777–8 (1955) CA 50: 12659cGoogle Scholar
  253. B 254.
    B 254 A simple procedure for the photography of fluorescent substances. Fasella, P., and Baglioni, C. Boll. Soc. Ital. Biol. Sper. 31: 554–7 (1955) CA 50: 709dGoogle Scholar
  254. B 255.
    B 255 Electrophoretic study of some trans-aminase reactions. Fasella, P., Lis, H., and Siliprandi, N. Riv. 1st. Sieroterap. Ital. 30: 206–10 (1955) CA 50: 415aGoogle Scholar
  255. B 256.
    B 256 Polarization theory of resonant emis-sion and fluorescence of atoms and diatomic molecules. Feofilov, P.P. Dokl. Akad. Nauk SSSR 104: 846–9 (1955) CA 50: 12658iGoogle Scholar
  256. B 257.
    B 257 Influence of fluorescent compounds on rooting of cuttings. II. Ferri, M.G., and de Morretes, B.L. Rev. Brasil. Biol. 15: 321–8 (1955) CA 50: 6589gGoogle Scholar
  257. B 258.
    B 258 Calculation of errors in spectral analysis by current measurements. II. Fishman, I.S., and Stolov, A.L. Uch. Zap. Kazansk. Gos. Univ. 115: 57–71 (1955) CA 52: 13517iGoogle Scholar
  258. B 259.
    B 259 Concentration reversal of the fluorescence of pyrene. Forster, T., and Kasper, K. Z. Elektrochem. 59: 976–80 (1955) CA 50: 3902hGoogle Scholar
  259. B 260 Correlation of structure with fluores-cence of some metal-organic chelates. Dissertation, University of Maryland (1955) CA 50: 2349hGoogle Scholar
  260. B 261.
    B 261 Fluorescence spectra of protochloro-phyll, chlorophylls C and D and their pheophytins. French, C.S., Smith, J.H.C., and Virgin, H.I. Natl. Acad. Sci. — Natl. Res. Council 1955: 17–18 (1955) CA 52: 10302gGoogle Scholar
  261. B 262.
    B 262 Fluorescence in the photographic emulsiop. Friedman, J.S., and Horwitz, L. Phot. Sci. Tech. (2) 2: 42–7 (1955) CA 49: 4429bGoogle Scholar
  262. B 263.
    B 263 Radiation spectrograms of fluorescence of radioelements. Frilley, M. J. Phys. Radium 16: 630–4 (1955) CA 49: 15475bGoogle Scholar
  263. B 264.
    B 264 Effective cross section of secondary collisions in the sensitized fluorescence. Frish, S.E., and Kraulinya, E JC. Dokl. Akad. Nauk SSSR 101: 837–40 (1955) CA 50: 6931eGoogle Scholar
  264. B 265.
    B 265 Chlorophyll-photosensitized reduction of triphenyltetrazolium chloride by hydrazine hydrate. Fujimori, E. J.Am. Chem. Soc. 77: 6495–8 (1955) CA 50: 5412iGoogle Scholar
  265. B 266.
    B 266 Organic fluorescent and photosensitive substances. Fujimori, E. Rept. Inst. Ind. Sci., Univ. Tokyo 4: 93–151 (1955) CA 49: 14545gGoogle Scholar
  266. B 267.
    B 267 Enhancement of fluorescence in solutions under high-energy irradiation. Furst, M., and Kallmann, H. Phys. Rev. 97: 583–7 (1955) CA 49: 6733fGoogle Scholar
  267. B 268.
    B 268 Fluorescent behavior of solutions con-taining more than one solvent. Furst, M., and Kallmann, H. J. Chem. Phys. 23: 607–12 (1955) CA 49: 10747fGoogle Scholar
  268. B 269 Increasing fluorescence efficiency of liquid-scintillation solutions. Furst, M., Kallmann, H., and Brown, F.H. Nucleonics 13: 58, 60 (1955) CA 49: 10067bGoogle Scholar
  269. B 270 2,3,2f,3f -Imidazole-(1,2,4)-triazine compounds. Fusco, R., and Rossi, S. Ital. 536,121 (1955) CA 53: 2264fGoogle Scholar
  270. B 271.
    B 271 Biochemistry of microorganisms. XCVI. The coloring matter of Penicillium herquei. Galarraga, J A.., Ne ill, K.G., and Raistrick, H. Biochem. J. 61: 456–64 (1955) CA 50: 3537cGoogle Scholar
  271. B 272.
    B 272 Chlorophyll spectra and molecular structure. Goedheer, J.C. Nature 176: 928–9 (1955) CA 50: 6931gGoogle Scholar
  272. B 273 Water-soluble paint. Gomez, A.M. Span. 213,231 (1955) CA 50: 4527iGoogle Scholar
  273. B 274.
    B 274 Simple adaptation of the Beckman DCL spectrophotometer as a speetrofluoro-meter. Gornall, A.G., and Kalant, H. Anal. Chem. 27: 474–5 (1955) CA 49: 8636cGoogle Scholar
  274. B 275.
    B 275 Radiation micromethods in the study of crystal-structure defects. Grillot, E. Compt. Rend. Congr. Soc. Savantes Paris Dept., Sect. Sci. 1955: 71–87 (1955) CA 52: 13433gGoogle Scholar
  275. B 276.
    B 276 Changes in the fluorescent substances (of tissues) during development of amphibians. Hama, IN., and Goto, T. Compt. Rend. Soc. Biol. 149: 859–60 (1955) CA 50: 3656cGoogle Scholar
  276. B 277.
    B 277 Quenching of sodium iodide fluores-cence by hydrogen, hydrogen chloride, carbon dioxide, and water. Hanson, H.G. J. Chem. Phys. 23: 1391–7 (1955) CA 49: 15500eGoogle Scholar
  277. B 278.
    B 278 Identification of pyrimidines in the fluorescing fractions of the teeth of the sperm whale. Hartles, R.L., and Leaver, A.G. J. Dental Res. 34: 820–30 (1955) CA 50: 4339cGoogle Scholar
  278. B 279.
    B 279 The interaction of deoxyribonucleic acid with aeriflavine. Heilweil, H.G., and Van Winkle, Q. J. Phys. Chem. 59: 939–43 (1955) CA 50: llOliGoogle Scholar
  279. B 280 Effect of ultrasound on conductivity and fluorescence of zinc sulfide and cadmium sulfide crystals. Herforth, L., and Krumbiegel, I. Naturwissenschaften 42: 39 (1955) CA 49: 15457bGoogle Scholar
  280. B 281 Pine structure study with X-rays by fluorescence measurement. Herforth, L. Naturwissenschaften 42: 412 (1955) CA 51: 2387dGoogle Scholar
  281. B 282.
    B 282 Some new laboratory results for the spectrum of carbon. Herman, R., and Herman, L. Mem. Soc. Roy. Sci. Liege 15: 352–9 (1955) CA 49: 14480eGoogle Scholar
  282. B 283.
    B 283 Fluorescence spectra of the condensa-tion products of salicylaldehyde and their salts. Holzbecher, Z. Collection Czech. Chem. Commun. 20: 59–66 (1955) CA 49: 7989fGoogle Scholar
  283. B 284.
    B 284 Fluorescence spectra of salicylaldehyde condensation products and their salts, n. o-Salicylideneamino phenol. Holzbecher, Z. Collection Czech. Chem. Commun. 20: 1292–6 (1955) CA 50: 5411gGoogle Scholar
  284. B 285.
    B 285 Fluorescence spectra of salicylaldehyde condensation products and their salts. Holzbecher, Z. Chem. Listy 49: 1030–3 (1955) CA 49: 12971cGoogle Scholar
  285. B 286.
    B 286 Fluorescence spectra of salicylaldehyde condensation products and their salts. m. Holzbecher, Z. Chem. Listy 49: 1162–8 (1955) CA 49: 14489iGoogle Scholar
  286. B 287.
    B 287 Fluorescence of zinc sulfide. Hoogenstraaten, W. Ned. Tijdschr. Natuurk. 21: 150–9 (1955) CA 62: 8749eGoogle Scholar
  287. B 288.
    B 288 Analyses of f lav ones. VIE. Further properties of halochromic boron complexes. Horhammer, L., and Hansel, R. Arch. Pharm. 288: 315–21 (1955) CA 51: 6619hGoogle Scholar
  288. B 289 Fluorescence quenching by blue and yellow light in a sensitized photograph-ic emulsion. Horwitz, L., and Friedman, J. J. Opt. Soc. Am. 45: 798 (1955) CA 50: 95dGoogle Scholar
  289. B 290.
    B 290 Studies on organic phosphors containing metallic compounds as phosphorescent bodies. H. Crystals of metallic salts suitable for the phosphorescent bodies and the effects of metallic ions on the phosphorescent color. 2. Iwaki, R. J. Chem. Soc. Japan, Pure Chem. Sect. 76: 605–10 (1955) CA 50: 3902aGoogle Scholar
  290. B 291.
    B 291 The optical properties of calcium metaantimonate. Janin, J., and Bernard, R. Compt. Rend. 240: 614–15 (1955) CA 49: 7986hGoogle Scholar
  291. B 292.
    B 292 Long time phosphorescence of organic crystals. Kallmann, H., Kramer, B., and Sucov, E. J. Chem. Phys. 23: 1043–7 (1955) CA 49: 12970eGoogle Scholar
  292. B 293.
    B 293 Studies on the quenching of organic phosphors, in. Energy states of organic phosphors as revealed by their quenching phenomena. Kato, S., Kimura, K., and Koizumi, M. J. Chem. Soc. Japan 76: 262–7 (1955) CA 49: 15500gGoogle Scholar
  293. B 294.
    B 294 Determination of citrimin contained in rice by fluorometry. Kawashiro, I., Tanabe, H., Takeuehi, H., and Nishimura, C. Bull. Natl. Hyg. Lab., Tokyo 73: 191–6 (1955) CA 50: 7229cGoogle Scholar
  294. B 295.
    B 295 Thermoluminescence and fluorescence in alkali halide crystals induced by soft X rays. Keller, S.P., and Clemmons, J.J. J. Chem. Phys. 23: 586–7 (1955) CA 49: 7986iGoogle Scholar
  295. B 296.
    B 296 Infrared phosphorescence of germanium at low temperatures. Kessler, R. Z. Naturforsch. 10a: 87–8 (1955) CA 49: 7389gGoogle Scholar
  296. B 297.
    B 297 Modified calcium pyrophosphate phos-phors. Kinney, D.E. J. Electrochem. Soc. 102: 676–81 (1955) CA 50: 6926gGoogle Scholar
  297. B 298 Borazole and boron nitride scintillators. Kirkbride, J. Proc. Phys. Soc. 68B: 253 (1955) CA 49: 13800hGoogle Scholar
  298. B 299.
    B 299 The effect of light from a Hg arc on flame emission. Kishko, S.M. Nauchn. Zap. Uzhgorodsk. Inst. 12: 59–63 (1955) CA 55: 3190iGoogle Scholar
  299. B 300 Influence of the light of a mercury arc on flame radiation. Kishko, S.M., and Miluyanchuk, V.S. Izv. Akad. Nauk SSSE, Ser. Fiz. 19: 19 (1955) CA 50: 3885iGoogle Scholar
  300. B 301.
    B 301 Characteristic fluorescence in solids. Klasens, HA. Ned. Tijdschr. Natuurk. 21: 131–41 (1955) CA 50: 63fGoogle Scholar
  301. B 302.
    B 302 Fluorescence spectrum of gaseous nitric oxide and the effect of some gases on the spectrum. Kleinberg, A.V., and Terenin, A.N. Dokl. Akad. Nauk SSSE 101: 445–7 (1955) CA 50: 230lfhGoogle Scholar
  302. B 303.
    B 303 Semimicro butyric acid values, semi-micro total values, and semimicro residual values of cocoa butter and cocoa-butter-substitute fats. Kleinert, J. Rev. Intern. Chocolat. 10: 449–54 (1955) CA 50: 8231iGoogle Scholar
  303. B 304.
    B 304 The dependence of continuous absorption and fluorescence spectra of vapors and solutions of substituted phthali-mides from the temperature and the solvent. Klochkov, V.P. Zh. Fiz. Khim. 29: 1432–41 (1955) CA 51: 851gGoogle Scholar
  304. B 305.
    B 305 Porphyrins in relation to the development of the nervous system. Kluver, H. Biochem. Develop. Nervous Systems, Proc. Intern. Neurochem. Symp. 1st, Oxford 1954: 137–44 (1955) CA 50: 6532bGoogle Scholar
  305. B 306 Fluorescent substance. Kodera, Y., and Sekine, T. Japan 417 (1955) CA 50: 1 1830hGoogle Scholar
  306. B 307.
    B 307 Mechanism of quenching of fluorescence. Kortum, G., and Wilski, H. Trans. Faraday Soc. 51: 1620–3 (1955) CA 50: ll827iGoogle Scholar
  307. B 308.
    B 308 Oxyacid phosphors. V. Antimony oxide phosphor with red emission. Kotera, Y., and Sekine, T. Rept. Govt. Chem. Ind. Res. Inst., Tokyo 50: 259–66 (1955) OA 50: 1119bGoogle Scholar
  308. B 309.
    B 309 Energy transfer in polystyrene-anthracene. Krenz, F.H. Trans. Faraday Soc. 51: 172–83 (1955) CA 49: 12l36hGoogle Scholar
  309. B 310 Electrical quadrupole moments of nuclei rubidium–85 and rubidium–87 by determination of the high-frequency transitions in the 62P 3/2 term of the rubidium atom. Kruger, H., and Meyer-Berkhout, U. Naturwissenschaften 42: 94–5 (1955) CA 50: 57iGoogle Scholar
  310. B 311 Fluorometer for paper chromatograms. Kuhn, A. Naturwissenschaften 42: 529–30 (1955) CA 51: 1096lgGoogle Scholar
  311. B 312 Light absorption of organic dyestuffs. Kuhn, H. Chimia (Switz.) 9: 237–49 (1955) CA 51: 83 9hGoogle Scholar
  312. B 313.
    B 313 The luminescence of colored materials. Laffitte, E. Ann. Phys. 10: 71–127 (1955) CA 49: 8704fGoogle Scholar
  313. B 314.
    B 314 Ultraviolet absorption spectra of some mono-and disubstituted (meso) anthracene derivatives. Laffitte, E., and Lalande, R. Bull. Soc. Chim. France 1955: 531–4 (1955) CA 49: 13777hGoogle Scholar
  314. B 315.
    B 315 The polarization of the fluorescence of diatomic gaseous molecules. Laffitte, E. J. Phys. Radium 16: 66–71 (1955) CA 49: 5103hGoogle Scholar
  315. B 316.
    B 316 Emission spectra of fused quartz ir-radiated by X-rays. The role of impurities and of the vitreous state. Lautout, M. J. Chim. Phys. 52: 176–8 (1955) CA 49: 10748aGoogle Scholar
  316. B 317.
    B 317 Photostimulation and coloration of fused quartz irradiated by X-or y-rays. Lautout, M. J. Chim. Phys. 52: 267–71 (1955) CA 49: 11425cGoogle Scholar
  317. B 318.
    B 318 Halochromy of tertiary alicyclic and aliphatic carbinols. Lavrushin, V.F., Verkhovod, N.N., and Movchan, P.K. Dokl. Akad. Nauk SSSR 105: 1723–6 (1955) CA 50: 11256hGoogle Scholar
  318. B 319.
    B 319 Decay of phosphorescence with activators and traps arising from the same impurity in different valence states. Lehovec, K. J. Opt. Soc. Am. 45: 219–22 (1955) CA 49: 5971bGoogle Scholar
  319. B 320.
    B 320 N-substituted 2,3,5-triphenylpyrroles. Lespagnol, A., Dumont, J.M., Mercier, J., and Etzensperger, M. Bull. Soc. Pharm. Lille 1955(1): 87–9 (1955) CA 50: 3399aGoogle Scholar
  320. B 321.
    B 321 Structure of chlorophyll. Analytical and synthetic evidence. Linstead, R.P., Eisner, U., Ficken, G.E., and Johns, R.B. Chem. Soc., Spec. Publ. 3: 83–97 (1955) CA 50: 10822aGoogle Scholar
  321. B 322.
    B 322 Factors affecting the fluorescence of cotton. Lourigan, G.H. Am. Dyestuff Reptr. 44: 348–9, 359 (1955) CA 49: 11287fGoogle Scholar
  322. B 323.
    B 323 New luminiferous substance for fluorescent tubes made from domestic raw materials. Lucatu, E. Comun. Acad. Rep. Populare Romine 5: 333–7 (1955) CA 50: 10544aGoogle Scholar
  323. B 324.
    B 324 Recombined mechanism of afterglow of some erystallophosphors. Lushchik, C.B. Tr. Inst. Fiz. i Astron., Akad. Nauk Est. SSR 1955(1): 57–71 (1955) CA 51: 87fGoogle Scholar
  324. B 325.
    B 325 Fluorescent spots in raw cotton associated with the growth of microorganisms. Marsh, P.B., Bollenbacher, K., San Antonio, J.P., and Merola, G.V. Textile Res. J. 25: 1007–16 (1955) CA 50: 2177eGoogle Scholar
  325. B 326.
    B 326 Fluorescence of compounds of the adrenaline series, n. Marzat, J. Romain, P., and Mesnard, P. Bull. Soc. Pharm. Bordeaux 93: 18–21 (1955) CA 50: 8334fGoogle Scholar
  326. B 327.
    B 327 Influence of the addition of high-molecular electrolytes on the absorption spectra and fluorescence of organic dyes. IV. Mataga, N., and Koizumi, M. Bull. Chem. Soc. Japan 28: 51–4 (1955) CA 52: 2537fGoogle Scholar
  327. B 328.
    B 328 The solvent effect on fluorescence spectrum. Change of solute-solvent interaction during the lifetime of excited solute molecule. Mataga, N., Kaifu, Y., and Koizumi, M. Bull. Chem. Soc. Japan 28: 690–1 (1955) CA 50: 693OfGoogle Scholar
  328. B 329.
    B 329 Equilibrium of hydrogen-bond formation in the excited state. Mataga, N., Kaibe, Y., and Koizumi, M. Nature 175: 731–2 (1955) CA 49: 15499bGoogle Scholar
  329. B 330.
    B 330 Photoelectric end-point determination in the titration of fluorides with thorium nitrate. Mavrodineanu, R., and Gwirtsman, J. Contrib. Boyce Thompson Inst. 18: 181–6 (1955) CA 51: 1665aGoogle Scholar
  330. B 331.
    B 331 Measurement of absolute quantum effi-ciencies of fluorescence. Melhuish, W.H. New Zealand J. Sci. Technol. 37: 142–9 (1955) CA 50: 12659eGoogle Scholar
  331. B 332 Nuclear resonance fluorescence in germanium–74 and praseodymium–141. Metzger, F.R. Phys. Rev. 99: 613 (1955) CA 51: 1 1029aGoogle Scholar
  332. B 333 Angular distribution of the resonance fluorescence radiation from the 411-keV excited state of mercury198. Metzger, F.R. Phys. Rev 97: 1258–60 (1955) CA 49: 7375cGoogle Scholar
  333. B 334.
    B 334 A photoelectric fluorimeter of simple construction. Mezincesu, M.D., and Popescu-Stefanescu, A. Rev. Chim. 6: 659–63 (1955) CA 50: 16189aGoogle Scholar
  334. B 335.
    B 335 Dependence of fluorescence on the structure of the solvent molecule. Miller, E.J. Bull. Inst. Nucl. Sci. “Boris Kidrich” 5: 107–11 (1955) CA 50: 682cGoogle Scholar
  335. B 336 Fluorescent substance. Nagy, E., Mende, L., and Gazda, I. Ger. 933,645 (1955) CA 52: 19517hGoogle Scholar
  336. B 337.
    B 337 Change of fluorescence spectra of deri-vatives of phthalimide on transition from gases to solutions through the critical state. Neporent, B.S., Klochkov, V.P., and Motovilov, OA. Zh. Fiz. Khim. 29: 305–13 (1955) CA 50: 12659aGoogle Scholar
  337. B 338 Alkali titanates. Neuhans, A., Schmitz-DuMont, O., and Reckhard, H. Forschungsber. Wirtsch. Verkehrsminis-teriums Nordrhein-Westfalen No. 190, 48 pp. (1955) CA 53: 6857gGoogle Scholar
  338. B 339.
    B 339 Emission of elliptically polarized fluorescence radiation by optically active compounds. Neunhoeffer, O., and Ulrich, H. Z. Elektrochem. 59: 122–6 (1955) CA 49: 12970gGoogle Scholar
  339. B 340.
    B 340 Synthesis and fluorescence of quinoline-substituted 1,3,5-triphenylpyrazolines. Neunhoeffer, P., and Ulrich, H. Chem. Ber. 88: 1123–33 (1955) CA 50: 13881hGoogle Scholar
  340. B 341.
    B 341 Metallic complexes of isonicotinyl hydrazide. Neuzil, E., and Segonne, J. Bull. Soc. Pharm. Bordeaux 93: 49–66 (1955) CA 50: 9200gGoogle Scholar
  341. B 342.
    B 342 Effect of oxidizing or reducing agents on the fluorescence intensity of calcium wolframate. Nishikawa, K., and Yamamoto, M. J. Chem. Soc. Japan 58: 471–2 (1955) CA 49: 14487iGoogle Scholar
  342. B 343.
    B 343 Photoeffects in condensed aromatic hydrocarbons. Northrop, D.C., and Simpson, O. Proc. Phys. Soc. 68: 974–7 (1955) CA 50: 6181hGoogle Scholar
  343. B 344 Phosphorescence of solids containing the manganous or ferric ions. Orgel, L.E. J. Chem. Phys. 23: 1958 (1955) CA 50: 68IfGoogle Scholar
  344. B 345.
    B 345 Slow disappearance of fluorescence in thionine on addition of abietic acid. Palit, S.R., and Biswas, B. Nature 176: 214–15 (1955) CA 49: 15501aGoogle Scholar
  345. B 346 Intensity measurements in absorption and fluorescence of uranyl acetate solution. Pant, D.D., and Khandelwal, D.P. Current Sci. 24: 376 (1955) CA 50: 540ÜGoogle Scholar
  346. B 347.
    B 347 Action of X-rays on dilute solutions of Uranine S. Patti, F. J. Chim. Phys. 52: 38–40 (1955) CA 49: 87l2dGoogle Scholar
  347. B 348.
    B 348 The fluorescent reaction in some 1 -(3,4-dihydr oxyphenyl) 2 -aminoetha -nols. Pavolini, T. Ann. Chim. 45: 380–6 (1955) CA 52: 9010gGoogle Scholar
  348. B 349.
    B 349 Properties of three oxonaphthacenes derived from the oxide of rubrene (5,6,11,12 -tetraphenylnaphthacene). Perronnet, J. Compt. Rend. 241: 1474–7 (1955) CA 50: 14685fGoogle Scholar
  349. B 350.
    B 350 The absorption and fluorescence of several organic molecules in the crystalline state. Peste il, P. Ann. Phys. 10: 128–84 (1955) CA 49: 8704eGoogle Scholar
  350. B 351.
    B 351 Vibrational structure of the phosphor-escence spectra of aromatic crystals at very low temperatures. Pesteil, P., and Zmerli, A. Ann. Phys. 10: 1079–97 (1955) CA 50: 693OhGoogle Scholar
  351. B 352.
    B 352 Luminescence of crystals at low temperatures. VI. T — S transition of hexachlor obenzene. Pesteil, P., Pesteil, L., and Kara, R. Compt. Rend. 240: 960–2 (1955) CA 49: 10747dGoogle Scholar
  352. B 353.
    B 353 Spectroscopic studies of the phosphorescent states of aromatic hydrocarbons. Porter, G., and Windsor, M.W. Mol. Speetr., Rept. Conf., London 1954: 6–19 (1955) CA 50: 7600dGoogle Scholar
  353. B 354 Anaglyphic X-ray pictures. Prell, R. Ger. 928,994 (1955) CA 52: 1784bGoogle Scholar
  354. B 355.
    B 355 Fluorescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin. Rasmussen-Taxdal, D.S., Ward, G.E., and Figge, F.H.J. Cancer 8: 78–81 (1955) CA 49: 4867bGoogle Scholar
  355. B 356.
    B 356 Fluorescence spectroscopy with roentgen rays. Regler, F. Mikrochim. Acta 1955: 671–83 (1955) CA 49: 12134gGoogle Scholar
  356. B 357 Vitamin B1 2. Robinson, F.M., Miller, I.M., McPherson, J.F., and Folkers, K. J. Am. Chem. Soc. 77: 5192 (1955) CA 50: 1107bGoogle Scholar
  357. B 358.
    B 358 The fluorescence yields of the L levels of bismuth. Ross, M.A.S., Cochran, A.J., Hughes, J., and Feather, N. Proc. Phys. Soc. 68A: 612–24 (1955) CA 49: 13786dGoogle Scholar
  358. B 359.
    B 359 Changes in the behavior of fluorescent screens under electron bombardment in cathode tubes. Rottgardt, K .H.J., and Berthold, W. Z. Naturforseh. 10a: 736–40 (1955) CA 51: 3294dGoogle Scholar
  359. B 360 Fluorescent centers in uranium-activated sodium fluoride. Runciman, W.A. Nature 175: 1082 (1955) CA 49: 14488bGoogle Scholar
  360. B 361.
    B 361 Utilization of phosphorescence at room temperature as a method of chemical analysis. Application to amino acids. Rybak, B., Loehet, R., and Rousset, A. Compt. Rend. 241: 1278–80 (1955) CA 50: 7013hGoogle Scholar
  361. B 362.
    B 362 Relative intensities of anthracene and naphthacene emissions under cathode-ray, ultraviolet, and X-ray excitations. Saksena, B.D., and Pant, L.M. J. Chem. Phys. 23: 987–8 (1955) CA 49: 10747eGoogle Scholar
  362. B 363.
    B 363 Fluorescence and fluorescence polari-zation of myelotropic nerve fibers after fluorochromation by fluorescein. Scharf, J.H. Z. Naturforseh. 10b: 355–6 (1955) CA 50: 353IdGoogle Scholar
  363. B 364.
    B 364 Decrease of intensity of fluorescence of cigaret smoke caused by irradiation. Schmahl, D., and Schneider, H. Arzneimittel-Forsch. 5: 348–50 (1955) CA 49: 12785aGoogle Scholar
  364. B 365.
    B 365 Fluorescence as a measure of brown substances in soybean lecithin. Scholfield, C.R., and Dutton, H.J. J.Am. Oil Chemists’ Soc. 32: 169–70 (1955) CA 49: 7268gGoogle Scholar
  365. B 366.
    B 366 Ratio of effective cross section of re-combination and capture of electrons and the concentration of ionic vacancies in crystals of KCl-Tl. Shchukin, I.P. Dokl. Akad. Nauk SSSR 104: 211–14 (1955) CA 50: 11099iGoogle Scholar
  366. B 367.
    B 367 Photochemical studies. II. Photochem-istry of biacetyl at 3650 and 4358 A and its relation to fluorescence. Sheats, G.F., and Noyes, WA., Jr. J.Am. Chem. Soc. 77: 1421–6 (1955) CA 49: 7988eGoogle Scholar
  367. B 368.
    B 368 Long-wave photochemistry of biacetyl and its correlation with fluorescence at temperatures over 100°. Sheats, G.F., and Noyes, WA., Jr. J. Am. Chem. Soc. 77: 4532–3 (1955) CA 49: 15503dGoogle Scholar
  368. B 369.
    B 369 Estimation of fluorescein in dilute solutions. Shotton, E., and Habeeb, A .F .S A. J. Pharm. Pharmacol. 7: 456–62 (1955) CA 49: 15499gGoogle Scholar
  369. B 370.
    B 370 Electronic and vibrational states of biacetyl and biacetyl-d6. I. Electronic states. Sidman, J.W., and McClure, D.S. J.Am. Chem. Soc. 77: 6461–70 (1955) CA 50: 5402cGoogle Scholar
  370. B 371.
    B 371 Luminescence spectra of petroleum products in frozen solutions. Sidorov, N.K., and Kirillov, L.A. Nauchn. Ezhegodnik Saratovsk. Univ. 1954: 596–8 (1955) CA 54: 19l59dGoogle Scholar
  371. B 372.
    B 372 Fluorescence of drying oils. Sims, R.P.A., and Cooper, F.P. J. Am. Oil Chemists’ Soc. 32: 381–4 (1955) CA 49: 13663hGoogle Scholar
  372. B 373.
    B 373 Method of recording the decay of phosphorescence. Skarsvag, K. Rev. Sci. Instr. 26: 397–8 (1955) CA 49: 12136aGoogle Scholar
  373. B 374.
    B 374 Dependence of energetic release of fluorescence on temperature. Sokolova, V.S. Vestn. Akad. Nauk Kaz. SSR 11: 73–7 (1955) CA 49: l6083fGoogle Scholar
  374. B 375.
    B 375 Synthesis of fused heterocyclics. I. Somasekhara, S., and Phadke, R. J. Indian Inst. Sci. 37A: 120–9 (1955) CA 50: 3444bGoogle Scholar
  375. B 376 Radiation control by photographic recording of fluorescence. Sommermeyer, K., and Heiner, G. Naturwissenschaften 42: 508 (1955) CA 51: 4150gGoogle Scholar
  376. B 377 Grain-storage studies. XX. Relation of viability, fat, acidity, germ damage, fluorescence value, and formazan value of commercial wheat samples. Sorger-Domenigg, H., Cuendet, L.S., and Geddes, W.F. Cereal Chem. 32: 499–506 (1955) CA 50: 3662bGoogle Scholar
  377. B 378 Removing adherent materials. Stankey, J A. U.S. 2,726,180 (1955) CA 50: 4430cGoogle Scholar
  378. B 379.
    B 379 Influence of alternating electric fields on the light emission of some phosphors. Steinberger, I.T., Low, W., and Alexander, E. Phys. Rev. 99: 1217–22 (1955) CA 49: 15500iGoogle Scholar
  379. B 380.
    B 380 Fluorescence quenching of anthracene, 9-phenylanthracene, and 9,10-diphenyl-anthracene in the vapor phase. Stevens, B. Trans. Faraday Soc. 51: 610–19 (1955) CA 49: 15500cGoogle Scholar
  380. B 381.
    B 381 Determination of the relative yield and the intensity of phosphorescence in organoluminophor s. Sveshnikov, B.Y. Dokl. Akad. Nauk SSSR 105: 1208–11 (1955) CA 50: 13614fGoogle Scholar
  381. B 382.
    B 382 Temperature sensitivities of the sensitized fluorescence spectrum of thallium. Swanson, R.E., and McFarland, R.H. Phys. Rev. 98: 1063–7 (1955) CA 49: 11425eGoogle Scholar
  382. B 383.
    B 383 The fluorimetrie determination of ergot alkaloids. Syenes, I., and Szasz, K. Magy. Kem. Folyoirat 61: 393–8 (1955) CA 52: 11361bGoogle Scholar
  383. B 384 Fluorescent globulin of the lens. Szent-Gyorgi, A. Biochim. Biophys. Acta 16: 167 (1955) CA 49: 6340gGoogle Scholar
  384. B 385.
    B 385 Estimation of fluorescent brightening agents. Taylor, G.G. J. Soc. Dyers Colourists 71: 697–704 (1955) CA 50: 2981gGoogle Scholar
  385. B 386.
    B 386 Fluorescent substance. Torio, K. Japan 1223 (1955) CA 50: 16414gGoogle Scholar
  386. B 387.
    B 387 An investigation of the γ→αAl2O3 polymorphic transformation by the luminescence spectra. Trofimov, A.K., and Tolkachov, S.S. Dokl. Akad. Nauk SSSR 104: 54–5 (1955) CA 50: 7597gGoogle Scholar
  387. B 388.
    B 388 Fluorescence characteristics of 5-hydroxytryptamine (seratonin). Udenfriend, S., Bogdanski, D.F., and Weissbach, H. Science 122: 972–3 (1955) CA 50: 6197cGoogle Scholar
  388. B 389.
    B 389 The nature, properties, and significance of fluorescing substances formed in the processes of adrenaline and noradrenaline oxidation. Vtevskii, A.M., and Osinskaya, V.O. Ukr. Biokhim. Zh. 27: 401–7 (1955) CA 50: 1948bGoogle Scholar
  389. B 390.
    B 390 Intensity calculations for molecular electronic spectra, van Dranen, J. Chem. Weekblad 51: 735–40 (1955) CA 50: 2273eGoogle Scholar
  390. B 391.
    B 391 Apparatus for the measurement of the life of phosphorescent phenomena. Van Roggen, A., and Vroom, R.A. J. Sci. Instr. 32: 180–3 (1955) CA 52: 16894eGoogle Scholar
  391. B 392.
    B 392 Scintillation phenomena in sodium iodide and cesium fluoride. Van Sciver, W.J. Dissertation, Stanford University, California (1955) CA 50: 6201bGoogle Scholar
  392. B 393.
    B 393 Scintillation and luminescence in un-activated sodium iodide. Van Sciver, W., and Hofstadter, R. Phys. Rev. 97: 1181 (1955) CA 49: 7402dGoogle Scholar
  393. B 394.
    B 394 The forbidden oxygen I lines and phos-phorescence bands emitted from inert gases containing traces of oxygen. Vegard, L., and Kvifte, G. Skrifter Norske Videnskaps-Akad. Oslo, I, Mat.-Naturv. Kl. 1955, No. 2, 20 pp. (1955) CA 51: 9303fGoogle Scholar
  394. B 395.
    B 395 The mechanism of the photosensitiza-tion of zinc oxide under the formation of hydrogen peroxide, and the fluorescent properties of zinc oxide. Veselovskii, V.I., and Shub, D.M. Probl. Kinetiki i Kataliza, Akad. Nauk SSSR 8: 43–52 (1955) CA 50: 1471eGoogle Scholar
  395. B 396.
    B 396 Isolation of fluorescent materials from Drosophila melanogaster. Viscontini, M., Schoeller, M., Loeser, E., Karrer, P., and Hadorn, E. Helv. Chim. Acta 38: 397–401 (1955) CA 50: 89l8iGoogle Scholar
  396. B 397.
    B 397 Fluorescent substances from Droso-phila melanogaster. III. Viscontini, M., Loeser, E., Karrer, P., and Hadorn, E. Helv. Chim. Acta 38: 2034–5 (1955) CA 50: 5922fGoogle Scholar
  397. B 398.
    B 398 Isolation of fluorescent material from Astacus fluviatilis. Viscontini, M., Schmid, H., and Hadorn,E. Experientia 11: 390–2 (1955) CA 50: 4411gGoogle Scholar
  398. B 399.
    B 399 Studies in the naphthalene series. I. Synthesis of 3-amino-l-naphthoic acid. Vondracek, M., and Vecerek, B. Chem. Listy 49: 772–5 (1955) CA 50: 3353dGoogle Scholar
  399. B 400.
    B 400 Fluorescence of salicylic acid and related compounds. Weiler, A. Naturwissenschaften 42: 175–6 (1955) CA 50: 5411hGoogle Scholar
  400. B 401.
    B 401 Quenching of fluorescence by some he min proteins. Werth, G., and Eisenbrand, J. Hoppe-Seylers Z. Physiol. Chem. 299: 156–67 (1955) CA 49: 6334gGoogle Scholar
  401. B 402 2-Pyrones. XV. Substituted 3-c innamoyl–4 -hydroxy–6 -methyl –2 -pyrones from dehydroacetic acid. Wiley, R.H., Jarboe, C.H., and Ellert, H.G. J. Am. Chem. Soc. 77: 5102–5 (1955) CA 50: 8619gGoogle Scholar
  402. B 403 The vibrational structure of the fluor-escence spectrum of naphthalene in solution and in crystalline form. Wolf, H.C. Z. Naturforsch. 10a: 3–9 (1955) CA 50: 1053OfGoogle Scholar
  403. B 404 The vibrational structure of the fluor-escence spectrum of naphthalene. II. Naphthalene in durol. Wolf, H.C. Z. Naturforsch. 10a: 244–8 (1955) CA 50: 1 1110cGoogle Scholar
  404. B 405.
    B 405 Spectroscopic behavior of the methyl derivatives of naphthalene; spectro-scopic analysis of the position isomer-ic derivatives of aromatic hydrocar-bons. Wolf, H.C. Z. Naturforsch. 10a: 270–8 (1955) CA 51: 3289cGoogle Scholar
  405. B 406.
    B 406 Fluorescence and absorption spectrum of 1,8-dimethyl-naphthalene. Wolf, H.C. Z. Naturforsch. 10a: 800–1 (1955) CA 51: 3289fGoogle Scholar
  406. B 407.
    B 407 Band width in the fluorescence spectrum of organic molecular crystals. Investigations on mixed crystals of naphthalene. Wolf, H.C. Z. Physik. 143: 266–73 (1955) CA 50: 1523 9iGoogle Scholar
  407. B 408 The photographic fixation of fluorescence demonstrations on paper chrom-atograms in ultraviolet light. Wolff, K. Pharmazie 10: 371 (1955) CA 49: 15301ÌGoogle Scholar
  408. B 409.
    B 409 Absolute quantum efficiency of photo-flourescence of anthracene crystals. Wright, G.T. Proc. Phys. Soc. 68B: 241–8 (1955) CA 49: 13785iGoogle Scholar
  409. B 410.
    B 410 Fluorescence excitation spectra and quantum efficiencies of organic crystals. Wright, G.T. Proc. Phys. Soc. 68: 701–12 (1955) CA 50: 680iGoogle Scholar
  410. B 411.
    B 411 Absolute scintillation efficiency of anthracene crystals. Wright, G.T. Proc. Phys. Soc. 68: 929–37 (1955) CA 50: 6195iGoogle Scholar
  411. B 412.
    B 412 Fluorescence excitation spectrum of anthracene. Wright, G.T. Phys. Rev. 100: 587–8 (1955) CA 49: 309lhGoogle Scholar
  412. B 413.
    B 413 Fluorometric analysis of vitamins. IH. Fluorescence spectra of thio-chrome and other similar fluorescent substances. Yagi, K., Tabata, T., Kotaki, E., and Arakawa, T. Vitamins 9: 391–2 (1955) CA 50: l5674eGoogle Scholar
  413. B 414.
    B 414 Ratio of quantum yields of phosphores-cence and fluorescence of substituted phthalimides. Zelinski, V.V., and Kolobkov, V.P. Dokl. Akad. Nauk SSSR 101: 241–4 (1955) CA 50: 2302cGoogle Scholar
  414. B 415.
    B 415 Effect of the migration of energy on the polarization of fluorescent monocrys-tals. Zhevandrov, N.D. Dokl. Akad. Nauk SSSR 100: 455–8 (1955) CA 50: 1470bGoogle Scholar
  415. B 416.
    B 416 Relation of the polarization of lumines-cence and other optical properties of the anthracene derivatives to their structure. Zhevandrov, N.D. Tr. Fiz. Inst., Akad. Nauk SSSR, Fiz. Inst. 6: 123–98 (1955) CA 50: 7955hGoogle Scholar
  416. B 417.
    B 417 Scintillation response of anthracene to low-energy protons and helium ions. Zimmerman, E.J. Phys. Rev. 99: 1199–1203 (1955) CA 49: 15498aGoogle Scholar
  417. B 418.
    B 418 Luminescence of crystals at low temperatures. VIE. Transition T — S of hexachlorobenzene at 90°K. Zmerli, A., and Pesteil, P. Compt. Rend. 240: 2217–19 (1955) CA 49: 15499dGoogle Scholar
  418. B 419.
    B 419 Long-lived states in photochemical re-actions. II. Photoreduction of fluorescein and its halogenated derivatives. Adelman, A A., and Oster, G. J. Am. Chem. Soc. 78: 3977–80 (1956) CA 51: 1739cGoogle Scholar
  419. B 420.
    B 420 Effect of the expelling action of excita-tion light on the photoluminescence yield of crystal phosphors. Anikina, L.I. Tr. Fiz. Inst., Akad. Nauk SSSR, Fiz. Inst. 7: 5–46 (1956) CA 51: 4148gGoogle Scholar
  420. B 421.
    B 421 The polarization of fluorescence and energy transfer in grana. Arnold, W., and Meek, E.S. Arch. Biochem. Biophys. 60: 82–90 (1956) CA 50: 6600hGoogle Scholar
  421. B 422.
    B 422 Changes in the fluorescence of some minerals from Serbian deposits. Arsenijevic, M. Glasnik Prirod. Muzeia Srpske Zemlye, Ser.A 7: 151–6 (1956) CA 51: 13661aGoogle Scholar
  422. B 423.
    B 423 Emission bands of benzonitrile. Asundi, R.K., and Joshi, BJD. Current Sci. 25: 150–1 (1956) CA 50: 16384eGoogle Scholar
  423. B 424 Fluorescence of steroids. Arrhenius, S. Acta Chem. Scand. 10: 154 (1956) CA 50: 1 2659hGoogle Scholar
  424. B 425.
    B 425 Investigation of the luminescence of cadmium sulfide activated with silver. Baneie-Grillot, M., and Grillot, E. J. Chim. Phys. 53: 521–6 (1956) CA 50: 16360fGoogle Scholar
  425. B 426.
    B 426 Stereoisomerism and excited states of simple polymethine dyes. Baumgartner, F., Gunther, E., and Scheibe, G. Z. Elektrochem. 60: 570–2 (1956) CA 50: 16405eGoogle Scholar
  426. B 427.
    B 427 Electronic spectra of polyacetylenes. Beer, M. J. Chem. Phys. 25: 745–50 (1956) CA 51: 2392dGoogle Scholar
  427. B 428.
    B 428 Fluorescence of cerium in sodium fluoride melts. Belegisanin, N. Glasnik Hem. Drushtva, Beograd 21: 271–6 (1956) CA 52: 15263aGoogle Scholar
  428. B 429.
    B 429 Phosphorescence of the crystal phosphor ZnS-Cu during excitation by an electron beam. Belikova, T.P. Soviet Phys. JETP 2: 776–7 (1956) CA 51: 6356dGoogle Scholar
  429. B 430.
    B 430 Fluorimetry employing a photoelectric cell. Bernanose, A., and Rene, M. Bull. Soc. Pharm. Nancy 28: 16–18 (1956) CA 51: 9867hGoogle Scholar
  430. B 431.
    B 431 Radiation-induced luminescence. II. Effect of oxygen and bromobenzene. Berry, P.J., Lipsky, S., and Burton, M. Trans. Faraday Soc. 52: 311–20 (1956) CA 50: 1437IfGoogle Scholar
  431. B 432.
    B 432 Fluorescence spectra of some organic crystals. Birks, J.B., and Cameron, A.J.W. S. African J. Sci. 53: 16–19 (1956) CA 51: 1735iGoogle Scholar
  432. B 433.
    B 433 Fluorescence of p p-chlorotoluene in the solid state at low temperature. Biswas, D.C. Indian J. Phys. 30: 143–50 (1956) CA 51: 9329bGoogle Scholar
  433. B 434.
    B 434 Dependence of the intensity of the fluorescence of p p-chlorotoluene on the wavelength of the exciting radiation. Biswas, D.C. Indian J. Phys. 30: 255–7 (1956) CA 51: 9329cGoogle Scholar
  434. B 435.
    B 435 Fluorescence of p-bromotoluene, o-bromo-, and o-chlorotoluene in the solid state at low temperature. Biswas, D .C. Indian J. Phys. 30: 407–14 (1956) CA 51: 9329dGoogle Scholar
  435. B 436.
    B 436 Fluorescence spectra of methyl benzo-ate mp-chlorotoluene, and m-bromotolu-ene. Biswas, D .C. Indian J. Phys. 30: 565–9 (1956) CA 51: 9329fGoogle Scholar
  436. B 437.
    B 437 The yield of resonance fluorescence of sodium in a flame. Boers, A.L., Alkemade, C.T.J., and Smit, J.A. Physica 22: 358–60 (1956) CA 52: 9752iGoogle Scholar
  437. B 438.
    B 438 Measurement of fluorescence duration by means of a phase fluorometer. Bonch-Bruevieh, A.M. Bull. Acad. Sci. USSR, Phys. Ser. 20: 536–8 (1956) CA 51: ll859eGoogle Scholar
  438. B 439.
    B 439 Measurement of fluorescence duration by means of a phase fluorometer. Bonch-Bruevich, A.M. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 591–5 (1956) CA 51: 1737cGoogle Scholar
  439. B 440.
    B 440 A new phase fluorometer. Bonch-Bruevich, A.M., Molehanov, V.A., and Shirokov, V.I. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 596–600 (1956) CA 51: 1737dGoogle Scholar
  440. B 441.
    B 441 Development of the fluorometric meth-od for studying the duration of the excited state of molecules. Bonch-Bruevich, A.M. Usp. Fiz. Nauk 58: 85–110 (1956) CA 50: 16337fGoogle Scholar
  441. B 442.
    B 442 The effect of foreign gases on the spectra and on the fluorescence yield for vapors of aromatic compounds. Borisevich, N.A., and Neporent, B.S. Opt. i Spektroskopiya 1: 536–45 (1956) CA 51: 5568eGoogle Scholar
  442. B 443.
    B 443 Absolute photoluminescence yield of anthracene and naphthalene crystals. Borisov, M.D., and Vishnevskii, V.N. Bull. Acad. Sci. USSR, Phys. Ser. 20: 459–61 (1956) CA 51: ll080hGoogle Scholar
  443. B 444.
    B 444 The enhancement of the fluorescence of vapors. Bowen, E.J., and Veljkovic, S. Proc. Roy. Soc.(London), Ser. A 236: 1–6 (1956) CA 50: 15241gGoogle Scholar
  444. B 445.
    B 445 Change in reduced diphosphopyridine nucleotide (DPNH) fluorescence upon combination with liver alcohol dehydrogenase. Boyer, P.D., and Theorell, H. Acta Chem. Scand. 10: 447–50 (1956) CA 52: 923 7dGoogle Scholar
  445. B 446.
    B 446 Misassignment of the multiplicity for-bidden transitions in pyridine. Brealey, G.J. J. Chem. Phys. 24: 571–3 (1956) CA 50: 9152bGoogle Scholar
  446. B 447.
    B 447 Measurement of fluorescence and quality of eggs. Brooks, J., and Hale, H.P. Bull. Inst. Intern. Froid, Suppl. 1956(1): 169–75 (1956) CA 55: 3865fGoogle Scholar
  447. B 448.
    B 448 Oxygen as activator of zinc sulfide phosphors. Brundel, A A. Zh. Fiz. Khim. 30: 2469–77 (1956) CA 51: 9327aGoogle Scholar
  448. B 449.
    B 449 Influence of secondary fluorescence on the emission spectra of luminescent solutions. Budo, A., and Ketskemety, I. J. Chem. Phys. 25: 595–6 (1956) CA 51: 88iGoogle Scholar
  449. B 450.
    B 450 Determination of the absolute quantum yield of fluorescent solutions. Budo, A., Dombi, J., and Szollosy, L. Acta Univ. Szeged., Acta Phys. Chem. 2: 18–27 (1956) CA 51: 15278dGoogle Scholar
  450. B 451.
    B 451 Fluorescence of thallium-activated halide phosphors. Butler, K.H. J. Electrochem. Soc. 103: 508–12 (1956) CA 50: 16399dGoogle Scholar
  451. B 452 (Fluorometric determination of uranium.) Centanni, FA., Ross, A.M., and Desesa, MA. Anal. Chem. 28: 1651 (1956)Google Scholar
  452. B 453 Fluorescence analysis for polycyclic aromatic hydrocarbons. Chaudet, J.H., and Kaye, W.I. Am. Chem. Soc. Div. Petrol. Chem., Preprints 1, No. 4, Polycyclic Hydro-carbons, 147–54 (1956) CA 53: 13775eGoogle Scholar
  453. B 454 Separation of natural coumarins by circular chromatography. Chakraborty, D.P., and Chakraborty, H.C. Sci. Culture 22: 117–19 (1956) CA 53: 4019cGoogle Scholar
  454. B 455 Absorption spectra, fluorescence spectra, and fluorescence quantum yields of some me so derivatives of anthracene. Cherkasov, A.S. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 478–81 (1956) CA 51: 870gGoogle Scholar
  455. B 456.
    B 456 Duration of fluorescence for the meso derivatives of anthracene. Cherkasov, A .S., Molchanov, V A., Vember, T.M., and Voldaikina, K.G. Dokl. Akad. Nauk SSSE 109: 292–4 (1956) CA 51: 9329iGoogle Scholar
  456. B 457.
    B 457 Duration of fluorescence for the meso derivatives of anthracene. Cherkasov, A.S., Molchanov, V.A., Vember, T.M., and Voldaikina, K.G. Soviet Phys. Doklady 1: 427–9 (1956) CA 51: 13580bGoogle Scholar
  457. B 458.
    B 458 Absorption spectra, fluorescence spectra, and fluorescence quantum yields of some meso derivatives of anthracene. Cherkasov, A.S. Bull. Acad. Sci. USSR, Phys. Ser. 20: 436–9 (1956) CA 51: 11080gGoogle Scholar
  458. B 459 Light-quenching effect of organic phosphors. Chomse, H., Hoffman, W., and Seidel, P. Naturwissenschaften 43: 12 (1956) CA 51: 16110bGoogle Scholar
  459. B 460.
    B 460 Light scattering measurements of cellulose solutions in concentrated acids. Choudhury, P.K., and Frank, H.P. J. Polymer Sci. 20: 218–23 (1956) CA 51: 7710hGoogle Scholar
  460. B 461.
    B 461 Aromatic hydrocarbons. LXXII. The relationships between chemical reactivity, phosphorescence, and Of-absorption bands and the “hydrogen similarity” of the upper level of the p -bands in the absorption spectra of aromatic hydrocarbons. Clar, E., and Zander, M. Chem. Ber. 89: 749–62 (1956) CA 51: 346aGoogle Scholar
  461. B 462.
    B 462 Energy transfer from solvent to solute in liquid organic solutions under ultraviolet excitation. Cohen, S.G., and Weinreb, A. Proc. Phys. Soc. 69: 593–605 (1956) CA 50: 16384cGoogle Scholar
  462. B 463.
    B 463 Photoconductivity and semiconductivity of anthracene: effect of nitrogen dioxide and chlorine. Compton, D.M.J., and Waddington, T.C. J. Chem. Phys. 25: 1075–6 (1956) CA 51: 3283dGoogle Scholar
  463. B 464.
    B 464 Towards better scintillation counting. Cooper, D.I., and Morton, G .A. Nucleonics 14: 46–8 (1956) CA 50: 12677aGoogle Scholar
  464. B 465.
    B 465 Detection of crude oil in subterranean formations. Cross, C.F., and Wayo, S.J. U.S. 2,740,758 (1956) CA 50: 10390bGoogle Scholar
  465. B 467.
    B 467 Theoretical and experimental study of some properties of electron traps and luminescence centers in sulfides. Curie, D. J. Phys. Radium 17: 699–702 (1956) CA 51: 865gGoogle Scholar
  466. B 468.
    B 468 Sensitized phosphorescence and charge transfer-fluorescence in organic molecular compounds. Czekalla, J. Naturwissenschaften 43: 467–8 (1956) CA 53: 21165eGoogle Scholar
  467. B 469 Affinities of vat dyes. DeCort, W.J. J. Soc. Dyers Colourists 72: 439 (1956) CA 50: 17455hGoogle Scholar
  468. B 470.
    B 470 Characterization of some bile constituents separated by electrophoresis. Dessi, P., and Pellegrini, R. Giorn. Biochim. 5: 146–52 (1956) CA 50: 15830gGoogle Scholar
  469. B 471.
    B 471 Spectral repetition of the electroen-hancement effect of mixtures of CdS-ZnS activated by manganese and silver. Destriau, G. J. Phys. Radium 17: 734–6 (1956) CA 51: 1734hGoogle Scholar
  470. B 472.
    B 472 Absorption, fluorescence, and energy levels of the dysprosium ion. Dieke, G.H., and Singh, S. J.Opt. Soc. Am. 46: 495–9 (1956) CA 50: H812dGoogle Scholar
  471. B 473.
    B 473 The concentration dependence of the spectral effect of secondary fluorescence. Dombi, J., and Horvai, R. Acta Univ. Szeged., Acta Phys. Chem. 2: 9–17 (1956) CA 51: 15278bGoogle Scholar
  472. B 474.
    B 474 Transfer of electronic energy. Quenching of fluorescence by oxygen and nitric oxide. Dubois, J.T. J. Chem. Phys. 25: 178 (1956) CA 50: 136l5dGoogle Scholar
  473. B 475.
    B 475 Phosphor synthesis by recrystallization and migration of electrons. D’yulai, Z. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 1569–70 (1956) CA 51: 10242iGoogle Scholar
  474. B 476.
    B 476 Quantitative comparison of the fluorescent patterns of the eggs of three genotypes of Ephestia kuhniella (Anagasta kuhniella). Egelhaaf, A. Naturwissenschaften 43: 165–6 (1956) CA 52: 14017bGoogle Scholar
  475. B 477.
    B 477 Sensitized phosphorescence of aromatic compounds (energy transport from one triplet level to another). Ermolaev, V.L. Bull. Acad. Sci. USSR Phys. Ser. 20: 471–5 (1956) CA 51: 1 1859gGoogle Scholar
  476. B 478.
    B 478 Sensitized phosphorescence of aromatic compounds (energy transport from one triplet level to another). Ermolaev, V.L. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 514–19 (1956) CA 51: 1738cGoogle Scholar
  477. B 479.
    B 479 The connection between the dark and light photochemical reduction of chlorophyll and its analogs. Evstigneev, V.B., and Gavrilova, VA. Dokl. Akad. Nauk SSSR 108: 507–10 (1956) CA 50: 16409bGoogle Scholar
  478. B 480.
    B 480 Metabolite inhibitors. I. 6,7-Dimethyl–9-formylmethylisoalloxazine, 6,7-dimethyl–9-(2-hydroxyethyl)isoallox-azine and derivatives. Fall, H.H., and Petering, H.G. J. Am. Chem. Soc. 78: 377–80 (1956) CA 50: 13039dGoogle Scholar
  479. B 481.
    B 481 Fluorescent compounds. Farbenfabriken Bayer A.-G. Brit. 738,884 (1956) CA 50: l5246dGoogle Scholar
  480. B 482.
    B 482 Migration of excitation energy in organic crystals. I. Tetracene included in anthracene. Ferguson, J. Australian J. Chem. 9: 160–71 (1956) CA 50: 1 1110aGoogle Scholar
  481. B 483.
    B 483 Polarization of anthracene crystal fluorescence. Ferguson, J., and Schneider, W.G. J. Chem. Phys. 25: 780 (1956) CA 51: 870fGoogle Scholar
  482. B 484.
    B 484 Phosphorescence and fluorescence of some aromatic nitroamines. Foster, R., Hammick, D.L., Hood, G.M., and Sanders, A.C.E. J. Chem. Soc. 1956: 4865–8 (1956) CA 51: 3295hGoogle Scholar
  483. B 485.
    B 485 Pigment production by a strain of Pseudomonas aeruginosa isolated from the fleece of sheep. Fraser, I.E.B., and Mulcock, A.P. J. New Zealand Assoc. Bacteriologists 11: 2–7 (1956) CA 52: 11168hGoogle Scholar
  484. B 486.
    B 486 The structure and characteristics of the fluorescent metal chelates of 0,0--dihydroxyazo compounds. Freeman, D.C., Jr., and White, C.E. J.Am. Chem. Soc. 78: 2678–82 (1956) CA 50: 14369iGoogle Scholar
  485. B 487.
    B 487 Fluorescence-spectrum curves of chlorophylls, pheophytins, and hyperi-cin. French, C.S., Smith, J.H.C., Virgin, H.I., and Airth, R.L. Plant Physiol. 31: 369–74 (1956) CA 51: 2l31dGoogle Scholar
  486. B 488.
    B 488 Absorption, action, and fluorescent spectra of photosynthetic pigments in living cells and in solutions. French, C.S., and Young, V.M.K. Radiation Biol. 3: 343–91 (1956) CA 50: 7196gGoogle Scholar
  487. B 489.
    B 489 The structure of magnesium phthalocy-anine adsorbates on MgO, ZnO, A1203, and glass, and their fluorescence. Gachkovskii, V .F. Dokl. Akad. Nauk SSSR 110: 408–10 (1956) CA 51: 13511dGoogle Scholar
  488. B 490.
    B 490 Absolute luminescence yield of y-scintillations in naphthalene crystals containing anthracene. Galanin, M.D., and Grishin, A.P. Zh. Eksperim. i Teor. Fiz. 30: 33–41 (1956) CA 50: 14386bGoogle Scholar
  489. B 491 Modification of Beckman DK–1 spectro-photometer for use as a recording spectrof luorometer. Gemmill, C.L. Anal. Chem. 28: 1061–3 (1956) CA 50: 1 2656iGoogle Scholar
  490. B 492 The transfer of excitation energy from p -terphenyl to riboflavine. Gemmill, C.L. Radiation Res. 5: 216–24 (1956) CA 50: 16403iGoogle Scholar
  491. B 493 Two measuring procedures for fluorescence decay processes. Glaser, F. Z. Naturforsch, lia: 1030–6 (1956) CA 51: 7157gGoogle Scholar
  492. B 494 The azole series. III. The structure of 2-oxazolone and 2-oxazolethione: ultraviolet and fluorescence spectra of these and related compounds. Gompper, R., and Herlinger, H. Chem. Ber. 89: 2816–24 (1956) CA 51: 1 1854eGoogle Scholar
  493. B 509.
    B 509 Blue luminescent substance in berberine-containing plants. IV. Blue luminescent substance from Berberis thunbergii var. maximowizii and B. amurensis var. joponica forma. Bret-schnuderi. Ishida, Y., and Okamura, T. J. Pharm. Soc. Japan 76: 223–4 (1956) CA 50: 7957eGoogle Scholar
  494. B 509 Blue luminescent substance in berberine-containing plants. IV. Blue luminescent substance from Berberis thunbergii var. maximowizii and B. amurensis var. joponica forma. Bret-schnuderi. Ishida, Y., and Okamura, T. J. Pharm. Soc. Japan 76: 223–4 (1956) CA 50: 7957eGoogle Scholar
  495. B 510 Phenylcinchoninic acid analogs. I. Relation between their fluorescence and chemical structures. EE. Capillary images. Ito, H., and Fukushima, H. Ann. Rept. Pharm. Tokushima Univ. 5: 12–14, 15–17 (1956) CA 53: 3877eGoogle Scholar
  496. B 511 Organic phosphors containing metallic compounds as the phosphorescent bod-ies. in. Effect of metallic compounds on the fluorescence and phosphorescence spectra. Iwaki, R. J. Chem. Soc. Japan 77: 26–31 (1956) CA 50: 5411aGoogle Scholar
  497. B 512.
    B 512 Organic phosphors containing metallic compounds as the phosphorescent bodies. IV. Phosphorescence of uranin-lead acetate phosphors. Iwaki, R. J. Chem. Soc. Japan 77: 31–6 (1956) CA 50: 5411cGoogle Scholar
  498. B 513.
    B 513 The dye gelatin phosphors, in. Saturation characteristics of phosphorescence. Iwaki, R. J. Chem. Soc. Japan, Pure Chem. Sect. 77: 801–4 (1956) CA 50: 16405eGoogle Scholar
  499. B 515 Absorption and fluorescence spectra of chromones, flavones, flavonols. Jatkar, S.K.K., and Mattoo, B.N. J. Indian Chem. Soc. 599–604, 623–9, 641–9 (1956). CA 51: 9313iGoogle Scholar
  500. B 516 Absorption and fluorescence spectra of benzylidene coumaranones. Jatkar, S.K.K., and Mattoo, B.N. J. Indian Chem. Soc. 33: 647–50 (1956) CA 51: 9315aGoogle Scholar
  501. B 517.
    B 517 Identification of azotobacter species by fluorescence and cell analysis. Johnstone, D.B., and Fishbein, J.R. J. Gen. Microbiol. 14: 330–5 (1956) CA 50: 11429dGoogle Scholar
  502. B 518.
    B 518 The disappearance of electrons during phosphorescence in argon. Joslet, C., Weniger, S., and Herman, R. Compt. Rend. 242: 2538–9 (1956) CA 50: 12658hGoogle Scholar
  503. B 519.
    B 519 Quantitative evaluation of fluorescent paper chromatographs. Kaiser, H., and Wildermann, L. Intern. Z. Vitaminforsch. 27: 131–9 (1956) CA 51: 11156eGoogle Scholar
  504. B 520.
    B 520 Number of traps and behavior of excited electrons in luminescent materials. Kallmann, H., and Spruch, G.M. Phys. Rev. 103: 94–102 (1956) CA 50: 15240cGoogle Scholar
  505. B 521.
    B 521 Color reactions of rosin derivatives. Kamath, N.R., and Shetye, G.D. Paintindia 6: 29–34 (1956) CA 50: 16l34gGoogle Scholar
  506. B 522.
    B 522 The nature of the centers of luminosity of the phosphors NaCl-Ag and NaCl-Cu. Kats, M.L., Grigor’eva, N.A., Mironenko, LA., and Smigirev, B.N. Uch. Zap. Saratovsk. Gos. Univ. 44: 115–29 (1956) CA 54: 20516eGoogle Scholar
  507. B 523.
    B 523 The influence of various gases on the luminescence of X-irradiated crystals of alkali halides. Kats, M.L. Uch. Zap. Saratovsk. Gos. Univ. 44: 131–5 (1956) CA 54: 4169bGoogle Scholar
  508. B 524.
    B 524 Atomic centers of nickel in sodium chloride-nickel phosphors. Kats, M.L., and Semenov, B.Z. Dokl. Akad. Nauk SSSR 106: 415–18 (1956) CA 51: 2402bGoogle Scholar
  509. B 525.
    B 525 Several new results from the measurement of fluorescence in plants. Kautsky, H. Z. Naturforsch, lib: 116–7 (1956) CA 50: 16992dGoogle Scholar
  510. B 526.
    B 526 The electrolytic reduction of diphos-phopyridine nucleotide. Ke, B. Arch. Biochem. Biophys. 60: 505–6 (1956) CA 50: 7l79iGoogle Scholar
  511. B 527.
    B 527 The scattering of the vibrational quanta of an excited nitric oxide mole-cule upon collision with other molecules. Kleinberg, A.V. Opt. i Spektroskopiya 1: 469–77 (1956) CA 51: 5569iGoogle Scholar
  512. B 528.
    B 528 The relation of the spectra of organic compounds to the dielectric constant of the medium. Klochkov, V.P. Opt. i Spektroskopiya 1: 546–53 (1956) CA 51: 5568dGoogle Scholar
  513. B 529 Stability of internal complex salts in the excited state. Kokubun, H., Ono, N., and Inamura, Y. Naturwissenschaften 43: 105 (1956) CA 51: 16094fGoogle Scholar
  514. B 530.
    B 530 The behavior of dye ions in detergent solutions. II. The behavior of fluorescent dye ions as revealed by fluorescence measurements. Kondo, T. Nippon Kagaku Zasshi 77: 1281–4 (1956) CA 51: 10187hGoogle Scholar
  515. B 531.
    B 531 Fluor ometer. Korol’kov, S.I., and Kudryavtsev, V.I. U.S.S.R. 104,009 (1956) CA 51: 4067hGoogle Scholar
  516. B 532.
    B 532 The occurrence of porphyrin in the planar ian. Krugelis-Macrae, E. Biol. Bull. 110: 69–76 (1956) CA 50: 8926cGoogle Scholar
  517. B 533.
    B 533 The phosphorescence spectra of organo-lumiphors in anti-Stokesian excitation. Kudryashov, P.I., and Sveshnikov, B.Ya. Opt. i Spektroskopiya 1: 554–9 (1956) CA 51: 6355iGoogle Scholar
  518. B 534 Influence of dye concentration on the luminescence of Acridine Orange in alcohol solution at –183°. Kuznetsova, LA., and Sveshnikov, B.Ya. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 433–41 (1956) CA 51: 869dGoogle Scholar
  519. B 535 Electronic properties of aluminum nitride. Lagrenaudie, J. J. Chim. Phys. 54: 222–5 (1956) CA 50: 1 1758fGoogle Scholar
  520. B 536 Fluorescence and scattering of light by plant pigments. Latimer, P. Univ. Microfilms No. 18165, 141 pp. (1956) CA 51: 2403eGoogle Scholar
  521. B 537.
    B 537 Quantum yields of fluorescence of plant pigment. Latimer, P., Bannister, T.T., and Rabinowitch, E. Science 124: 585–6 (1956) CA 51: 4505iGoogle Scholar
  522. B 538.
    B 538 Influence of the existence of several trapping systems and of the phenomenon of recapture on the decay law of phosphorescence. Levchin, V. J. Phys. Radium 17: 684–7 (1956) CA 51: 5567eGoogle Scholar
  523. B 539.
    B 539 Apparatus for spectral analysis of molecular phosphorescence at ordinary temperatures. Lochet, R., Valentin, F., and Rousset, A. J. Phys. Radium 17: 307–8 (1956) CA 51: 2404cGoogle Scholar
  524. B 540.
    B 540 Effect of crystal structure upon the luminescence of manganese-activated lithium titanate. Lorenz, M.R., and Prener, J.S. J. Chem. Phys. 25: 1013–15 (1956) CA 51: 4147iGoogle Scholar
  525. B 541.
    B 541 The influence of degree of dispersion of some fluorescent substances on the fluorescence intensity. I. Fluorescein in water, in alcohols, in acetone, and in ether. Lucatu, F. Comun. Acad. Rep. Populare Romine 6: 35–42 (1956) CA 51: 871cGoogle Scholar
  526. B 542.
    B 542 Anomalous fluorescence in torbernite from Rum Jungle, N. T., Australia. Lyon, R.J .P. Am. Minerologist 41: 789–92 (1956) CA 51: 7957fGoogle Scholar
  527. B 543.
    B 543 Paper chromatographic comparative study on various strains of medicago sativa. Manunta, C. Genet. Agrar. 6: 377–84 (1956) CA 52: 17423dGoogle Scholar
  528. B 544.
    B 544 Physical properties of chymotrypsin and chymotrypsinogen using the depolarization of fluorescence techniques. Massey, V., Harrington, W.F., and Hartley, B.S. Discussions Faraday Soc. 20: 24–32 (1955) (Pub. 1956) CA 50: 16922bGoogle Scholar
  529. B 545 Influence of high-molecular cations on the fluorescence and absorption spectra of dye anions. Mataga, N. J. Inst. Polytech., Osaka City Univ., Ser. C, 74–84 (1956) CA 52: 597liGoogle Scholar
  530. B 546 Hydrogen-bonding effect on the fluores-cence of 7r -electron system. Mataga, N„ Kaifu, Y., and Koizumi, M. Bull. Chem. Soc. Japan 29: 115–22 (1956) CA 51: 7158bGoogle Scholar
  531. B 547 The base strength of some nitrogen heterocycles in the excited state. Mataga, N., Kaifu, Y., and Koizumi, M. Bull. Chem. Soc. Japan 29: 373–9 (1956) CA 50: 1 1820cGoogle Scholar
  532. B 548.
    B 548 Solvent effects upon the fluorescence spectra and the dipole moments of excited molecules. Mataga, N., Kaifu, Y., and Koizumi, M. Bull. Chem. Soc. Japan 29: 465–70 (1956) CA 51: 89cGoogle Scholar
  533. B 549 Fluorescence spectra of natural and irradiated diamonds. Matthews, I.G. J. Phys. Radium 17: 649 (1956) CA 51: 5566eGoogle Scholar
  534. B 550.
    B 550 Absorption and fluorescence spectra of coumarins. Mattoo, B.N. Trans. Faraday Soc. 52: 1184–94 (1956) CA 51: 5552bGoogle Scholar
  535. B 551.
    B 551 Excited states of the naphthalene molecule. II. Further studies on the first singlet-singlet transition. McClure, D.S. J. Chem. Phys. 24: 1–12 (1956) CA 50: 4637hGoogle Scholar
  536. B 552.
    B 552 Nuclear resonance fluorescence in nickel–60. Metzger, F.R. Phys. Rev. 103: 983–7 (1956) CA 50: 15266hGoogle Scholar
  537. B 553.
    B 553 Fluorescence spectra of illuminating oils. Mihul, C., Ruscior, C., and Pop, V. Analele Stiint. Univ. “A. I. Cuza” Iasi, Sect. I. 2: 199–209 (1956) CA 53: 3877hGoogle Scholar
  538. B 554.
    B 554 Preparation of 10-vinyl acridone. Mikhant’ev, B.I., and Sklyarov, VA. Zh. Obshch. Khim. 26: 784–5 (1956) CA 50: 14760hGoogle Scholar
  539. B 555.
    B 555 Fluorescence of cadmium iodide. Monod-Herzen, G. Compt. Rend. 242: 2830–1 (1956) CA 50: 16405bGoogle Scholar
  540. B 556.
    B 556 The continuous spectrum structure of complex molecules. Neporent, B.S. Zh. Fiz. Khim. 30: 1048–61 (1956) CA 50: 16391gGoogle Scholar
  541. B 557.
    B 557 Spectra and yields of anti-Stokes and Stokes fluorescence of the vapors of aromatic compounds. Neporent, B.S., and Borisewnh, Ni, Opt. i Spektroskopiya 1: 143–54 (1956) CA 50: 16404eGoogle Scholar
  542. B 558.
    B 558 The effect of helium on the intensity of the spectra for the vapors of complex aromatic compounds. Neporent, B.S., and Solodovnikov, A A. Opt. i Spektroskopiya 1: 951–2 (1956) CA 51: 12652iGoogle Scholar
  543. B 559.
    B 559 A spectrometric installation of high light power for the investigation of luminescence. Neporent, B.S., and Klochkov, V.P. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 601–4 (1956) CA 51: 1737eGoogle Scholar
  544. B 560.
    B 560 Observation of the products from the thermal dissociation of the vapors of polyatomic molecules from their fluorescence spectra. Neuimin, G.G. Opt. i Spektroskopiya 1: 463–8 (1956) CA 51: 5569gGoogle Scholar
  545. B 561.
    B 561 Electroluminescence and thermolumin-escence of zinc sulfide single crystals. Neumark, G.F. Phys. Rev. 103: 41–6 (1956) CA 50: 15239aGoogle Scholar
  546. B 562.
    B 562 Detection of petroleum products in natural waters by fluorescence. Nietsch, B. Mikrochim. Acta 1956: 171–8 (1956) CA 50: 9724iGoogle Scholar
  547. B 563.
    B 563 Development of high-visibility paints. Noonan, F.M., and Cowling, J.E. Rept. NRL Progr. 1956: 6–11 (1956) CA 51: 40l9fGoogle Scholar
  548. B 564.
    B 564 Electronic properties of aromatic hydrocarbons. II. Fluorescence transfer in solid solutions. Northrop, D.C., and Simpson, O. Proc. Roy. Soc. (London), Ser. A 234: 136–49 (1956) CA 50: 11118hGoogle Scholar
  549. B 565.
    B 565 Interaction of pyridine nucleotide linked enzymes. Nygaard, A.P., and Rutter, W.J. Acta Chem. Scand. 10: 37–48 (1956) CA 50: 12132gGoogle Scholar
  550. B 566.
    B 566 Fluorescent materials associated with discoloration in aspen. Obert, J.C., Hossfeld, R.L., and Kaufert, F.H. Tappi 39: 470–1 (1956) CA 50: 1343 9fGoogle Scholar
  551. B 567.
    B 567 Fluorometric determination of thallium and indium with Rhodamine B. Onishi, A. Bull. Chem. Soc. Japan 29: 945 (1956)Google Scholar
  552. B 568.
    B 568 Phosphorescence of sodium and potassium acetates. Osada, K. J. Phys. Soc. Japan 11: 425–9 (1956) CA 50: 15239fGoogle Scholar
  553. B 569.
    B 569 The effect of absorbed water on the phosphorescence of sodium acetate. Osada, K. J. Phys. Soc. Japan 11: 1014–15 (1956) CA 51: 7872dGoogle Scholar
  554. B 570.
    B 570 Fluorescence and internal rotation: their dependence on viscosity of the medium. Oster, G., and Nishijima, Y. J. Am. Chem. Soc. 78: 1581–4 (1956) CA 50: 10538dGoogle Scholar
  555. B 571.
    B 571 Inherent inconsistencies in fluorescence and scintillation spectra. Ott, D.G., Hayes, F.N., Kerr, V.N., and Benz, R.W. Science 123: 1071 (1956) CA 50: 16403eGoogle Scholar
  556. B 572.
    B 572 Lowest triplet state of anthracene. Padhye, M.R. J. Chem. Phys. 24: 588–94 (1956) CA 50: 9153bGoogle Scholar
  557. B 573.
    B 573 Analytical studies of the fluorescence of samarium in calcium tungstate. Peattie, C.G., and Rogers, L.B. Spectrochim. Acta 7: 321–48 (1956) CA 50: 8383fGoogle Scholar
  558. B 574.
    B 574 Luminescence of crystals at low temperatures. Naphthalene at 20°K. Pesteil, P., and Zmerli, A. Compt. Rend. 242: 1876–8 (1956) CA 51: 88eGoogle Scholar
  559. B 575.
    B 575 Detection of ultrasound with phosphorescent materials. Peterman, L.A., and Oneley, P.B. Proc. Natl. Electronics Conf. 11: 481–9 (1955) (Pub. 1956) CA 50: 7527iGoogle Scholar
  560. B 576.
    B 576 Hydrolytic cleavage products of boron trifluoride complexes of β-carotene, some dehydrogenated carotenes and anhydrovitamin Aj. Petracek, F.J., and Zechmeister, L. J. Am. Chem. Soc. 78: 3188–9 (1956) CA 50: 14585eGoogle Scholar
  561. B 577.
    B 577 The role of sulfur in the life of plants, in. Fluorescent substances in the bleeding sap of maize. Potapov, N.G., and Feier, D. Agrokem. Talajtan 5: 37–46 (1956) CA 50: 15747iGoogle Scholar
  562. B 578.
    B 578 Associated donor-acceptor luminescent centers. Prener, J.S., and Williams, F.E. Phys. Rev. 101: 1427 (1956) CA 50: 6927cGoogle Scholar
  563. B 579.
    B 579 Color and luminescence of feldspars (With an addendum: anhydrite fluorescence reversible by tempering). Przibram, K. Oesterr. Akad. Wiss., Math.-Naturw. Kl., Sitzber., Abt. II. 165: 281–311 (1956) CA 51: 13579gGoogle Scholar
  564. B 580.
    B 580 Temperature quenching of the phosphor-escence of some aromatic acids. Pyatnitskii, BA., and Fadeeva, M.S. Bull. Acad. Sci. USSR, Phys. Ser. 20: 479–82 (1956) CA 51: 1 1859hGoogle Scholar
  565. B 581.
    B 581 Phosphorescence spectra of some aromatic acids at liquid-air temperatures. Pyatnitskii, B.A. Dokl. Akad. Nauk SSSR 109: 503–6 (1956) CA 51: 9330aGoogle Scholar
  566. B 582.
    B 582 Temperature quenching of the phos-phorescence of some aromatic acids. Pyatnitskii, B.A., and Fadeeva, M.S. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 524–8 (1956) CA 51: 1737hGoogle Scholar
  567. B 583.
    B 583 Analysis of the absorption and fluorescence spectra of uranyl salts. I. Ur-anyl acetate (absorption). Rao, V.R., and Narasimham, K.V. Indian J. Phys. 30: 334–47 (1956) CA 51: 9308gGoogle Scholar
  568. B 584.
    B 584 Reaction products of aminoalkylated cellulosic textiles with 8-hydroxyquino-line-sulfonic acids and metals. Reeves, WA., and Guthrie, J.D. U.S. 2,753,240 (1956) CA 50: 13468fGoogle Scholar
  569. B 585.
    B 585 A study of dihydroxy-monoethynylan-thracene. Rio, G., and Cornu, P.J. Compt. Rend. 242: 523–6 (1956) CA 50: 14682eGoogle Scholar
  570. B 586.
    B 586 Particle-size distribution and number of particles per unit mass of fluorescent powders. Rosinski, J., Glaess, H.E., and McCully, C.R. Anal. Chem. 28: 486–90 (1956) CA 50: 10543eGoogle Scholar
  571. B 587.
    B 587 Dichrosim and difluorescence of chloroplasts. Ruch, F. Cytochemical methods with quantitative aims. Biophysical and biochemical approaches. Symposium held at Karol-inska Institutet, Stockholm, Sweden, Sept. 1956. CA 52: 5518aGoogle Scholar
  572. B 588.
    B 588 The luminescence of uranium-activated sodium fluoride. Runciman, W.A. Proc. Roy. Soc. (London) Ser. A 237: 39–47 (1956) CA 51: 7872eGoogle Scholar
  573. B 589.
    B 589 Absorption and fluorescence spectra of ions in crystals. Runciman, WA. Rept. Progr. Phys. 19: 30–58 (1956) CA 54: 1085fGoogle Scholar
  574. B 590.
    B 590 Hydroxylation of anhydromethyltetra-hydroberber ine -A. 13 -Hydroxydihydro-allocryptopine. Russell, P.B. J. Am. Chem. Soc. 78: 3115–21 (1956) CA 50: 14788dGoogle Scholar
  575. B 591.
    B 591 Gas emission of vacuum-tube materials. Saito, N. Shinku Kogyo 3: 273–81 (1956) CA 52: 14337cGoogle Scholar
  576. B 592.
    B 592 Fluorescence of riboflavine. Sakai, K. Nagoya J. Med. Sci. 18: 245–51 (1956) CA 50: 1 1828bGoogle Scholar
  577. B 593.
    B 593 The relation between fluorescence and the unfermentable reducing substances in blackstrap molasses. Sattler, L. Intern. Sugar J. 58: 194–5, 215–18 (1956) CA 51: 2314fGoogle Scholar
  578. B 594.
    B 594 Equipment and method of microspec-trographic analysis of emissions of fluorescence applicable to minerals. Sandrea, A.P. Bull. Soc. Franc. Mineral Crist. 79: 325–8 (1956) CA 51: 17618hGoogle Scholar
  579. B 595.
    B 595 Organic scintillators. Sangster, R.C., and Irvine, J.W.,Jr. J. Chem. Phys. 24: 670–715 (1956) CA 50: 9873hGoogle Scholar
  580. B 596.
    B 596 Polymethine dyes and their practical application. I. Anils and flourescence. Sassi, L. Arch. Inst. Pasteur Tunis 33: 91–103 (1956) CA 55: 2361cGoogle Scholar
  581. B 597.
    B 597 Spectra and quantum states of the europic ion in crystals. I. Fluorescence and absorption spectra of single crystals of europic ethyl sulfate mono-hydrate. Sayre, E.V., and Freed, S. J. Chem. Phys. 24: 1213–19 (1956) CA 50: 1 2643aGoogle Scholar
  582. B 598.
    B 598 Measurement of the fluorescent decay with a fluorometer with variable path. Scharmann, A. Z. Naturforsch. 11a: 398–402 (1956) CA 51: 6355aGoogle Scholar
  583. B 599.
    B 599 Photoelectric emission measurement of Acridine Orange-fluorochromed tissue sections. Scheibe, O., and Eder, M. Acta Histochem. 3: 6–18 (1956) CA 51: 1356cGoogle Scholar
  584. B 600.
    B 600 Effect of gases on the photoconductivity of anthracene. Schneider, W.G., and Waddington, T.C. J. Chem. Phys. 25: 358 (1956) CA 50: 14353cGoogle Scholar
  585. B 601.
    B 601 Different forms of porphyria in whites and Bantus in South Africa. Scott, F.P., and Grotepass, W. Med. Klin. (Munich) 51: 679–82 (1956) CA 50: 10897iGoogle Scholar
  586. B 602.
    B 602 Composite phosphor screens. Schultz, W.W. U.S. 2,740,050 (1956) CA 50: 8338bGoogle Scholar
  587. B 603.
    B 603 Porphyrin metabolism. I. Modified procedure for the quantitative determination of the urinary coproporphyrin isomers (I and III). Schwartz, S., Cohen, S., and Watson, C.J. U.S. At. Energy Comm. TID-5220, 183–4 (1956) CA 51: 3695aGoogle Scholar
  588. B 604.
    B 604 Fluorescent quenching by nitrobenzene. Seelentag, H. Z. Physik. Chem. 9: 373–92 (1956) CA 51: 2403cGoogle Scholar
  589. B 605.
    B 605 Intensity ratio of sodium D lines in fluorescence. Seiwert, R. Ann. Physik 18: 35–53 (1956) CA 51: 75bcGoogle Scholar
  590. B 606.
    B 606 Gaging of thin nickel coatings by X-ray fluorescence. Sellers, W.W., and Carroll, K.G. Tech. Proc. Am. Electroplaters1 Soc., 43rd Ann. Conv., Washington 1956: 97–100 (1956) CA 51: 5594iGoogle Scholar
  591. B 607.
    B 607 Fluorescence in diamond excited by X rays. Sen, S.N., and Bishui, B.M0 Indian J. Phys. 30: 620–5 (1956) CA 51: 9328dGoogle Scholar
  592. B 608.
    B 608 Luminescence of uranyl salt solutions. Sevchenko, A.N., and Volodrko, L.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 464–70 (1956) CA 51: 870cGoogle Scholar
  593. B 609.
    B 609 Distribution of activators in alkali halide phosphors. Shamovskii, L.M., and Zhvanko, Ya.N. Dokl. Akad. Nauk SSSR 111: 140–3 (1956) CA 51: 14425dGoogle Scholar
  594. B 610 Index of refraction effect on absolute fluorescence measurements. Shepp, A. J. Chem. Phys. 25: 579 (1956) CA 51: 88dGoogle Scholar
  595. B 611.
    B 611 Fluorescence of some proteins, nucleic acids, and related compounds. Shore, V.G., and Pardee, A.B. Arch. Biochem. Biophys. 60: 100–7 (1956) CA 50: 6543hGoogle Scholar
  596. B 612.
    B 612 Emission spectrum of coronene in solutions at low temperatures. Shpol’skii, E.V., and Klimova, LA. Dokl. Akad. Nauk SSSR 111: 1227–31 (1956) CA 52: 6926aGoogle Scholar
  597. B 613.
    B 613 Influence of the solvent on the luminescence spectrum of aromatic carbohydrates at low temperatures. Shpol’skii, E.V., and Klimova, LA. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 471–5 (1956) CA 51: 870eGoogle Scholar
  598. B 614.
    B 614 Electronic and vibrational states of anthracene. Sidman, J.W. J. Chem. Phys. 25: 115–21 (1956) CA 50: 14362gGoogle Scholar
  599. B 615.
    B 615 Electronic and vibrational states of tetr ac ene (naphthac ene). Sidman, J.W. J. Chem. Phys. 25: 122–4 (1956) CA 50: 14362iGoogle Scholar
  600. B 616.
    B 616 Phosphorescence spectra of the 00DF;-halonaphthalenes. Sidman, J.W. J. Chem. Phys. 25: 229–37 (1956) CA 50: 15239gGoogle Scholar
  601. B 617.
    B 617 Polarized absorption and fluorescence spectra of crystalline anthracene at 4°K.: spectral evidence for trapped excitons. Sidman, J.W. Phys. Rev. 102: 96–101 (1956) CA 50: 12649gGoogle Scholar
  602. B 618.
    B 618 Electronic and vibrational states of the nitrite ion. Sidman, J.W. J.Am. Chem. Soc. 78: 2911 (1956) CA 50: 1 1818iGoogle Scholar
  603. B 619.
    B 619 Electronic and vibrational states of pleiadienes. Sidman, J.W. J. Am. Chem. Soc. 78: 4217–25 (1956) CA 51: 854bGoogle Scholar
  604. B 620.
    B 620 Mechanism of oxygen-quenching of trypaflavine phosphorescence in silica gel adsorbates. Sjoblom, J.J. Dissertation, University of Minnesota (1956) CA 50: 10540hGoogle Scholar
  605. B 621.
    B 621 Metabolism of folic acid. m. Trans-formations of leucovorin. Slavik, K., and Slavikova-Matoulkova, V. Chem. Listy 50: 1141–6 (1956) CA 50: 15628eGoogle Scholar
  606. B 622.
    B 622 Vavilov’s rule (luminescence yield). Stepanov, B.I. Usp. Fiz. Nauk 58: 3–36 (1956) CA 50: 16339iGoogle Scholar
  607. B 623.
    B 623 First-order deactivation of excited 2-naphthylamine molecules with low vibrational energy reserve. Stevens, B. J. Chem. Phys. 24: 488–9 (1956) CA 50: 6197aGoogle Scholar
  608. B 624.
    B 624 Effect of time on fluorescing power of estrogenic steroids. Strickier, H.S., Grauer, R.C., and Caughey, M.R. Anal. Chem. 28: 1240–3 (1956) CA 50: 14913aGoogle Scholar
  609. B 625.
    B 625 The fluorescence of p-chlorotoluene in the solid state at low temperatures. Sukar, S.C., and Biswas, D.C. J. Chem. Phys. 24: 470 (1956) CA 50: 6196eGoogle Scholar
  610. B 626.
    B 626 Near ultraviolet fluorescence spectra of isomeric fluorotoluenes. Suryanarayana, V., and Rao, V.R. J. Sci. Ind. Res. 15B: 662 (1956) CA 51: 7143fGoogle Scholar
  611. B 627.
    B 627 Theory of the concentration quenching of the fluorescence of solutions. Sveshnikov, B.Y. Dokl. Akad. Nauk SSSR 111: 78–81 (1956) CA 52: 3505hGoogle Scholar
  612. B 628.
    B 628 Possibility of the transition from one kind of concentration quenching of the fluorescence to another one. Sveshnikov, B.Y., Kuznetsova, LA., and Molchanov, VA. Dokl. Akad. Nauk SSSR 109: 746–9 (1956) CA 52: 5125aGoogle Scholar
  613. B 629.
    B 629 The possibility of a transition from one kind of concentration quenching of fluorescence to another. Sveshnikov, B.Y., Kuznetsova, LA., and Molchanov, VA. Soviet Phys. Doklady 1: 484–7 (1956) CA 52: 6944iGoogle Scholar
  614. B 630.
    B 630 Mechanism of concentrated extinction of fluorescence in anthracene in solutions. Sveshnikov, B.Y., and Tishchenko, GA. Opt. i Spektroskopiya 1: 155–60 (1956) CA 50: 16404bGoogle Scholar
  615. B 631 Lanthanum oxychloride phosphors. Swindells, F.E. U.S. 2,729,604 (1956) CA 50: 4652abGoogle Scholar
  616. B 632.
    B 632 Effective cross section of capture and the recombination of thermal electrons in ZnS-Cu (Co) phosphor. Syuiyun, S. Opt. i Spektroskopiya 1: 264–70 (1956) CA 50: 16400eGoogle Scholar
  617. B 633.
    B 633 Studies on the metabolic products obtained from mouse skin after painting with 3,4-benzopyrene. Tarbell, D.S., Brooker, E.G., Seifert, P., Vanterpool, A., Claus, C.J., and Conway, W. Cancer Res. 16: 37–47 (1956) CA 50: 14952gGoogle Scholar
  618. B 634.
    B 634 Effects of solvents on the phosphorescence of aromatic compounds at low temperatures. Teplyakov, PA. Opt. i Spektroskopiya 1: 896–900 (1956) CA 51: 2403hGoogle Scholar
  619. B 635.
    B 635 The effect of the concentration and the solvent on the phosphorescence of aromatic compounds at low temperatures. Teplyakov, PA., and Pyatnitskii, BA. Bull. Acad. Sci. USSR, Phys. Ser. 20: 476–8 (1956) CA 51: 11859gGoogle Scholar
  620. B 636.
    B 636 The effect of the concentration and the solvent on the phosphorescence of aromatic compounds at low temperatures. Teplyakov, PA., and Pyatnitskii, BA. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 520–3 (1956) CA 51: 1737gGoogle Scholar
  621. B 637.
    B 637 Sensitized phosphorescence in organic solutions at low temperature. Energy transfer between triplet states. Terenin, A.N., and Ermolaev, V.L. Trans. Faraday Soc. 52: 1042–52 (1956) CA 51: 5567gGoogle Scholar
  622. B 638.
    B 638 New concepts of photoconductivity mechanism and phosphorescence. Tolstoi, NA. Radiotekhn, i Elektron. 1: 1135–43 (1956) CA 51: 7840iGoogle Scholar
  623. B 639.
    B 639 Some methods and results of a kinetic study on luminescence and photoconductivity. Tolstoi, NA. J. Phys. Radium 17: 801–5 (1956) CA 51: 869bGoogle Scholar
  624. B 640.
    B 640 Formal analysis of the theory of the two-stage excitation of phosphorescence and photoconductivity. I. Stationary relations. Tolstoi, NA., and Shatilov, A.V. Opt. i Spektroskopiya 1: 216–29 (1956) CA 51: 4148cGoogle Scholar
  625. B 641.
    B 641 Energy migration in a system of molecular assemblies. Tomita, G., Nakajima, T., Takeyama, N., and Mizunoya, T. Kyushu Daigaku Seisankagaku Kenkyusho Hokoku 19: 6–15 (1956) II. Reaction mechanism. Tomita, G., and Takeyama, N. Ibid 20: 43–9 (1956) IV. Reaction mechanism. Ibid 57–61(1956) V. Reaction mechanism. Tomita, G. Ibid 21: 1–5(1956) CA 54: 1046fGoogle Scholar
  626. B 642.
    B 642 Formation of substituted dibenzothio-phene dioxides by sulfonation of m-and p-tev phenyls. Van Allan, J A. J. Org. Chem. 21: 1152–5 (1956) CA 52: 1993bGoogle Scholar
  627. B 643.
    B 643 Participation of B-vitamins in nonen-zymic browning reactions. Van der Poel, G.H. Voeding 14: 452–5 (1956) CA 54: 3770bGoogle Scholar
  628. B 644.
    B 644 The photochemically active form of chlorophyll of the leaves of plants. Vorob’eva, L.M., and Krasnovskii, A A. Biokhimiya 21: 126–36 (1956) CA 50: 10201fGoogle Scholar
  629. B 645.
    B 645 Some notes on the fluorescence spectra of plants in vivo. Virgin, H.I. Physiol. Planatarum 9: 594–81 (1956) CA 52: 13897cGoogle Scholar
  630. B 646.
    B 646 Isolation of fluorescent substances from Ephestia kuhniella (Anagasta kuhniella). Viscontini, M., Kuhn, A., and Egelhaaf, A. Z. Naturforsch. lib: 501–4 (1956) CA 52: 10435fGoogle Scholar
  631. B 647.
    B 647 Confirmation of the anomalous fluorescence of azulene. Viswananth, G., and Kasha, M. J. Chem. Phys. 24: 574–7 (1956) CA 50: 9153dGoogle Scholar
  632. B 648.
    B 648 Kinetics and equilibria in flavoprotein systems. V. Effect of pH, anions, and partial structural analogs of the coenzyme on the activity of D-amino acid oxidase. Walaas, E., and Walaas, O. Acta Chem. Scand. 10: 122–33 (1956) CA 50: 12133eGoogle Scholar
  633. B 649.
    B 649 Photoelectric method for the measure-ment of the polarization of the fluorescence of solutions. Weber, G. J. Opt. Soc. Am. 46: 962–70 (1956) CA 51: 8SgGoogle Scholar
  634. B 650.
    B 650 Intramolecular proton transfer in ex-cited states. Weller, A. Z. Elektrochem. 60: 1144–7 (1956) CA 51: 6335gGoogle Scholar
  635. B 651.
    B 651 Fluorometric analysis. White, C.E. Anal. Chem. 28: 621–5 (1956) CA 50: 7000iGoogle Scholar
  636. B 652 Fluorescence of suspensions of green sulfur bacteria. Williams, A.M. Biochim. Biophys. Acta 19: 571 (1956) CA 50: 1 1427iGoogle Scholar
  637. B 653.
    B 653 Fluorescence in cockroaches. Willis, E.R., and Roth, L.M. Ann. Entomol. Soc. Am. 49: 495–7 (1956) CA 51: 16980dGoogle Scholar
  638. B 654.
    B 654 Mechanism of the energy transmission in the sensitized fluorescence of organic mixed crystals. Wolf, H.C. Z. Physik 145: 116–24 (1956) CA 50: 16403cGoogle Scholar
  639. B 655.
    B 655 Lead-and manganese-activated cad-mium fluorophosphate phosphors. Wollentin, R.W. J. Electrochem. Soc. 103: 17–23 (1956) CA 50: 6927aGoogle Scholar
  640. B 656.
    B 656 Analysis of lard. The importance of neutral red fat test with regards to natural fluorescence. Wurziger, J., and Lindemann, E. Fleischwirtschaft 8: 675–9 (1956) CA 51: 1497fGoogle Scholar
  641. B 657.
    B 657 An apparatus for the measurement of fluorescence on filter paper. Yagi, K., and Tabata, T. Seikagaku 27: 779–80 (1956) CA 55: 1093gGoogle Scholar
  642. B 658.
    B 658 On the fluorescent substances found in the skin of several fishes. Yamao, Y. Chiba Daigaku Bunri Gakuba Kiyo, Shizen Kagaku 2: 73–8 (1956) CA 52: 15759gGoogle Scholar
  643. B 659.
    B 659 Carassius-purple, a fluorescent substance obtained from the skin of the Japanese crucian carp, Carassius auratus. Yamao, Y., Daigaku, C., Gakuba, B., and Shizen, K. Kagaku 2: 79–81 (1956) CA 52: 17541gGoogle Scholar
  644. B 660.
    B 660 Treatment of wheat with ionizing radiations. II. Effect on respiration and other indexes of storage deterioration. Yen, Y., Milner, M. and Ward, H.T. Food Technol. 10: 411–15 (1956) CA 50: 15980hGoogle Scholar
  645. B 661.
    B 661 Low-temperature absorption of the phosphorescence state of the cation of Acridine Orange and its concentration dependence. Zanker, V. Z. Physik. Chem. 8: 20–31 (1956) CA 50: 16405gGoogle Scholar
  646. B 662.
    B 662 The spectral relation for luminescence yields. Zelinskii, V.V., Kolobkov, V.P., and Pikulik, L.G. Opt. i Spektroskopiya 1: 161–7 (1956) CA 51: 4148bGoogle Scholar
  647. B 663.
    B 663 The increase in the quantum yield of phosphorescence under the influence of potassium iodide. Zelinskii, V.V., and Kolobkov, V.P. Opt. i Spektroskopiya 1: 560–70 (1956) CA 51: 5568bGoogle Scholar
  648. B 664.
    B 664 Investigation of the property of complex organic molecules to fluoresce and to phosphoresce. Zelinskii, V.V., Emets, N.P., Kolobkov, V.P., and Pikulik, L.G. Bull. Acad. Sci. USSR, Phys. Ser. 20: 465–70 (1956) CA 51: ll859fGoogle Scholar
  649. B 665.
    B 665 Relation between the fluorescence and phosphorescence yields of phthalimide derivatives and the temperature. Zelinskii, V.V., and Kolobkov, V.P. Dokl. Akad. Nauk SSSR 106: 1042–5 (1956) CA 50: 15240aGoogle Scholar
  650. B 666.
    B 666 Investigation of the property of complex organic molecules to fluoresce and to phosphoresce. Zelinskii, V.V., Emets, N.P., Kolobkov, V.P., and Pikulik, L.G. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 507–13 (1956) CA 51: 1737iGoogle Scholar
  651. B 667.
    B 667 Polarization spectra of some naphthylamines and polyenes. Zhevandrov, N.P. Izv. Akad. Nauk SSSR, Ser. Fiz. 20: 570–3 (1956) CA 51: 1738dGoogle Scholar
  652. B 668.
    B 668 Phosphorescence of crystalline naph-thalene at 20°K. Effects of surface. Zmerli, A., Pesteil, L., and Pesteil, P. Compt. Rend. 242: 2822–5 (1956) CA 50: 136l2fGoogle Scholar
  653. B 669.
    B 669 Recent developments in brightening agents. Zussman, H.W., Lennon, W., and Tobin, W. Soap Chem. Specialties 32: 35–9, 81 (1956) CA 50: 15090eGoogle Scholar
  654. B 670.
    B 670 Migration of excitation energy in organic crystals. II. Solid solution of anthracene and tetracene in naphthalene. Ferguson, J. Australian J. Chem. 9: 172–9 (1956) CA 50: 11110cGoogle Scholar
  655. B 671.
    B 671 Vitamin B2 photolysis. IX. Effect of amino acids and other compounds on the intensity of fluorescence of riboflavine and of other fluorescent substances. Sakurai, Y., and Kuroki, Y. Vitamins 11: 473–9 (1956) CA 51: 18027cGoogle Scholar

Copyright information

© Plenum Press Data Division 1967

Authors and Affiliations

  • Richard A. Passwater
    • 1
  1. 1.Fluorescence InstrumentationAmerican Instrument CompanySilver SpringUSA

Personalised recommendations