Advertisement

(1950–1953)

  • Richard A. Passwater

Keywords

Nauk SSSR Zinc Sulfide Fluorescent Substance Silver Halide Methylene Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A 1.
    Scintillations in liquids and solutions. Ageno, M., Chiozzotto, M., and Querzoli, R. Phys. Rev. 79: 720 (1950) CA 44: 98l0hGoogle Scholar
  2. A 2.
    Fluorescence method for determination of oil fogs. Alekseeva, M.V., and Gol’dina, Ts.A. Zavodsk. Lab. 16: 35–6 (1950) CA 44: 6608eGoogle Scholar
  3. A 3.
    Relation between the Franck-Condon frequencies of absorption and fluorescence for some unsaturated hydrocarbons. Altmann, S.L. Proc. Phys. Soc. 63A: 1234–40 (1950) CA 45: 456ldGoogle Scholar
  4. A 4.
    Bacterial pyrogenic substances, especially their nature from the viewpoint of fluorescence reaction. Aoyama, K. Bull. Natl. Hyg. Lab., Tokyo 68: 127–37 (1950) CA 48: 13l59iGoogle Scholar
  5. A 5.
    The phosphorescence of quartz. Audubert, R., Bonnemay, M., and Lautout, M. Compt. Rend. 230: 1771–2 (1950) CA 44: 8243aGoogle Scholar
  6. A 6.
    Fluorescent reagents. Acyl chlorides and acyl hydrazides. Baker, W., Haksar, C.N., and McOmie, J.F.W. J. Chem. Soc. 1950: 170–3 (1950) CA 44: 4875bGoogle Scholar
  7. A 7.
    Fluorescence studies of some simple benzene derivatives in the near ultraviolet. I. Fluorbenzene and chlorobenzene. Bass, A.M., and Sponer, H. J. Opt. Soc. Am. 40: 389–96 (1950) CA 44: 7153bGoogle Scholar
  8. A 8.
    Fluorescence studies of some simple benzene derivatives in the near ultraviolet. II. Toluene and benzonitrile. Bass, A.M. J. Chem. Phys. 18: 1403–10 (1950) CA 45: 949hGoogle Scholar
  9. A 9.
    Fluorescence spectra of natural estrogens and their application to biological extracts. Bates, R.W., and Cohen, H. Endocrinology 47: 182–92 (1950) CA 45: 623 9bdGoogle Scholar
  10. A 10.
    Optical bleaches. Bayley, C.H. Textile J. Australia 25(1): 28, 30, 32, 34, and 36 (1950) CA 44: 6134bGoogle Scholar
  11. A 11.
    Abnormal efficiencies in the scintillation-counting of x-rays. Belcher, E.H. Nature 166: 742–3 (1950) CA 45: 2320hGoogle Scholar
  12. A 12.
    Fluorescence of crystalline magnesium oxide. Bhagavantam, S., and Puranik, P.G. Current Sci. 19: 241 (1950) CA 45: 453fGoogle Scholar
  13. A 13.
    The constituents of Chana (Cicer arietinum, Linn.), in. Chemical examination of the fixed oils from Chana and Kabuli Chana (ordinary and white varieties). Bhandari, P.R., Bose, J.L., and Siddiqui, S. J. Sci. Ind. Res. 9B(3): 60–3 (1950) CA 44: 7570bGoogle Scholar
  14. A 14.
    Origin of fluorescence in diamond. Bishui, B.M. Indian J. Phys. 24: 441–60 (1950) CA 45: 6931eGoogle Scholar
  15. A 15.
    The quenching of fluorescence. Deviations from the Stern-Volmer law. Boaz, H., and Rollefson, GX, J.Am. Chem. Soc. 72: 3435–43 (1950) CA 44: 105l9gGoogle Scholar
  16. A 16.
    Coriolis perturbation in the ultraviolet spectrum of formaldehyde. Brand, J.C.D. Trans. Faraday Soc. 46: 805–12 (1950) CA 45: 2774hGoogle Scholar
  17. A 17.
    Fluorescence and the Beer-Lambert law. A note on the technique of absorption spectrophotometry. Braude, EA., Fawcett, J.S., and Timmons, C.J. J. Chem. Soc. 1950: 1019–21 (1950) CA 44: 10519bGoogle Scholar
  18. A 18.
    Spectrophotometric investigations on the fluorescence of the eye lens in rats given naphthalene. Brolin, S.E. Acta Ophthalmol. 28: 163–77 (1950) CA 45: 6289iGoogle Scholar
  19. A 19.
    Quantitative measurements on the ele-mentary process of light excitation from phosphors by single alpha-particles. I. Broser, I., Kallmann, H., and Reuber, C. Z. Naturforsch. 5a: 79–85 (1950) CA 44: 6279aGoogle Scholar
  20. A 20.
    Quantitative fluorescence of blood serum in nervous, particularly schizophrenic patients. Buscaino, G.A. Acta Neurol. 5: 686–708 (1950) CA 46: 3l50dGoogle Scholar
  21. A 21.
    Suitability of inorganic substances as ground material for organophosphors. Chomse, H. Forsch. Fortsehr. 26: 32 (1950) CA 46: 5975gGoogle Scholar
  22. A 22.
    Organic phosphors with inorganic carrier. V. Arsenic trioxide phosphors. Chomse, H., and Schone, E. Z. Anorg. Chem. 261: 153–6 (1950) CA 44: 7l52hGoogle Scholar
  23. A 23.
    Photographic emulsion. Clark, L.E. U.S. 2,511,462 (1950) CA 44: 7696fGoogle Scholar
  24. A 24.
    Characteristic example of retrapping in phosphorescence. Curie, D. Nature 166: 70 (1950) CA 44: 9804gGoogle Scholar
  25. A 25.
    The mechanism of phosphorescence in crystals. Curie, D. J. Phys. Radium 11: 179–85 (1950) CA 44: 7658cGoogle Scholar
  26. A 26.
    Experimental proof of electronic recapture in crystalline phosphorescent sulfides. Curie, D. Compt. Rend. 230: 1400–2 (1950) CA 44: 6278fGoogle Scholar
  27. A 27.
    Fluorescence of normal human blood serum. De Lerma, B. Rend. Accad. Sci. Fis. Mat. (Napoli) 17: 62–7 (1950) CA 46: 3150cGoogle Scholar
  28. A 28.
    Examination of the surface of metallur-gical bodies by fluorescence. Deribere, M. Rev. Met. 47: 704–5 (1950) CA 45: 512cGoogle Scholar
  29. A 29.
    Effect of temperature on the transient illumination of phosphorescent sulfides submitted to the action of electric fields. Destriau, G. Compt. Rend. 230: 205–6 (1950) CA 44: 3798bGoogle Scholar
  30. A 30.
    Recent progress in spectrochemistry of fluorescence from biological products. Dhere, C. Fortsehr. Chem. Org. Naturstoffe 6: 311–56 (1950) CA 45: 693fGoogle Scholar
  31. A 31.
    Phosphorescence of vapors of phenan-threne. Dikun, P.P. Zh. Eksperim. i Teor. Fiz. 20: 193–8 (1950) CA 44: 6728eGoogle Scholar
  32. A 32.
    Variation of the decay time of the fluorescence of anthracene and stilbene with temperature. Elliot, J.O., Liebson, S.H., and Ravilious, C.F. Phys. Rev. 79: 393 (1950) CA 44: 8775hGoogle Scholar
  33. A 33.
    Electron transport and stabilization in the reaction between dienes and philo-dienes. I. Euler, H.V., and Hasselquist, H. Arkiv Kemi 2: 367–72 (1950) CA 45: 1989cGoogle Scholar
  34. A 34.
    Influence of extraneous molecules on the absorption and fluorescence spectrum of magnesium phthaloeyanine and of chlorophyll in solution. Evstigneev, V.B., Gavrilova, V A., and Krasnovskii, A A. Dokl. Akad. Nauk SSSR 70: 261–4 (1950) CA 45: 3720iGoogle Scholar
  35. A 35.
    Quenching of the fluorescence of chlorophyll and of magnesium phthalocyanin in their interaction with quenchers. Evstigneev, V.B., Gavrilova, VA, and Krasnovskii, A.A. Dokl. Akad. Nauk SSSR 74: 315–18 (1950) CA 45: 1872aGoogle Scholar
  36. A 36.
    The fluorescence of silver halides at low temperatures. I. The pure halides. Farnell, G.C., Burton, P.C., and Hallama, R. Phil. Mag. 41: 157–68 (1950) CA 44: 6277bGoogle Scholar
  37. A 37.
    Fluorescence of silver halides at low temperatures, n. Mixed crystals of silver halides. Farnell, G.C., Burton, P.C., and Hallama, R. Phil. Mag. 41: 545–56. (1950) CA 45: 453dGoogle Scholar
  38. A 38.
    The fluorescence of the salts of 8-quinolinol. Feigl, F., Torok, C., and Zocher, H. Anais Assoc. Brasil. Quim. 9: 21–7 (1950) CA 46: 543 8eGoogle Scholar
  39. A 39.
    Transfers of energy between active nitrogen and sodium, potassium, and antimony. Finkelstein, A. Compt. Rend. 231: 341–2 (1950) CA 45: 1425hGoogle Scholar
  40. A 40.
    The fluorescence of adrenaline and adrenochrome. Fischer, P., and Bacq, Z.M. Exptl. Med. Surg. 8: 104–12 (1950) CA 44: 10519dGoogle Scholar
  41. A 41.
    Adrenochrome. I. Fluorescence and cations. Fischer, P., Derouaux, G., Lambot, H., and Lecomte, J. Bull. Soc. Chim. Beiges 59: 72–82 (1950) CA 44: 7309bGoogle Scholar
  42. A 42.
    Dependence of emission spectra of phosphors upon activator concentration and temperature. Fonda, G.R. J. Opt. Soc. Am. 40: 347–52 (1950) CA 44: 7151aGoogle Scholar
  43. A 43.
    Fluorometric determination of acetol. Forist, A.A., and Speck, J.C. Anal. Chem. 22: 902–4 (1950) CA 44: 9869cGoogle Scholar
  44. A 44.
    Electrolytic dissociation of excited molecules. Forster, T. Z. Elektrochem. 54: 42–6 (1950) CA 44: 6280cGoogle Scholar
  45. A 45.
    Influence of pH on the fluorescence of naphthalene derivatives. Forster, T. Z. Elektrochem. 54: 531–5 (1950) CA 45: 5515cGoogle Scholar
  46. A 46.
    Fluorescent substances for mercury-vapor electric lamp. Fujimori, A., and Maekawa, S. Japan 2823 (1950) CA 46: 9998cGoogle Scholar
  47. A 47.
    Fluorescent reactions, n. Light fluor-escent reaction of oxidative fluorescent molecule. Fujimori, E. J. Chem. Soc. Japan 71: 491–3 (1950) CA 45: 6492fGoogle Scholar
  48. A 48.
    Fluorescence of magnesium phthalocya-nine and of chlorophyll in different states. Effect of oxygen on the fluorescence of magxiesium phthalocyanine and of chlorophyll in the absorbed state. Gachkovskii, V.F. Dokl. Akad. Nauk SSSR 70: 51–4 (1950) CA 45: 3720cGoogle Scholar
  49. A 49.
    Fluorescence of magnesium phthalocya-nine and chlorophyll in different states. Complex structure of the main maximum in the fluorescence spectrum. Gachkovskii, V.F. Dokl. Akad. Nauk SSSR 71: 509–11 (1950) CA 44: 52l8eGoogle Scholar
  50. A 50.
    Fluorescence of magnesium phthalocya-nine in complex formation with other molecules in the adsorbed state. Gachkovskii, V.F. Dokl. Akad. Nauk SSSR 73: 963–6 (1950) CA 45: 41bGoogle Scholar
  51. A 51.
    Fluorescence of magnesium phthalocyanine and chlorophyll in different states. Structure of the absorption and fluorescence spectra of magnesium porphyrin and chlorophyll. Gachkovskii, V.F. Dokl. Akad. Nauk SSSR 75: 407–10 (1950) CA 45: 3248bGoogle Scholar
  52. A 52.
    Effect of the temperature on the duration of luminescence of fluorescein solutions* Galanin, M.D. Dokl. Akad. Nauk SSSR 70: 989–90 (1950) CA 44: 4789hGoogle Scholar
  53. A 53.
    Measurement of the duration of fluores-cence with a “phase fluorometer.” Galanin, M.D. Dokl. Akad. Nauk SSSR 73: 925–7 (1950) CA 45: 6062bGoogle Scholar
  54. A 54.
    Duration of the excited state of a mole-cule and the properties of fluorescent solutions. Galanin, M.D. Tr. Fiz. Inst. Akad. Nauk SSSR 5: 339–86 (1950) CA 49: 2873aGoogle Scholar
  55. A 55.
    The Quantum yields of fluorescence and phosphorescence of some organic compounds. Gilmore, E.H., and McClure, D.S. Phys. Rev. 81: 651 (1950) CA 46: 6925fGoogle Scholar
  56. A 56.
    Color reaction of tryptophan with alde-hydes. Giral, J., and Laguna, J. Ciencia 10: 83–4 (1950) CA 44: 10605gGoogle Scholar
  57. A 57.
    Fluorescence of coumarin derivatives as a function of pH. Goodwin, R.H., and Kavanagh, F. Arch. Biochem. 27: 152–73 (1950) CA 44: 3781eGoogle Scholar
  58. A 58.
    Quenching of fluorescence in liquid solution. Grand, S., Collins, F.C., and Kimball, G.E. Phys. Rev. 82: 338 (1950) CA 46: 6926aGoogle Scholar
  59. A 59.
    Influence of oxidation state of fluores-cence centers on the luminescent color of zinc sulfide activated with copper. Grillot, E., and Bancie-Grillot, M. Compt. Rend. 231: 966–8 (1950) CA 45: 3718eGoogle Scholar
  60. A 60.
    The luminescence of phosphors of the aluminum oxide-calcium fluoride type activated with manganese. Gunther, G., Anderson, G., and Perlitz, H. Arkiv Kemi 1: 565–72 (1950) CA 44: 7l52fGoogle Scholar
  61. A 61.
    Comparison of the relaxations of photoconductivity and of phosphorescence. Gurevich, D.B., Tolstoi, NA., and Feofilov, P.P. Zh. Eksperim. i Teor. Fiz. 20: 1039–46 (1950) CA 45: 2770bGoogle Scholar
  62. A 62.
    The fluorescence spectra of uranium minerals in filtered ultraviolet light. Haberlandt, H., Hernegger, F., and Scheminsky, F. Spectrochim. Acta 4: 21–35 (1950) CA 44: 7l52iGoogle Scholar
  63. A 63.
    The color and fluorescence of wulfenite in relation to the content of chromium and other trace elements. Haberlandt, H., and Schroll, E. Experientia 6: 89–90 (1950) CA 44: 7719iGoogle Scholar
  64. A 64.
    Spectral emission from scintillation solutions and crystals. Harrison, F.B., and Reynolds, G.T. Phys. Rev. 79: 732 (1950) CA 44: 9804gGoogle Scholar
  65. A 65.
    Bacterial pyrogenic substances. Hatta, S., Aoyama, K., and Tanji, S. Japan Med. J. 3: 125–35 (1950) CA 46: 569bGoogle Scholar
  66. A 66.
    Intensity of fluorescence of solutions. Heintz, E. J. Phys. Chim. 47: 676–8 (1950) CA 45: 4139iGoogle Scholar
  67. A 67.
    Fluorescence of mixtures of arter enol, adrenaline, and phosphate. Heller, J.H., Setlow, R.B., and My Ion, E. Science 112: 88–9 (1950) CA 44: 10025hGoogle Scholar
  68. A 68.
    Fluorimetric studies of adrenaline and arter enol. Heller, J.H., Setlow, R.B., and Mylon, E. Am. J. Physiol. 161: 268–77 (1950) CA 44: 6901eGoogle Scholar
  69. A 69.
    Excitation of fluorescence of organic substances by a -particles and y-rays. Herforth, L. Ann. Physik 7: 312–20 (1950) CA 44: 9260iGoogle Scholar
  70. A 70.
    Emission from oxygen diluted in an at-mosphere of xenon. Herman, Re, and Herman, L. J. Phys. Radium 11: 69–76 (1950) CA 44: 5703bGoogle Scholar
  71. A 71.
    Fluorescence of 1,4-diarylbutadienes and its relation to their configuration. Hirshberg, Y., Bergmann, E., and Bergmann, F. J.Am. Chem. Soc. 72: 5117–18 (1950) CA 45: 2314gGoogle Scholar
  72. A 72.
    The fluorescence of cyanine and related dyes in the monomeric state. Hofer, L.J.E., Grabenstetter, R.J., and Wiig, E.O. J. Am. Chem. Soc. 72: 203–9 (1950) CA 44: 4791bGoogle Scholar
  73. A 73.
    The ultraviolet spectral absorption of chrysene, its monomethoxy derivatives and 1,2 -dimethoxychry sene. Holiday, E.R., and Jope, E.M. Spectrochim. Acta 4: 157–64 (1950) CA 44: 10506bGoogle Scholar
  74. A 74.
    Application and preparation of fluorescent materials for electric lamps and tubes. Holleman, H.CA. Chem. Weekblad 46: 33–7 (1950) CA 44: 4324iGoogle Scholar
  75. A 75.
    The photo luminescence of minerals. Horne, J.E.T. Bull. Geol. Surv. Gt. Brit. 3: 20–42 (1950) CA 45: 7471hGoogle Scholar
  76. A 76.
    A new standard fluorescent solution to be used in thiochrome method. Hoshino, M., and Ueno, H. Ann. Rept. Takeda Res. Lab. 8: 102–5 (1949) (1950) CA 46: 11296fGoogle Scholar
  77. A 77.
    Coloring matters from Aphis fabae. Human, J.P.E., Johnson, A.W., MacDonald, S.F., and Todd, A.R. J. Chem. Soc. 1950: 477–85 (1950) CA 44: 7841hGoogle Scholar
  78. A 78.
    Fluorescent substance. Ide, H. Japan 3889, Nov. 9 (1950) CA 46: 943OeGoogle Scholar
  79. A 79.
    Fluorescent porcelains. Iimori, Satoyasu, and Iimori, Shoji Japan 2866, Sept. 26 (1950) CA 46: 8978bGoogle Scholar
  80. A 80.
    Calibration of proportional counters by the excitation of fluorescence radiation with radioactive sources. Inseh, G.M. Phil. Mag. 41: 857–62 (1950) CA 45: 2785eGoogle Scholar
  81. A 81.
    Effect of thermal history on color of zinc beryllium silicate (Mn) phosphors. Jones, S. J. Electrochem. Soc. 97: 25–8 (1950) CA 44: 2377aGoogle Scholar
  82. A 82.
    Fluorescence of solutions bombarded with high-energy radiation (energy transport in liquids). Kallmann, H., and Furst, M. Phys. Rev. 79: 857–70 (1950) CA 44: 10518cGoogle Scholar
  83. A 83.
    Fluorescence of liquids under y -bombardment. Kallmann, H., and Furst, M. Nucleonics 7: 69–71 (1950) CA 44: 98l0iGoogle Scholar
  84. A 84.
    Formation and separation of 2-amino–4hydroxy–6and 2-amino–4-hydroxy–7methylpteridine. Methylpteridine Red. Karrer, P., and Schwyzer, R. Helv. Chim. Acta 33: 39–45 (1950) CA 44: 4477iGoogle Scholar
  85. A 85.
    Mean lifetime of the fluorescence of acetone and biacetyl vapors. Kaskan, W.E., and Duncan, A.B.F. J. Chem. Phys. 18: 427–31 (1950) CA 44: 9261aGoogle Scholar
  86. A 86.
    Effect of temperature on the lifetime of fluorescence of solid acetone. Kaskan, W.E., and Duncan, A.B.F. J. Chem. Phys. 18: 432–4 (1950) CA 44: 9261cGoogle Scholar
  87. A 87.
    Fluorescence test for copper. Kedvessy, G. Magy. Kem. Folyoirat 56: 447–8 (1950) CA 46: 375fGoogle Scholar
  88. A 88.
    Examination of wheat and other flours by the fluorescence in Wood’s light. Kiger, J. Ann. Pharm. Franc. 8: 788–90 (1950) CA 45: 6763cGoogle Scholar
  89. A 89.
    The nature of some fluorescing substances contained in a deep sea mud. Koe, BJC., Fox, D.L., and Zechmeister, L. Arch. Biochem. 27: 449–52 (1950) CA 44: 10394fGoogle Scholar
  90. A 90.
    Relation between atmospheric stability of pigmented paint films and the pigment-photosensitized formation of peroxide compounds. Krasnovskii, A.A., and Gurevich, T.N. Dokl. Akad. Nauk SSSR 74: 569–72 (1950) CA 46: 755dGoogle Scholar
  91. A 91.
    Examination of meat contaminated by Cysticercus by means of filtered ultraviolet light. Krisilov, D.V. Gigiena i Sanit. 1950: 52–3 (1950) CA 44: 80l4iGoogle Scholar
  92. A 92.
    Fluorescence of magnesium germanate activated by manganese. Kroeger, FA., and van den Boomgaard, J. J. Electrochem. Soc. 97: 377–82 (1950) CA 45: 1425eGoogle Scholar
  93. A 93.
    The location of dissipative transitions in luminescent systems. Kroger, FA., and Hoogenstraten, W. Physica 16: 30–2 (1950) CA 44: 7l50iGoogle Scholar
  94. A 94.
    Trivalent cations in fluorescent zinc sulfide. Kroger, FA., and Dikhoff, J. Physica 16: 297–316 (1950) CA 45: 2315cGoogle Scholar
  95. A 95.
    Physical chemistry of the formation of fluorescence centers in zinc sulfide-copper. Kroger, FA., and Smit, N.W. Physica 16: 317–28 (1950) CA 45: 23l5dGoogle Scholar
  96. A 96.
    Cascaded fluorescent material. Kroger, FA., and Voogd, J. U.S. 2,494,883 (1950) CA 44: 2856eGoogle Scholar
  97. A 97.
    The photovoltaic behavior of organic substances in solution. Levin, I., and White, C.E. J. Chem. Phys. 18: 417–26 (1950) CA 44: 9242dGoogle Scholar
  98. A 98.
    Fluorescent decay of scintillation crystals. Liebson, S.H., Bishop, M.E., and Elliot, J.O. Phys. Rev. 80: 907–8 (1950) CA 45: 1425fGoogle Scholar
  99. A 99.
    Quenching of the fluorescence of chloro-phyll a solutions. Livingston, R., and Ke, C.L. J.Am. Chem. Soc. 72: 909–15 (1950) CA 44: 4789hGoogle Scholar
  100. A 100.
    Colored lubricating oil. Mastin, R.G. U.S. 2,508,617 (1950) CA 44: 9667iGoogle Scholar
  101. A 101.
    Singlet-triplet absorption bands in some organic molecules. McClure, D.S., Blake, N., and Hanst, P. Phys. Rev. 81: 651 (1950) CA 46: 6925fGoogle Scholar
  102. A 102.
    Further studies in mercury band fluorescence. McCoubrey, A.D., Alpert, D., and Holstein, T. Phys. Rev. 82: 567 (1950) CA 46: 6926dGoogle Scholar
  103. A 103.
    Chronic pulmonary beryllosis in workers using fluorescent powders containing beryllium. MacMahon, H.E., and Olken, H.G. Arch. Ind. Hyg. Occupational Med. 1: 195–214 (1950) CA 44: 4l65eGoogle Scholar
  104. A 104.
    Observations on exceptional duration of mineral phosphorescence. Millson, H.E., and Millson, H.E., Jr. J. Opt. Soc. Am. 40: 430–5 (1950) CA 44: 8243bGoogle Scholar
  105. A 105.
    The effects of mepacrine hydrochloride (atebrin) upon the human skin. Miller, O.B., Herrmann, F., and Rubin, J. J. Invest. Dermatol. 15: 445–52 (1950) CA 46: 633eGoogle Scholar
  106. A 106.
    Whiter wool. Moncrieff, R.W. Textile Mfr. 76(904): 184–6 (1950) CA 44: 5597cGoogle Scholar
  107. A 107.
    Synthetic hydraulic fluids. Murphy, C.M., and Zisman, WA. Prod. Eng. 21: 109–13 (1950) CA 44: H076eGoogle Scholar
  108. A 108.
    Fluorescent indicators for acid-base titrations. I. Neelakantam, K., and Viswanath, G. Current Sci. (India) 19: 15–16 (1950) CA 44: 6761bGoogle Scholar
  109. A 109.
    Effect of external conditions on the absorption and fluorescence of vapors of aromatic compounds. Neporent, B.S. Dokl. Akad. Nauk SSSR 72: 35–8 (1950) CA 44: 6721dGoogle Scholar
  110. A 110.
    Stabilizing collisions involving excited aromatic compounds. Neporent, B.S. Zh. Fiz. Khim. 24: 1219–34 (1950) CA 45: 55l8hGoogle Scholar
  111. A 111.
    Fluorescent substance. Ohno, Y. Japan 1805, June, 21 (1950) CA 46: 7879cGoogle Scholar
  112. A 112.
    Fluorescent substance. Ohno, Y. Japan 2865, Sept. 26 (1950) CA 46: 8978aGoogle Scholar
  113. A 113.
    White fluorescent substance. Ohno, Y. Japan 3354 (1950) CA 46: 9998dGoogle Scholar
  114. A 114.
    Fluorescent body for use with white fluorescent electric lamps. Ohsuga, T., and Hayao, T. Japan 3355 (1950) CA 46: 9998eGoogle Scholar
  115. A 115.
    Fluorescent substance for white fluorescent lamp. Ohsuga, T. Japan 3890, Nov. 9 (1950) CA 46: 943OfGoogle Scholar
  116. A 116.
    Intensity relationships in the a and b bands in the absorption and fluorescence spectra of some uranyl salts at various temperatures. Pant, D.D. Proc. Indian Acad. Sci. 31: 103–6 (1950) CA 44: 8236eGoogle Scholar
  117. A 117.
    Fluorescence changes in solutions of glucose and glycine and of acetaldehyde and ammonia. Pearce, J.A. Food Technol. 4: 416–19 (1950) CA 45: 37l9iGoogle Scholar
  118. A 118.
    Qualitative analysis of synthetic resins used in leather finishes. Pektor, V. Paint Technol. 15(171): 105–7 (1950) CA 44: 5635cGoogle Scholar
  119. A 119.
    Fluorometric determination of gitoxoside. Pesez, M. Ann. Pharm. Franc. 8: 746–50 (1950) CA 45: 3996iGoogle Scholar
  120. A 120.
    The determination and the distribution of aneurine in wheat, in flour, and in bread. Apparatus for measuring the fluorescence of solutions. Petit, L. Ann. Inst. Natl. Rech. Agron., Ser. A 1: 41–107 (1950) CA 44: 6979hGoogle Scholar
  121. A 121.
    Daylight fluorescence. Petzold, O. Paint, Oil Colour J. 118: 988, 990, 992 (1950) CA 45: 5025aGoogle Scholar
  122. A 122.
    Reconnaissance study of Peruvian minerals and ores with an ultraviolet light. Plaza, G.R. Bol. Inst. Nacl. Invest, y Fomento Mineros 1(1): 145–50 (1950) CA 46: 2965eGoogle Scholar
  123. A 123.
    Absolute yield of the fluorescence of solutions of anthracene and some of its derivatives. Polovikov, F.I. Dokl. Akad. Nauk SSSR 71: 453–6 (1950) CA 44: 5218aGoogle Scholar
  124. A 124.
    Mechanism of phosphorescence in com-bination of variable compositions. Pregel, B. Compt. Rend. 231: 489–90 (1950) CA 45: 3248gGoogle Scholar
  125. A 125.
    The cellulose-dye complex. IV. The polarized fluorescence from dyed fibers. Preston, J.M., and Ser, Y.F. J. Soc. Dyers Colourists 66: 357–61 (1950) CA 44: 8662iGoogle Scholar
  126. A 126.
    Striking differences in the activation of potassium and sodium halogen phosphors. Pringsheim, P. Acta Phys. Austriaca 3: 396–404 (1950) CA 44: 7657fGoogle Scholar
  127. A 127.
    Phosphorescence of benzene hydrocar-bons at the temperature of liquid oxygen. Pyatnitskii, B.A. Dokl, Akad. Nauk SSSR 71: 457–60 (1950) CA 44: 5217cGoogle Scholar
  128. A 128.
    Comparison of the quenching actions of nickel and cobalt on luminescent zinc sulfide. Saddy, J., and Arpiarian, N. Compt. Rend. 230: 1948–50 (1950) CA 44: 8775gGoogle Scholar
  129. A 129.
    Phosphorescence-chemical investigations on sulfates. Schikore, W. Z. Anorg. Chem. 261: 121–9 (1950) CA 44: 7657hGoogle Scholar
  130. A 130.
    Calabash curare alkaloids. Schmid, H., and Karrer, P. Helv. Chim. Acta 33: 512–5 (1950) CA 44: 8060bGoogle Scholar
  131. A 131.
    Variation of emission spectrum of manganese-activated zinc beryllium silicate with decay time. Schulman, J.H., Klick, C.C., and Ginther, R.J. J. Opt. Soc. Am. 40: 337–8 (1950) CA 46: 9425cGoogle Scholar
  132. A 132.
    Fluorescence and phosphorescence emission spectra of manganeseactivated zinc silicate. Schulman, J.H., and Klick, C.C. J. Opt. Soc. Am. 40: 622–3 (1950) CA 46: 6937dGoogle Scholar
  133. A 133.
    Polarization of the fluorescence of vapors of organic dyes. Shendriek, KX., and Siryuk, A.G. Dokl. Akad. Nauk SSSR 75: 665–7 (1950) CA 45: 3718iGoogle Scholar
  134. A 134.
    Fluorescent substance. Shimizu, E. Japan 3711, Oct. 27 (1950) CA 46: 9430eGoogle Scholar
  135. A 135.
    Fluorescence spectra of some polycyclic carbohydrates at liquid-air temperature. Shpol’skii, E.V., Il’ina, A.A., and Basilevich, V.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 14: 511 (1950) CA 46: 1871cGoogle Scholar
  136. A 136.
    Nicotine compounds containing univalent copper. Smith, C.R. U.S. 2,512,689 (1950) CA 44: 8592bGoogle Scholar
  137. A 137.
    Discussion of the lowest singlet transition in naphthalene as a forbidden transition Ajg Atg and remarks on the higher singlet levels. Sponer, H., and Nordheim, G.P. Discussions Faraday Soc. 1950: 19–26 (1950) CA 46: 3398fGoogle Scholar
  138. A 138.
    The evaluation of the antiseptic action of glycerol solutions with biochemical methods. Stepan, J. Casopis Ceskeho Leharnictva 63: 1–14 (1950) CA 46: 4172hGoogle Scholar
  139. A 139.
    Paper chromatography of digitalis glycosides. Svendsen, A.B., and Jensen, K.B. Pharm. Acta Helv. 25: 241–7 (1950) CA 45: 1726aGoogle Scholar
  140. A 140.
    Influence of the medium on the phos-phorescence of organic luminophors. Sveshnikov, B.Y., and Petrov, A A. Dokl. Akad. Nauk SSSR 71: 461–4 (1950) CA 44: 5217gGoogle Scholar
  141. A 141.
    Polarization of the phosphorescence of organoluminophors at the temperature of liquid air. Sveshnikov, B.Y., and Ermolaev, V.L. Dokl. Akad. Nauk SSSR 71: 647–50 (1950) CA 44: 5711gGoogle Scholar
  142. A 142.
    Theory of quenching of the luminescence of organic phosphors. Sveshnikov, B.Y. Zh. Eksperim. i Teor. Fiz. 18: 878–85 (1948) (1950) CA 46: 10908gGoogle Scholar
  143. A 143.
    Heterocyclic fluorescent coloring materials. Switzer, J.L., and Ward, RA. U.S. 2,495,202 (1950) CA 44: 5501bGoogle Scholar
  144. A 144.
    Daylight fluorescent pigment compositions. Switzer, J.L., and Switzer, R.C. U.S. 2,498,592 (1950) CA 44: 5613bGoogle Scholar
  145. A 145.
    Daylight fluorescent resinous sheeting materials. Switzer, J.L., and Switzer, R.C. U.S. 2,498,593 (1950) CA 44: 5613cGoogle Scholar
  146. A 146.
    New method for the demonstration of self-excitation. Szalay, L., and Szollosy, L. Acta Univ. Szeged., Acta Phys. Chem. 2: 259–62 (1950) CA 45: 8360aGoogle Scholar
  147. A 147.
    The relationship between the absorption and emission of the alcoholic solution of Acridine Orange NO. Szor, P. Acta Univ. Szeged. Phys. Chem. 2: 249–55 (1950) CA 46: 350dGoogle Scholar
  148. A 148.
    Browning and the fluorescence of evaporated milk. Tarassuk, N.P., and Semonson, H.D. Food Teehnol. 4: 88–92 (1950) CA 45: 1697hGoogle Scholar
  149. A 149.
    Theoretical and practical aspects of fluorescence, luminescence, and phosphorescence. Taylor, G.G. J. Soc. Dyers Colourists 66: 181–6 (1950) CA 44: 4788aGoogle Scholar
  150. A 150.
    Reabsorption of fluorescence produced in an ionization chamber or counter. Tellez-Plasencia, H., and Theron, P. J. Phys. Radium 11: 93–6 (1950) CA 44: 5698dGoogle Scholar
  151. A 151.
    Reabsorption of secondary fluorescence radiation in a photographic emulsion exposed to X rays. Tellez-Plaseneia, H., and Theron, P. Sci. Ind. Phot. 21: 361–70 (1950) CA 45: 65l6iGoogle Scholar
  152. A 152.
    Interaction of activators in phosphors. Trapeznikova, Z.A. Dokl. Akad. Nauk SSSR 74: 465–8 (1950) CA 45: 454eGoogle Scholar
  153. A 153.
    Fluorescent substances. Uehara, Y., and Kofuya, Y. Japan 1659, June 7 (1950) CA 46: 7879bGoogle Scholar
  154. A 154.
    The K-centers of potassium chloride crystals. Ueta, M. BusSciron Kenkyu 26:81–95 (1950); Mem. Coll. Sci., Univ. Kyoto, 26A:69–74 (1950) CA 46: 10905dGoogle Scholar
  155. A 155.
    Emission spectra of some chemolumineseent reactions. I. Oxidation of dimethylbisacridinium nitrate. Van der Burg, A.S. Rec.Trav. Chim. 69: 1525–35 (1950) CA 46: 7437dGoogle Scholar
  156. A 156.
    Emission spectra of some chemoluminescent reactions. II. Oxidation of derivatives of 2,3-dihydro-l,4phthalazinedione. Van der Burg, A.S. Rec. Trav. Chim. 69: 1536–44 (1950) CA 46: 7437eGoogle Scholar
  157. A 157.
    Composition for coating cathode-ray tubes. Van Hoorn, A.J. U.S. 2,496,091 (1950) CA 44: 4354cGoogle Scholar
  158. A 158.
    Photoconductivity of solid anthracene. Vartanyan, A.T. Dokl. Akad. Nauk SSSR 71: 641–2 (1950) CA 44: 57lleGoogle Scholar
  159. A 159.
    The Relations between fluoresence and the nature of the substituents on the molecule of 9, (lOH)-acridone. I. Prepara-tion of 9, (lOH)-acridone derivatives. Villemey, L. Ann. Chim. 5: 570–93 (1950) CA 45: 2947cGoogle Scholar
  160. A 160.
    Relation between fluorescence and the nature of the substituents on the molecule of 9, (lOH)-aeridone. n.Fluorometry. Villemey, L. Ann. Chim. 5: 642–70 (1950) CA 45: 3719bGoogle Scholar
  161. A 161.
    Spectrographic study of the fluorescent light from monosubstituted derivatives of acridone in solution. Villemey, L. Compt. Rend. 230: 303–4 (1950) CA 44: 52l8iGoogle Scholar
  162. A 162.
    Fluorescent microscopic investigations of erythrocytes. Wagner, K. Wien. Med. Wochschr. 100: 808–9 (1950) CA 45: 6680bGoogle Scholar
  163. A 163.
    Constant quantum efficiency of some luminescent materials in the vacuum ultraviolet. Watanabe, K., Johnson, F.S., and Tousey, R. Phys. Rev. 79: 217 (1950) CA 46: 6923fGoogle Scholar
  164. A 164.
    Self-quenching and sensitization of fluorescence of chlorophyll solutions. Watson, W.F., and Livingston, R. J. Chem. Phys. 18: 802–9 (1950) CA 44: 10520aGoogle Scholar
  165. A 165.
    Fluorescence of riboflavin and flavin adenine dinucleotide. Weber, G. Biochem. J. 47: 114–21 (1950) CA 44: 10757aGoogle Scholar
  166. A 166.
    Xanthopterin. IV. Fluorescence of xanthopterin adsorbates. Weber, K., and Hojman, J. Bull. Soc. Chim. Belgrade 15: 27–38 (1950) CA 46: 5976gGoogle Scholar
  167. A 167.
    Proportional counters in a magnetic field: Investigation of the isomerism of Br80 and measurement of the fluorescence yield of krypton. West, D., and Rothwell, P. Phil. Mag. 41: 873–89 (1950) CA 45: 2788fGoogle Scholar
  168. A 168.
    Fluorometric analysis. White, C.E. Anal. Chem. 22: 69–71 (1950) CA 44: 1843eGoogle Scholar
  169. A 169.
    The origin of petroleum: Effects of low-temperature pyrolysis on the organic extract of a recent marine sediment. Whitehead, W.L., and Breger, I A. Science 111: 335–7 (1950) CA 44: 5285bGoogle Scholar
  170. A 170.
    Fluorescence of amino acids, peptides, and amines on filter paper. Woiwood, A.J. Nature 166: 272 (1950) CA 44: 105l8hGoogle Scholar
  171. A 171.
    Formation of fluorescent films. Yoshimoto, Y. Japan 3376 (1950) CA 46: 9998eGoogle Scholar
  172. A 172.
    Fluorescent coloring materials. Yule, JA.C. U.S. 2,503,790 (1950) CA 44: 5613dGoogle Scholar
  173. A 173.
    Optical bleaching agents. Yura, S. Kagaku No Ryoiki 4: 364–9 (1950) CA 44: 9679iGoogle Scholar
  174. A 174.
    Polarization spectra of anthracene derivatives. Zhevandrov,N.D. Dokl. Akad. Nauk SSSR 74: 25–8 (1950) CA 45: 36aGoogle Scholar
  175. A 175.
    Decay of the phosphorescence of alcoholic solutions of some simple aromatic compounds at the temperature of liquid oxygen. Zinov’eva, O.G. Zh. Eksperim. i Teor. Fiz. 20: 132–8 (1950) CA 44: 6726hGoogle Scholar
  176. A 176.
    Luminescence and photoconductivity of crystal phosphors under conditions of weak excitation. Advirovieh, E.I. Zh. Eksperim. i Teor. Fiz. 21: 275–82 (1951) CA 46: 2404dGoogle Scholar
  177. A 177.
    Mechanism of scintillation in organic chemistry. Ageno, M., and Querzoli, R. Rend. 1st. Super. Sanita 14: 779–91 (1951) CA 47: 408fGoogle Scholar
  178. A 178.
    Colorimetric measurement of the yield of fluorescence. Alentsev, M.N. Zh. Eksperim. i Teor. Fiz. 21: 133–41 (1951) CA 45: 7875cGoogle Scholar
  179. A 179.
    Measurement of the intrinsic efficiency of ultraviolet luminescence. Alentsev, M.N., and Vinokurov, LA. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 725–9 (1951) CA 46: 6493aGoogle Scholar
  180. A 180.
    Improved photoelectric fluorometer. Alford, W.C., and Daniel, J.H. Anal. Chem. 23: 1130–3 (1951) CA 46: 5bGoogle Scholar
  181. A 181.
    Use of the luminescence method for characterizing the properties of coals. Ammosov, I.I., and Babinkova, N.I. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk 1951: 341–9 (1951) CA 45: 8230eGoogle Scholar
  182. A 182.
    Taaffeite, a new beryllium mineral, found as a cut gemstone. Anderson, B.W., Claringbull, G.F., and Hey, M.H. Mineral. Mag. 29: 765–72 (1951) CA 46: I925hGoogle Scholar
  183. A 183.
    Mycobacterial fluoromicroscopy and Dubosf cytochemieal reaction, de Androde, L. Mem. Inst. Oswaldo Cruz 49: 7–32 (1951) CA 46: 5124dGoogle Scholar
  184. A 184.
    Fluorescence spectrophotometry of blood serum in acute yellow atrophy. Arpino, G., and De Lerma, B. Progr. Med. 7: 656–60 (1951) CA 47: 2345bGoogle Scholar
  185. A 185.
    Fluorescent substance. Asoda, T. Japan 869 (1951) CA 46: 10914fGoogle Scholar
  186. A 186.
    Fluorescence and phosphorescence of cerium-activated alkaline-earth phosphors. Avikina, L.I. Zh. Eksperim. i Teor. Fiz. 21: 310–13 (1951) CA 45: 7880dGoogle Scholar
  187. A 187.
    Ultraviolet absorption spectra of chromatographic fractions of lignins. Bailey, A. J. Am. Chem. Soc. 73: 2325–6 (1951) CA 45: 9264iGoogle Scholar
  188. A 188.
    The fluorescence in diamond excited by X-rays. Bishui, B.M. Indian J. Phys. 25: 575–80 (1951) CA 46: 6939eGoogle Scholar
  189. A 189.
    Scintillations from organic crystals: specific fluorescence and relative response to different radiations. Birks, J.B. Proc. Phys. Soc. 64: 874–7 (1951) CA 46: 10002fGoogle Scholar
  190. A 190.
    The specific fluorescence of anthracene and other organic materials. Birks, J.B. Phys. Rev. 84: 364–5 (1951) CA 46: 1879cGoogle Scholar
  191. A 191.
    Analysis of uranium solutions by X-ray fluorescence. Birks, L.S., and Brooks, E.J. Anal. Chem. 23: 707–9 (1951) CA 45: 79l5fGoogle Scholar
  192. A 192.
    Transfer and transport of energy by resonance processes in luminescent solids. Botden, T.P.J. Philips Res. Rept. 6: 425–73 (1951) CA 46: 6492aGoogle Scholar
  193. A 193.
    Dried whole-egg powder. XXIX. The effect of high moisture content on fluorescence and other chemical changes. Boulet, M., and Pearce, J A. Can. J. Technol. 29: 153–8 (1951) CA 457270bGoogle Scholar
  194. A 194.
    The quenching of anthracene fluorescence. Bowen, E.J., and Metcalf, W.S. Proc. Roy. Soc. (London), Ser. A 206: 437–47 (1951) CA 47: 10351gGoogle Scholar
  195. A 195.
    Blackening and fluorescence in potatoea. Bowman, F., and Hanning, F. Food. Res. 16: 462–8 (1951) CA 46: 109l0dGoogle Scholar
  196. A 196.
    Vibrational analyses of the fluores-cence spectrum of formaldehyde. Brand, J.C.D. J. Chem. Phys. 19: 377–8 (1951) CA 45: 693IdGoogle Scholar
  197. A 197.
    Polarized fluorescence of a single crystal of pure naphthalene. Brodersen, S. Compt. Rend. 233: 1094–6 (1951) CA 46: 3411bGoogle Scholar
  198. A 198.
    Electronic and vibrational levels of the molecule and the crystal of benzene. Broude, V.L., Medvedev, V.S., and Prikhot’ko, A.F. Zh. Eksperim. i Teor. Fiz. 21: 665–72 (1951) CA 46: 8958gGoogle Scholar
  199. A 199.
    Relations between results of fluores-cence analysis and the newest mano-metric measurements of carbon dioxide assimilation. Burk, D., Warburg, O., and Kautsky, H. Z. Naturforsch. 6b: 292–5 (1951) CA 46: 3120gGoogle Scholar
  200. A 200.
    Quantitative fluorescence spectrum of the diethylamide of lysergic acid. Buscaino, G.A. Ric. Sci. 21: 519–25 (1951) CA 47: 85l8fGoogle Scholar
  201. A 201.
    Fluorescence studies of carcinogens in the rat skin. Cambel, P. Cancer Res. 11: 370–5 (1951) CA 45: 9700cGoogle Scholar
  202. A 202.
    Fluorspar in California. Crosby, J.W., and Hoffman, S.R. Calif. J. Mines Geol. 47: 619–38 (1951) CA 46: 3466cGoogle Scholar
  203. A 203.
    Theory of luminescence of molecular crystals. Davydov, A.S. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 605–7 (1951) CA 46: 8973dGoogle Scholar
  204. A 204.
    Spectrophotometric testing of the fluorescence of estrone and a-estradiol in binary mixtures. DeLerma, B., and Bompiani, A. Boll. Soc. Ital. Biol. Sper. 27: 1699–1701 (1951) CA 48: 791gGoogle Scholar
  205. A 205.
    Spectrophotometric aspects of the fluorescence of a-estradiol and estrone after treatment with concentrated sulfuric acid. DeLerma, B., and Bompiani, A. Boll. Soc. Ital. Biol. Sper. 27: 233–6 (1951) CA 48: 791fGoogle Scholar
  206. A 206.
    The fluorescence yield of argon. Dexter, D.L., and Beeman, W.W. Phys. Rev. 81: 456 (1951) CA 45: 3710dGoogle Scholar
  207. A 207.
    Duration of the phosphorescence of benzene and its derivatives. Dikun, P.P., Petrov, AA., and Sveshnikov, B.Y. Zh. Eksperim. i Teor. Fiz. 21: 150–63 (1951) CA 45: 8357iGoogle Scholar
  208. A 208.
    Spectra of the metallo derivatives of a,3,y, 6 -tetraphenylporphine. Dorough, G.D., Miller, J.R., and Huennekens, F.M. J.Am. Chem. Soc. 73: 4315–20 (1951) CA 46: 5968bGoogle Scholar
  209. A 209.
    The nature of quenching of fluorescence. Eisenbrand, J. Z. Elektrochem. 55: 374–80 (1951) CA 46: 9430aGoogle Scholar
  210. A 210.
    Low-temperature fluorescence of silver halides and photographic emulsions. Farnell, G.C., and Burton, P.C. Fundamental Mech. Phot. Sensitivity, Proc. Symp. Univ. Bristol, Engl. 1950, 61–73 (1951) CA 45: 8925iGoogle Scholar
  211. A 211.
    Fluorescence and photoinactivation of indoleaeetic acid. Ferri, M.G. Arch. Biochem. Biophys. 31: 127–31 (1951) CA 45: 5026aGoogle Scholar
  212. A 212.
    Ultraviolet absorption and fluorescence of 2,6,8,10-tetrahydroxyand 2,6,10trihydroxyhomopurine. Fischer, F.G., and Neumann, W.P. Ann. 572: 230–240 (1951) CA 46: 4021aGoogle Scholar
  213. A 213.
    A preliminary report on the energy distribution and the half life of the phosphorescent spectra of calcite induced by X-radiation. Forman, G., and Kruschwitz, W.H. Phys. Rev. 83: 487 (1951) CA 47: 6754hGoogle Scholar
  214. A 214.
    Fluoreszenz organischer Verbindungen. Forster, T. Göttingen: Vandenboeck and Ruprecht, 1951, 312 pp. CA 45: 4565aGoogle Scholar
  215. A 215.
    Nonphosphorescent calcium silicate phosphor containing indium. Froelich, H.C. U.S. 2,545,880 (1951) CA 45: 6498dGoogle Scholar
  216. A 216.
    Fluorescent reactions, in. Fluorescence of fluorescein derivatives. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 72: 315–16 (1951) CA 46: 825eGoogle Scholar
  217. A 217.
    Fluorescent reactions. IV. Lightfluorescent reaction of reductive fluorescent molecule. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 72: 358–60 (1951) CA 46: 825fGoogle Scholar
  218. A 218.
    Fluorescent reactions. V. Fluorescent reaction of acid amide and protein. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 72: 417–20 (1951) CA 46: 1871dGoogle Scholar
  219. A 219.
    Phosphorescent effects with high energy radiation. Furst, M., and Kallman, H. Phys. Rev. 82: 964 (1951) CA 45: 8366hGoogle Scholar
  220. A 220.
    Quenching of fluorescence by a light-absorbing medium. Galanin, I.M.D., and Frank, I.M. Zh. Eksperim. i Teor. Fiz. 21: 114–20 (1951) CA 45: 7883fGoogle Scholar
  221. A 221.
    Quenching of the fluorescence of dipoles by absorbing substances. Galamin, I.M.D., and Levshin, L.V. Zh. Eksperim. i Teor. Fiz. 21: 121–5 (1951) CA 45: 7884aGoogle Scholar
  222. A 222.
    Quenching by absorbing means and sensitized fluorescence in solutions. Galanin, M.D. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 543–9 (1951) CA 46: 8971bGoogle Scholar
  223. A 223.
    Directional properties of single crystal of anthracene regarding fluorescence phenomena. Ganguly, S.C., and Chaudhury, N.K. J. Chem. Phys. 19: 617–18 (1951) CA 45: 9373eGoogle Scholar
  224. A 224.
    Rise and decay of willemite lumines-cence. Gergely, G. Acta Phys. Acad. Sci. Hung. 1: 197–8 (1951) CA 46: 3411aGoogle Scholar
  225. A 225.
    Fluorescence microscopic observations on living chloroplasts. Gickihorn, J. Mikrochemie Ver. Mikrochim. Acta 36/37: 1128–33 (1951) CA 45: 5770aGoogle Scholar
  226. A 226.
    Spectrophotometric characteristics of the determination of titanium with thymol. Griel, J.V., and Robinson, R.J. Anal. Chem. 23: 1871–3 (1951) CA 46: 4425aGoogle Scholar
  227. A 227.
    Fluorescence and absorption-spectral data and other physical characteristics of xanthopterin-like pigment synthesized by the human tubercle bacillus and isolated by chromatographic and fluorescence analysis. Growe, M.O’L., and Walker, A. Phys. Rev. 86: 817 (1951) CA 47: 6758bGoogle Scholar
  228. A 228.
    The fluorescence of gases by a-particle excitation. Grun, A.E., and Schopper, E. Z. Naturforsch. 6a: 698–700 (1951) CA 46: 6939aGoogle Scholar
  229. A 229.
    Inhibition of various enzymes by steroids. Hayano, M., and Dorfman, R.I. Ann. N.Y. Acad. Sci. 54: 608–18 (1951) CA 46: 8l57dGoogle Scholar
  230. A 230.
    Identification of vegetable dyes painted on ancient Japanese silk by fluorescence. (A supplement.) Hayashi, K., and Suzushino, G. Misc. Rept. Res. Inst. Nat. Resources 23: 59–62 (1951) CA 47: 870aGoogle Scholar
  231. A 231.
    The polarization of fluorescent light of polystyrenes under the influence of a fluorescence inhibitor. Heintz, E. J. Chim. Phys. 48: 545–51 (1951) CA 46: 4374bGoogle Scholar
  232. A 232.
    The temperature dependence of the fluorescence spectrum of anthracene stimulated with light and with cathode rays. Hengst, K. Z. Naturforsch. 6a: 540–3 (1951) CA 46: 2914dGoogle Scholar
  233. A 233.
    Fluorochrome coloring of living proto-plasm. Hofler, K. Mikrochemie Ver. Mikrochim. Acta 36/37: 1146–57 (1951) CA 45: 5770dGoogle Scholar
  234. A 234.
    Fluorescence and phosphorescence spectra of pyrene-type carbohydrates in frozen solutions. Il’ina, A.A., and Shpol’skii, E.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 585–95, Discussion 596 (1951) CA 46: 8973dGoogle Scholar
  235. A 235.
    Two types of solvent influence on the fluorescence spectrum and efficiency of salicylic acid and Rhodamine B extra. Izmailov, NA., and Kremer, VA. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 565–72 (1951) CA 46: 8972bGoogle Scholar
  236. A 236.
    Excitation with infrared rays of phos-phorescence in luminescent substances containing calcium oxide. Janin, J., Crozet, A., and Clerc, P. Compt. Rend. 233: 934–6 (1951) CA 4.6: 2404hGoogle Scholar
  237. A 237.
    Fluorescence efficiencies of some crystals for electrons and heavy particles. Jentschke, W.K., Elby, F.S., Taylor, C.,J., Remley, M.E., and Kruger, P.G. Phys. Rev. 83: 170–1 (1951) CA 45: 8902iGoogle Scholar
  238. A 238.
    The effect of temperature on emission of fluorescent lamp phosphors. Jerome, C.W. J. Electrochem. Soc. 98: 376–83 (1951) CA 45: l0060iGoogle Scholar
  239. A 239.
    Delays in fluorescence applicable to the blue-red binaries T Cor B, Z Andr, R Agar, AX Pers, a Scorp, and RW Hydr. Johnson, M. Monthly Notices Roy. Astron. Soc. III: 490–505 (1951) CA 46: 5430cGoogle Scholar
  240. A 240.
    Investigations in chemical oceanogra-phy with the aid of the Pulfrich photometer. VIC. The microdeterminations of chlorophyll content and of fluorescence. Kalle, K. Deut. Hydrograph. Z. 4: 92–6 (1951) CA 46: 5422eGoogle Scholar
  241. A 241.
    Fluorescence of solutions bombarded with high-energy radiation (energy transport in liquids). II. Kallmann, H., and Furst, M. Phys. Rev. 81: 853–64 (1951) CA 45: 4560iGoogle Scholar
  242. A 242.
    Energy storage and light-stimulated phosphorescence in activated NaCl crystals induced by y-rays. Kallmann, H., and Furst, M. Phys. Rev. 83: 674–5 (1951) CA 45: 8894gGoogle Scholar
  243. A 243.
    Quenching of the fluorescence of acridine compounds in an adsorbed state by oxygen. Karyakin, A.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 556–64 (1951) CA 46: 897lhGoogle Scholar
  244. A 244.
    Ultraviolet luminescence mechanism of X-rayed alkali-halogen crystals. Kats, M.L. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 667–8 (1951) CA 46: 8971gGoogle Scholar
  245. A 245.
    Fluorescence spectra of petroleum and its fractions in liquid condition and in a chromatographic column. Kats, M.L., and Sidorov, NJC. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 777–81 (1951) CA 46: 68l6fGoogle Scholar
  246. A 246.
    Lignin of tropical dicotyledonous woods. I. Comparison of the lignin with that of wood from temperate zones. Kawamura, I., and Higuchi, T. Res. Bull. Fac. Agr., Gifu Univ. 1: 39–43 (1951) CA 50: 3758iGoogle Scholar
  247. A 247.
    Fluorescence microscopic examination of lignified cell walls. Kisser, J., and Wittmann, W. Mikrochemie Ver. Mikrochim. Acta 36/37: 1134–45 (1951) CA 45: 5770cGoogle Scholar
  248. A 248.
    Fluorescence method for qualitative and quantitative determination of acridine in rivanol and biologic substances. Kostyakova, A.I. Zh. Analit. Khim. 6: 251–6 (1951) CA 45: 10140hGoogle Scholar
  249. A 249.
    Origin of multiple bands in luminophors activated by bivalent manganese. Kroeger, F.A., and Zalm, P. J. Electrochem. Soe. 98: 177–82 (1951) CA 45; 6494aGoogle Scholar
  250. A 250.
    A new highly specific test for aluminum. Kul’berg, L.M., and Mustafin, I.S. Dokl. Akad. Nauk SSSR 77: 285–8 (1951) CA 46: 2954eGoogle Scholar
  251. A 251.
    Photoelectric measurement of fluorescence spectra of highly colored liquids. Lauer, J.L., and Rosenbaum, E.J. J. Opt. Soc. Am. 41: 450–3 (1951) CA 45: 8356cGoogle Scholar
  252. A 252.
    Phosphorescence of sodium chloride. Lautout, M. Compt. Rend. 232: 2025–7 (1951) CA 45: 8356gGoogle Scholar
  253. A 253.
    The stereochemistry of complex inorganic compounds. XI. The resolution of bis-(8-quinolino–5-sulfonic acid) zinc (II). Liu, J,C.I., and Bailar, J.C., Jr. J.Am. Chem. Soc. 73: 5432–3 (1951) CA 46: 1908hGoogle Scholar
  254. A 254.
    Fluorescence quenching by colloid anions and cations. Lovelock, J.E. J. Chem. Soc. 1951: 115–20 (1951) CA 45: 10061aGoogle Scholar
  255. A 255.
    The fluorescence of acetone vapor. Luckey, G.W., and Noyes, W.A., Jr. J. Chem. Phys. 19: 227–31 (1951) CA 45: 6492cGoogle Scholar
  256. A 256.
    Electrical and optical properties of zinc oxide. Miller, P.H., Jr. Semi-cond. Mater., Proc. Conf., Univ. Reading 1951: 172–9 (1951) CA 49: 28eGoogle Scholar
  257. A 257.
    Fluorescence test as applied to carboxylic acids. Mulay, L.N., and Mathur, R.M. Current Sci. 20: 206–7 (1951) CA 46: 6939cGoogle Scholar
  258. A 258.
    Spectra in phosphorescence. Nagy, E., and Gergely, G. Acta Phys. Acad. Sci. Hung. 1: 115–25 (1951) CA 46: 34l0hGoogle Scholar
  259. A 259.
    Water content of autunite. Nakanishi, M. Nat. Sci. Rept. Ochanomizu Univ., Tokyo 1: 71–3 (1951) CA 48: 4380hGoogle Scholar
  260. A 260.
    Vibration energy and luminescence of complex molecules. Neporent, B.S. Usp. Fiz. Nauk 43: 380–402 (1951) CA 48: 6833hGoogle Scholar
  261. A 261.
    Correspondence between absorption and emission and the origin of broad bands in the spectra of complex molecules. Neporent, B.S. Zh. Eksperim. i Teor. Fiz. 21: 172–88 (1951) CA 46: 2398dGoogle Scholar
  262. A 262.
    Fluorescent bluing agents as corrosion catalysts. Nieuwenhuis, K.J. Wasindustrie 1: 12–13 (1951) CA 46: Il7l9iGoogle Scholar
  263. A 263.
    Studies on fluorescent zinc sulfide by double refraction. II. Relation of crystal systems, fluorescence, and phosphorescence. Niki, E., and Shir ai, H. J. Chem. Soc. Japan 54: 315–17 (1951) CA 47: 3123bGoogle Scholar
  264. A 264.
    Synthesis of organic fluorescent com-pounds. I. Syntheses of imidazolone derivatives from acyloins and urea. Oda, R., and Yoshida, Z. Bull. Inst. Chem. Res., Kyoto Univ. 26: 89–90 (1951) CA 46: 8l00iGoogle Scholar
  265. A 265.
    The synthesis of organic fluorescent compounds. I. Synthesis of ureides containing benzene or naphthalene nu-cleus and the fluorescence of these compounds. Oda, R., Yoshida, Z., and Mosuda, H. J. Chem. Soc. Japan, Ind. Chem. Sect. 54: 540–3 (1951) CA 48: I982iGoogle Scholar
  266. A 266.
    Theory on the fluorescence and chemical constitution of organic compounds. Oda, R., and Yoshida, Z. Mem. Fac. Eng. Kyoto Univ. 13: 108–22 (1951) CA 46: 6939bGoogle Scholar
  267. A 267.
    Fluorescence of Auramine O in the presence of nucleic acid. Oster, G. Compt. Rend. 232: 1708–10 (1951) CA 45: 8359aGoogle Scholar
  268. A 268.
    Fluorescence quenching by nucleic acids. Oster, G. Trans. Faraday Soc. 47: 660–6 (1951) CA 45: 10059dGoogle Scholar
  269. A 269.
    Fluorescence spectra of uranyl salts. Pant, D.D. J. Sci. Res. Benares Hindu Univ. 1: 60–3 (1950–51) CA 46: 6938iGoogle Scholar
  270. A 270.
    Mechanism of the flash of sodium chloride-copper phosphors excited with X-rays. Parfianovich, I A., Zh. Eksperim. i Teor. Fiz. 21: 314–21 (1951) CA 45: 10062hGoogle Scholar
  271. A 271.
    Fluorescence and absorption of crystalline stilbene. Pesteil, P. Compt. Rend. 233: 377–9 (1951) CA 46: 1355aGoogle Scholar
  272. A 272.
    Fluorescence and absorption of crystallized stilbene. Pesteil, P. Compt. Rend. 233: 1356 (1951) CA 46: 4909gGoogle Scholar
  273. A 273.
    Decay of phosphorescence and duration of the metastable state of organic molecules at low temperature. Pyatnitskii, BA. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 597–603, Discussion 604 (1951) CA 46: 8972iGoogle Scholar
  274. A 274.
    Quenching of fluorescence in solution. Effect of the structure of the quencher on the efficiency of the reaction. Rowell, J.C., and LaMer, VJC. J.Am. Chem. Soc. 73: 1630–4 (1951) CA 46: 6940bGoogle Scholar
  275. A 275.
    A note on the fluorescence of Wyoming bentonite. Samson, H.R. Am. Mineralogist 36: 160–61 (1951) CA 47: 683IfGoogle Scholar
  276. A 276.
    Acidity and basicity of molecules in the fundamental state and in an excited state. Sandorfy, C. Compt. Rend. 232: 841–3 (1951) CA 45: 5515bGoogle Scholar
  277. A 277.
    Fluorescence test for the detection of argemone oil in mustard oil. Sarkar, S.N., and Nandi, D.L. Current Sci. 20: 232–3 (1951) CA 46: 8394aGoogle Scholar
  278. A 278.
    Fluorescence of benzotrifluoride and p -xylene in the near ultraviolet. Sastri, M.L.N., and Sponer, H. Phys. Rev. 83: 245 (1951) CA 47: 6754eGoogle Scholar
  279. A 279.
    Term analysis of the emission bands of the sulfide phosphors. Schenck, R. Z. Elektroehem. 55: 1–7 (1951) CA 45: 6062iGoogle Scholar
  280. A 280.
    Term analysis of the emission bands of Lenard’s sulfide phosphors. II. Schenck, R. Z. Elektroehem. 55: 7–12 (1951) CA 45: 6063bGoogle Scholar
  281. A 281.
    The use of optical whiteners in soaps and detergents. Schlacter, A. Fette u. Scifen 53: 735–40 (1951) CA 46: 6854aGoogle Scholar
  282. A 282.
    Effect of visible and ultraviolet light and of cathode rays, and X-rays on a fluorescent screen coated with cadmium iodide. Schlivitch, S. Compt. Rend. 233: 1023–4 (1951) CA 46: 2404iGoogle Scholar
  283. A 283.
    A vibrational analysis of the fluorescence of naphthalene vapor. Schnepp, O., and McClure, D.S. Phys. Rev. 85: 755 (1951) CA 47: 6756gGoogle Scholar
  284. A 284.
    The terms of the activators in the band models of phosphorescent sulfides. Schon, M. Z. Naturforsch. 6a: 287–9 (1951) CA 46: 2405cGoogle Scholar
  285. A 285.
    Identification of petroleum products by chromatographic fluorescence methods. Schuldiner, J A. Anal. Chem. 23: 1676–80 (1951) CA 46: 7311aGoogle Scholar
  286. A 286.
    Fluorometric investigations on terramycin. Serembe, M. Arch. Ital. Sci. Farmacol. 1: 244–9 (1951) CA 50: 1970hGoogle Scholar
  287. A 287.
    Fluorescence of terramycin: fluorimetrie titration. Serembe, M. Boll. Soc. Ital. Biol. Sper. 27: 1330–1 (1951) CA 46: 5112iGoogle Scholar
  288. A 288.
    Effect of water of crystallization on the fluorescence spectrum of uranyl nitrate, I. Sevchenko, A.N., Vdovenko, V.M., and Kovaleva, T.V. Zh. Eksperim. i Teor. Fiz. 21: 204–11 (1951) CA 46: 2407dGoogle Scholar
  289. A 289.
    Photoluminescence of sublimate phosphors of zinc sulfide and zinc selenide. Shalimova, K.V. Dokl. Akad. Nauk SSSR 80: 587–90 (1951) CA 46: 829dGoogle Scholar
  290. A 290.
    Nature of the photoluminescence of silver-activated silver halide sublimate phosphors. Shalimova, K.V., and Belkina, A.V. Zh. Eksperim. i Teor. Fiz. 21: 326–37 (1951) CA 45: 8895iGoogle Scholar
  291. A 291.
    The distribution of thiamine and riboflavin in rice grains and of thiamine in parboiled rice. Simpson, LA. Cereal Chem. 28: 259–70 (1951) CA 45: 8157aGoogle Scholar
  292. A 292.
    The size of soap micelles in benzene from osmotic pressure and from the depolarization fluorescence. Singleterry, L.C., and Weinberger, LA. J. Am. Chem. Soc. 73: 4574–9 (1951) CA 46: 4325hGoogle Scholar
  293. A 293.
    The fluorescence and extinction and partition coefficients of estrogens. Slaunwhite, W.R., Jr., Engel, K.L., Olmstead, P.C., and Carter, P. J. Biol. Chem. 191: 627–31 (1951) CA 46: 556iGoogle Scholar
  294. A 294.
    The long-lived phosphorescence of potassium iodide-thallium iodide. Smaller, B., and Avery, E.C. Phys. Rev. 85: 766–7 (1951) CA 47: 6757aGoogle Scholar
  295. A 295.
    Influence of nucleic acid upon the fluorescence of nuclei and cytoplasm after injection of aromatic diamidines. Snapper, I., Schneid, B., Lieben, F., Gerber, I., and Greenspan, E. J. Lab. Clin. Med. 37: 562–74 (1951) CA 45: 6290dGoogle Scholar
  296. A 296.
    Visible fluorescence and chemical constitution of compounds of the benzopyrone group. IV. Sreerama-Morti, V.V., Rajagopalan, S., and Ramachandra, L. Proc. Indian Acad. Sci. 34A: 319–23 (1951) CA 47: 6411iGoogle Scholar
  297. A 297.
    Nature of the elementary processes of absorption and fluorescence of uranyl compounds. Stepanov, B.I. Zh. Eksperim. i Teor. Fiz. 21: 1153–7 (1951) CA 46: 10881eGoogle Scholar
  298. A 298.
    Width of spectral lines of uranyl salts and its temperature dependence. Stepanov, B.I. Zh. Eksperim. i Teor. Fiz. 21: 1158–63 (1951) CA 46: 10882dGoogle Scholar
  299. A 299.
    Isolation and properties of firefly lucifereseeine. Strehler, B. Arch. Biochem. Biophys. 32: 397–406 (1951) CA 46: 1661bGoogle Scholar
  300. A 300.
    Light production by green plants. Strehler, B.L., and Arnold, W. J. Gen. Physiol. 34: 809–20 (1951) CA 46: 9672fGoogle Scholar
  301. A 301.
    Solvatochromy. Suhrmann, R., and Perkampus, H.H. Naturwissenschaften 38: 382 (1951) CA 46: 3855hGoogle Scholar
  302. A 302.
    Effect of temperature and viscosity on the absorption and emission of acridine derivatives. Taras ova, T.M. Zh. Eksperim. i Teor. Fiz. 21: 189–203 (1951) CA 46: 2399fGoogle Scholar
  303. A 303.
    Sensitized fluorescence in vapors of organic compounds. Terenin, A.N., and Karyakin, A.V. Izv. Akad. Nauk SSSR, Ser. Fiz. 15: 550–5 (1951) CA 46: 897IdGoogle Scholar
  304. A 304.
    Transfer and migration of energy in biochemical processes. Terenin, A.N. Usp. Fiz. Nauk 43: 347–79 (1951) CA 48: 7120bGoogle Scholar
  305. A 305.
    Effect of adsorption of water on the quenching of the fluorescence of adsorbate s. Terenin, A.N., and Karyakin, A.V. Zh. Eksperim. i Teor. Fiz. 21: 107–13 (1951) CA 45: 7882gGoogle Scholar
  306. A 306.
    The early stages of the oxidation of adrenaline in dilute solution. Trautner, E.M., and Bradley, T.R. Australian J. Sci. Res. B4: 303–43 (1951) CA 46: 68lhGoogle Scholar
  307. A 307.
    The measurement of “daylight fluorescent” materials. Tyler, J.E., and Callahan, F.P., Jr. J. Opt. Soc. Am. 41: 997–1001 (1951) CA 46: 2913cGoogle Scholar
  308. A 308.
    Use of whiteners (in laundering). Uhl, O. Fette u. Scifen 53: 545–8 (1951) CA 46: 4255aGoogle Scholar
  309. A 309.
    Fluorescence and induction phenomena in photosynthesis. Van der Veen, R. Physiol. Plantarum 4: 486–94 (1951) CA 48: 11572cGoogle Scholar
  310. A 310.
    Refractive index and fluorescence of different samples of milk. Venkatasubramanian, T.A., and Ramakrishnan, C.V. Sci. Cult. 17: 260–1 (1951) CA 46: 9224fGoogle Scholar
  311. A 311.
    The emission of zinc sulfide phosphors. Vinokurov, LA., Levshin, V.L., and Baranova, E.G. Zh. Eksperim. i Teor. Fiz. 21: 236–51 (1951) CA 45: 7877gGoogle Scholar
  312. A 312.
    Extinction of the chlorophyll fluores-cence. Vrbaski, T. Arhiv Kem. 23: 6–13 (1951) CA 46: 9995eGoogle Scholar
  313. A 313.
    Size effect in the luminescence of zinc sulfide phosphors. Wallick, G.C. Phys. Rev. 84: 375 (1951) CA 46: 829hGoogle Scholar
  314. A 314.
    Chlorophyll fluorescence and photosynthesis. Wassink, E.C. Advan. Enzymol. 11: 91–199 (1951) CA 46: 585iGoogle Scholar
  315. A 315.
    Properties of a calcium sulfate: Man-ganese phosphor under vacuum ultraviolet excitation. Watanabe, K. Phys. Rev. 83: 785–91 (1951) CA 45: 9372iGoogle Scholar
  316. A 316.
    Energy transfer in the photosensitization of silver halide photographic emulsions: Optical sensitization, super sensitization, and antisensitization. West, W., and Carroll, B.H. J. Chem. Phys. 19: 417–27 (1951) CA 45: 9405fGoogle Scholar
  317. A 317.
    The use of fluorescence in qualitative analysis. White, C.E. J. Chem. Educ. 28: 369–72 (1951) CA 45: 94l7hGoogle Scholar
  318. A 318.
    Determination of lithium in rocks. Fluorometric method. White, C.E., Fletcher, M.H., and Parks, J. Anal. Chem. 23: 478–81 (1951) CA 45: 5564cGoogle Scholar
  319. A 319.
    Optical bleaching agents. Widaly Scifen-Oele-Fette-Wachse 77: 471–2 (1951) CA 46: 11720cGoogle Scholar
  320. A 320.
    Relations between dye phosphors and hydrogen bonds of rigid media or surface of adsorbents. Yamamoto, D., and Iwaki, R. J. Chem. Phys. 19: 662 (1951) CA 45: 7882eGoogle Scholar
  321. A 321.
    dye gelatin phosphors. Yamamoto, D., and Iwaki, R. J. Chem. Soc. Japan, Pure Chem. Sect. 72: 1075–8 (1951) CA 46: 5974hGoogle Scholar
  322. A 322.
    Nonexponential decay of the lumines-cence of solid aromatic-hydrocarbons. Yastrebov, V.A. Zh. Eksperim. i Teor. Fiz. 21: 164–71 (1951) CA 45: 788lfGoogle Scholar
  323. A 323.
    Synthesis of organic fluorescent com-pounds. in. Synthesis of the imidazolone derivatives from acyloins and urea. Yoshida, Z., Masuda, H., and Oda, R. J. Chem. Soc. Japan., Ihd. Chem. Sect. 54: 685–6 (1951) CA 48: 2690gGoogle Scholar
  324. A 324.
    Synthesis of organic fluorescent com-pounds. VI. Sulfonation of triarylimidazolinones. Yoshida, Z., and Oda, R. J. Chem. Soc. Japan, Ind. Chem. Sect. 54: 732–3 (1951) CA 48: 3353gGoogle Scholar
  325. A 325.
    Detergent composition containing diimidazoles. Ackerman, F., and Meyer, J. U.S. 2,604,454 (1952) CA 46: l0650iGoogle Scholar
  326. A 326.
    The fluorescence of solutions by a-particles. Ageno, I.M., and Querzoli, I.M. Rend. 1st. Super. Sanita 15: 28–31 (1952) CA 46: 8537aGoogle Scholar
  327. A 327.
    Fluorescence produced in stilbene by a-particles. Ageno, M., and Cortellessa, G. Nuovo Cimento 9: 196–8 (1952) CA 46: 9425gGoogle Scholar
  328. A 328.
    Kinetics of phosphorescence. Antonov-Romanovskii, V.V. Dokl. Akad. Nauk SSSR 85: 517–20 (1952) CA 46: 9991aGoogle Scholar
  329. A 329.
    Spectroscopic examination of fluores-cence in normal human bile. Arpino, G. Riforma Med. 66: 578 (1952) CA 49: 5622aGoogle Scholar
  330. A 330.
    Some characteristics of X-ray-excited phosphorescence of calcite. Auxier, J., and F or man, G. Phys. Rev. 87: 170–1 (1952) CA 48: 8023gGoogle Scholar
  331. A 331.
    Possible form of an infrared-sensitive multiplier. Baumgartner, W., and Schaetti, N. Helv. Phys. Acta 25: 611–15 (1952) CA 47: 5255eGoogle Scholar
  332. A 332.
    Fluorescence lines in the spectrum of light scattered by calcite. Bhagavantam, S., and Puranik, P.G. Nature 169: 37 (1952) CA 46: 5437iGoogle Scholar
  333. A 333.
    Photographic sensitivity as a function of exposure time and temperature. Biltz, M, J. Opt. Soc. Am. 42: 898–903 (1952) CA 47: 2071hGoogle Scholar
  334. A 334.
    The ultraviolet absorption spectra and the intensity of the fluorescence band 4156 A of diamond. Bishui, B.M. Indian J. Phys. 26: 347–56 (1952) CA 51: 7871cGoogle Scholar
  335. A 335.
    Decay time, fluorescent efficiencies, and energy storage properties for various substances with y-ray or a -particle excitation. Bittman, L., Furst, M., and Kallmann, H. Phys. Rev. 87: 83–6 (1952) CA 46: 8981gGoogle Scholar
  336. A 336.
    The effect of pyrazolone derivatives on the fluorescence of dyes. Bock, J., and Klingenberg, H. Arch. Ophthalmol. 152: 514–19 (1952) CA 46: 7661cGoogle Scholar
  337. A 337.
    Hygienic evaluation of water by fluor-escence in filtered ultraviolet light. Bode, F. Schweiz. Z. Hydrol. 14: 298–303 (1952) CA 47: I27llhGoogle Scholar
  338. A 338.
    Light absorption and fluorescence of aromatic amines in superalkaline solution. Bonitz, E., and Forster, T. Z. Elektrochem. 56: 137–40 (1952) CA 46: 8970eGoogle Scholar
  339. A 339.
    Field-dependent fluorescence of vitreous Zn2S104 phosphor. Bramley, A., and Rosenthal, J.E. Phys. Rev. 87: 1125 (1952) CA 46: 10911bGoogle Scholar
  340. A 340.
    Effect of pressure on the sensitivity and fluorescence of the photographic emulsion. Braum, A. Czech. J. Phys. 1: 171–84 (1952) CA 47: 735liGoogle Scholar
  341. A 341.
    Dependence of the wavelength of the fluorescence of organic phosphors in the X-ray region. Breitling, G. Z. Angew. Phys. 4: 401–9 (1952) CA 47: 11965bGoogle Scholar
  342. A 342.
    Electrical conductivity connected with phosphorescence in cadmium sulfide crystals. Broser, I., and Warminsky, R. Z. Physik 133: 340–61 (1952) CA 47: 7326bGoogle Scholar
  343. A 343.
    Use of ultraviolet light in chromato-graphy. Brumberg, E.M. Izv. Akad. Nauk SSR, Otd. Khim. Nauk 1950: 127–36 (1952) CA 58: 2479hGoogle Scholar
  344. A 344.
    Decreasing fluorescence of synthetic caffeine. Buckley, J.S. U.S. 2,584,839 (1952) CA 46: 4183aGoogle Scholar
  345. A 345.
    Deposition of an impervious metal film on a granular surface. Campbell, V.C. U.S. 2,597,617 (1952) CA 46: 6943bGoogle Scholar
  346. A 346.
    Separation and fluorometric mierode-termination of some ergot alkaloids. Cereiotti, G. Farm Sci. e Tec. 7: 298–304 (1952) CA 46: 10535fGoogle Scholar
  347. A 347.
    Molecular conductivity of dyes in solution. I. Chaudhury, N.K. Pakistan J. Sci. Res. 4: 114–17 (1952) CA 48: 4938eGoogle Scholar
  348. A 348.
    Internal absorption of fluorescent light in large plastic scintillators. Chou, C.N. Phys. Rev. 87: 376–7 (1952) CA 46: 9435bGoogle Scholar
  349. A 349.
    Spectroscopic studies in the near ultra-violet of the three isomeric dimethylbenzene vapors. I. Absorption and fluorescence spectra of p-dimethylbenzene. Cooper, C. J., and Sastri, M.L.N. J. Chem. Phys. 20: 607–13 (1952) CA 46: 10884hGoogle Scholar
  350. A 350.
    Trapping and retrapping of electrons during phosphorescence. Curie, D. Ann. Phys. 7: 749–801 (1952) CA 47: 9782fGoogle Scholar
  351. A 351.
    Experimental measurement of the effect of a solvent on the rate of a very fast bimolecular reaction. Curme, H.G., and Rollefson, G.K. J. Am. Chem. Soc. 74: 3766–8 (1952) CA 46: 10806gGoogle Scholar
  352. A 352.
    The effect of inert gases on the quenching of fluorescence in the gaseous state. Curme, H.G., and Rollefson, G.K. J.Am. Chem. Soc. 74: 28–31 (1952) CA 46: 29lleGoogle Scholar
  353. A 353.
    Unusual phosphorescence of a diamond. Custers, J.F.H. Physica 18: 489–96 (1952) CA 47: 1495dGoogle Scholar
  354. A 354.
    Detection of petroleum products in spring waters. Dangl, F., and Nietsch, B. Mikrochemie Ver. Mikrochim. Acta 39: 336–8 (1952) CA 46: 115l8eGoogle Scholar
  355. A 355.
    A note on the phosphorescence of pro-teins. Debye, P., and Edwards, J.O. Science 116: 143–4 (1952) CA 47: 2043aGoogle Scholar
  356. A 356.
    Long-lifetime phosphorescence and the diffusion process. Debye, P., and Edwards, J.O. J. Chem. Phys. 20: 236–9 (1952) CA 46: 7434iGoogle Scholar
  357. A 357.
    Photoelectric testing of different chemical fibers, de Hauss, J.L. Reyon, Zellwolle Chemiefasern 30: 248–51 (1952) CA 46: 8378cGoogle Scholar
  358. A 358.
    Biochemistry and th embryonal devel-opment of insects. II. Nature of fluorescent substances of eggs of Locusta migratoria. DeLerma, B. Arch. Zool. Ital. 37: 81–91 (1952) CA 48: 72l2dGoogle Scholar
  359. A 359.
    Manganese-activated magnesium arsenate phosphors. Dobrolyubskaya, T.S. Dokl. Akad. Nauk SSSR 85: 537–8 (1952) CA 46: 9992aGoogle Scholar
  360. A 360.
    Fluorimetric determination of uranium in ores. Draganic, I. Rec. Trav. Inst. Recherches Structure Matière 1: 89–94 (1952) CA 47: 7940eGoogle Scholar
  361. A 361.
    The a-band of formaldehyde and the relation between the ultraviolet absorption and fluorescence systems. Dyne, P.J. J. Chem. Phys. 20: 811–18 (1952) CA 47: 2036hGoogle Scholar
  362. A 362.
    Fluorescence obtained from formic acid, carbonyl chloride, and methylene iodide. Dyne, P.J., and Style, D.W.G. J. Chem. Soc. 1952: 2122–4 (1952) CA 46: 109l0hGoogle Scholar
  363. A 363.
    Sensitized phosphorescence of organic molecules at low temperatures. Ermolaev, V.L., and Terenin, A.N. Akad. Nauk SSSR, Pamyati, S. I. Vavilova 1952: 137–46 (1952) CA 47: 7901hGoogle Scholar
  364. A 364.
    Flexible and insoluble phosphorescent paint for textiles. Espinosa, M.P. Span. 205,271, Sept. 24, 1952 CA 48: 9073aGoogle Scholar
  365. A 365.
    Luminescent colored plastics. Espinosa, M.P. Span. 204,521 (1952) CA 48: 8585dGoogle Scholar
  366. A 366.
    Comparison of the spectral properties of chlorophyll and pheophytin in different solvents. Evstigneev, V.B., and Gavrilova, V.A. Dokl. Akad. Nauk SSSR 85: 1073–6 (1952) CA 47: 1490hGoogle Scholar
  367. A 367.
    X-ray spectrum and bond characteristics; fluorescence radiation of sulfur. Faessler, A., and Goehring, M. Naturwissenschaften 39: 169–77 (1952) CA 47: 2588hGoogle Scholar
  368. A 368.
    Microchemical detection of 8-quinolinol and its derivatives. Feigl, F. Mikrochemie Ver. Mikrochim. Acta 39: 404–8 (1952) CA 46: 11013bGoogle Scholar
  369. A 369.
    New demonstrations on fluorescence. Feigl, F., and Heisig, G.B. J. Chem. Educ. 29: 192–4 (1952) CA 46: 8428eGoogle Scholar
  370. A 370.
    The phosphorescence emission of benzophenone. Ferguson, J., and Tinson, H.J. J. Chem. Soc. 1952: 3083–5 (1952) CA 47: 7903cGoogle Scholar
  371. A 371.
    Energy transfers in active nitrogen. I. Transfers with mercury. Finkelstein, MA. J. Chim. Phys. 49: 185–95 (1952) CA 49: 8517cGoogle Scholar
  372. A 371a.
    a Energy transfers in active nitrogen. II. Transfers with cadmium, zinc, sodium, potassium, and antimony. Finkelstein, MA. J. Chim. Phys. 49: 196–203 (1952) CA 46: 8517cGoogle Scholar
  373. A 372.
    Fluorescence measurements of chlorophyll solutions. Forster, L.S. Dissertation Abstr. 12: 1311–2 (1952) CA 46: 7419hGoogle Scholar
  374. A 373.
    The absolute quantum yields of the fluorescence of chlorophyll solutions. Forster, L.S., and Livingston, R. J. Chem. Phys. 20: 1315–20 (1952) CA 47: 9780iGoogle Scholar
  375. A 374.
    Primary photochemical processes in polyatomic molecules. Forster, T. Z. Elektrochem. 56: 716–22 (1952) CA 47: 9749aGoogle Scholar
  376. A 375.
    Calcination and fluorescence in the evaluation of samples of the sillimanite minerals. Foster, W.R., Riddle, F.H., and Royal, H.F. Am. Ceram. Soc. Bull. 31: 326–8 (1952) CA 46: 10566dGoogle Scholar
  377. A 376.
    Fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. French, C.S., and Young, VJEC. J. Gen. Physiol. 35: 873–90 (1952) CA 46: 11342iGoogle Scholar
  378. A 377.
    Determination of thiamine in the presence of fluorescent substances. Fried, R. Hoppe-Seylers Z. Physiol. Chem. 291: 57–9 (1952) CA 48: 12212aGoogle Scholar
  379. A 378.
    Investigations of petrolatum from Emsland crude oil. Fuchs, W., and Lommerzheim, W. Erdoel. Kohle 5: 148–51 (1952) CA 46: 7313cGoogle Scholar
  380. A 379.
    High-energy-induced fluorescence in organic liquid solutions (energy transport in liquids), m. Furst, M., and Kallmann, H. Phys. Rev. 85: 816–25 (1952) CA 46: 5977cGoogle Scholar
  381. A 380.
    Change of the fluorescence spectra of magnesium phthalocyanin and chlorophyll as a result of the dark reaction. Gachkovskii, V.I. Dokl. Akad. Nauk SSSR 82: 739–42 (1952) CA 46: 6940dGoogle Scholar
  382. A 381.
    The role of the magnesium aton in oxi-dation reaction, catalyzed by magnesium phthalocyamine and chlorophyll, in the dark. Gachkovskii, V.I. Zh. Fiz. Khim. 26: 1713–15 (1952) CA 49: 5972iGoogle Scholar
  383. A 382.
    Lubricating oils. Geiser, N. German 829,163 (1952) CA 50: 7446fGoogle Scholar
  384. A 383.
    Luminescence of alkali halide crystals subjected to ionizing radiation. Ghormley, J A., and Levi, HA. J. Phys. Chem. 56: 548–54 (1952) CA 46: 8527aGoogle Scholar
  385. A 384.
    The spectral distribution of energy in the fluorescence of sodium fluorescein. Gilmore, E.H. Phys. Rev. 88: 174 (1952) CA 48: 8025hGoogle Scholar
  386. A 385.
    Absolute quantum efficiencies of lumin-escence of organic molecules in solid solution. Gilmore, E.H., Gibson, G.E., and McClure, D.S. J. Chem. Phys. 20: 829–36 (1952) CA 47: 2043hGoogle Scholar
  387. A 386.
    Luminescence of alkali sulfides and sulfates. Gobrecht, H., and Hahn, D. Z. Physik 132: 111–28 (1952) CA 46: 8969gGoogle Scholar
  388. A 387.
    The fluorescence reactions of steroids. I. Estrogens. Goldzieher, J.W., Bodenchuk, J.M., and Nolan, P. J. Biol. Chem. 199: 621–9 (1952) CA 47: 2804hGoogle Scholar
  389. A 388.
    The fluorescence of coumarin derivatives as a function of pH. II. Goodwin, E.H., and Kavanagh, F. Arch. Biochem. Biophys. 36: 442–55 (1952) CA 47: 408eGoogle Scholar
  390. A 389.
    Fluorimetric methods of uranium analysis. Grimaldi, F.S., May, I., and Fletcher, M.H. U.S. Geol. Surv., Circ. 199, 200 pp. (1952) CA 47: 3180dGoogle Scholar
  391. A 390.
    The luminescence of some powder phosphors. Guminski, K., and Ruziewicz, Z. Bull. Intern. Acad. Polon. Sci., Classe Sci. Math. Nat., Ser A 1951: 109–21 (1952) CA 48: 1159aGoogle Scholar
  392. A 391.
    The structure of phosphors of the aluminum oxide-calcium fluoride type activated with manganese. Gunther, G., and Perlitz, H. Arkiv Kemi 3: 565–9 (1952) CA 46: 9426iGoogle Scholar
  393. A 392.
    New geochemical studies at Bad-Gastein. Haberlandt, H. Mikrochemie Ver. Mikrochim. Acta 39: 92–100 (1952) CA 46: 4971fGoogle Scholar
  394. A 393.
    The molecular orbital theory of chemical valency. XI. Bond energies, resonance energies, and triplet state energies. Hall, G.C. Proc. Roy. Soc. (London), Ser. A 213: 113–23 (1952) CA 46: 10851cGoogle Scholar
  395. A 394.
    Purple fluorescent substances in the skin and scales of fish. Hama, T., Goto, K., and Kushibiki, K. Kagaku 22: 478 (1952) CA 46: 10465hGoogle Scholar
  396. A 395.
    Polarization of fluorescence from dis-sociated molecules. Hanle, W., and Schar man, A. Z. Naturforsch. 7a: 635–6 (1952) CA 47: 7325iGoogle Scholar
  397. A 396.
    A roentgen tube with transparent anode for secondary excitation of roentgen spectra. Herglotz, H. Oesterr. Ing.-Areh. 6: 135–40 (1952) CA 46: 85l2iGoogle Scholar
  398. A 397.
    A halochromic boron-quercetin com-pound. Horhammer, L., Hansel, R., and Strasser, F. Arch. Pharm. 285: 286–90 (1952) CA 48: 1192iGoogle Scholar
  399. A 398.
    Fluorescence of porcelain wares. Iimori, S., and Kato, K. Rept. Sci. Res. Inst. 28: 132–8 (1952) CA 46: 109l0iGoogle Scholar
  400. A 399.
    The aspergilli found in canned marrons glaces. Iizuka, H. J. Agr. Chem. Soc. Japan 26: 68–71 (1952) CA 48: 10113hGoogle Scholar
  401. A 400.
    Examination of corrosion of refractories by observing the fluorescence of the surrounding glass. Jaupain, M. Verres Refractaires 6: 356–61 (1952) CA 47: 718leGoogle Scholar
  402. A 401.
    Induced conductivity and light emission in different luminescent-type powders. Kallmann, H., and Kramer, B. Phys. Rev. 87: 91–107 (1952) CA 46: 8970aGoogle Scholar
  403. A 402.
    Scintillation counting techniques. Kallmann, H., Fürst, M., and Sidran, M. Nucleonics 10: 15–17 (1952) CA 47: 7336hGoogle Scholar
  404. A 403.
    Phosphorescence of 2-hydroxyanthraquinone. Karyakin, A.V., and Kalenichenko, Y.I. Zh. Fiz. Khim. 26: 103–5 (1952) CA 47: 4747gGoogle Scholar
  405. A 404.
    Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. Kasha, M. J. Chem. Phys. 20: 71–4 (1952) CA 46: 6491eGoogle Scholar
  406. A 405.
    Fluorescence of ionic and atomic copper centers in NaCl-Cu phosphors. Kats, M.L. Dokl. Akad. NaukSSSR 85: 757–60 (1952) CA 46: 10910cGoogle Scholar
  407. A 406.
    Luminescence of ionic and atomic silver centers in X-rayed NaCl-Ag phosphors. Kats, M.L. Zh. Eksperim. i Teor. Fiz. 23: 720–7(1952) CA 47: 3702aGoogle Scholar
  408. A 407.
    Luminescence of atomic and ionic silver centers in NaCl-Ag phosphors. Kats, M.L. Dokl. Akad. Nauk SSSR 85: 539–42 (1952) CA 46: 9992bGoogle Scholar
  409. A 408.
    The interactions between organic dyes and polymers. I. Influence of potassium polyvinyl sulfate on the absorption spectrum and fluorescence of rhodamine GG aqueous solution. Koizumi, M., and Mataga, N. J. Chem. Soc. Japan 73: 814–16, 879–81 (1952) CA 47: 5797bGoogle Scholar
  410. A 409.
    Characteristics of the class of sulfate luminophors. Konstantinova-Shlezinger, MA., Gorbacheva, NA., and Panasyuk, E.I. Zh. Eksperim. i Teor. Fiz. 23: 588–92 (1952) CA 47: 3l22dGoogle Scholar
  411. A 410.
    Quenching of fluorescence by foreign substances. Kortum, G., Baur, H., and Friedheim, G. Z. Physik. Chem. 200: 293–301 (1952) CA 47: 3122iGoogle Scholar
  412. A 411.
    Oxyacid phosphors. I. Addition of an oxidizing agent at firing. Kotera, Y. Rept. Govt. Chem. Ind. Res. Inst., Tokyo 46: 451–4 (1952) CA 47: 2042hGoogle Scholar
  413. A 412.
    Absorption and fluorescence of solid solutions MgO-NiO. Kroger, FA., Vink, H.J., and van den Boomgaard, J. Physica 18: 77–82 (1952) CA 46: 5438cGoogle Scholar
  414. A 413.
    Germination ability and production of fluorescent material by seeds. Kugler, I. Naturwissenschaften 39: 213 (1952) CA 47: 2838fGoogle Scholar
  415. A 414.
    Application of the metallic model to the absorption and fluorescence of some dyes. Laffitte, E. Compt. Rend. 235: 36–7 (1952) CA 47: 44dGoogle Scholar
  416. A 415.
    The fundamental polarization of the luminescence of dyes. Fluorescence and of phosphorescence. Laffitte, E. Compt. Rend. 234: 424–6 (1952) CA 46: 6491dGoogle Scholar
  417. A 416.
    Fluorometric determination of traces of beryllium. Laitinen, HA., and Kivalo, P. Anal. Chem. 24: 1467–71 (1952) CA 46: ll022dGoogle Scholar
  418. A 417.
    Trapping of electrons in fused quartz. Lautout, M. Compt. Rend. 234: 330–2 (1952) CA 46: 7878aGoogle Scholar
  419. A 418.
    Effect of some reagents on the fluores-cence of stilbamidine and 2-hydroxystilbamidine in vitro. Lieben, F.J. Mt. Sinai Hosp., N.Y. 19: 217–20 (1952) CA 46: 10909gGoogle Scholar
  420. A 419.
    Temperature effects in organic fluors. Liebson, S.H. Nucleonics 10: 41–5 (1952) CA 46: 10909fGoogle Scholar
  421. A 420.
    Absorption and fluorescent properties of the Of-estradiol-sulfuric acid complex. Linford, J.H. Can. J. Med. Sci. 30: 199–212 (1952) CA 46: 8520hGoogle Scholar
  422. A 421.
    Absorption and fluorescence properties in the visible spectral region of certain steroids in sulfuric acid solutions. Linford, J.H., and Paulson,O.B. Can. J. Med. Sci. 30: 213–30 (1952) CA 46: 8970cGoogle Scholar
  423. A 422.
    Fluorescence spectra of some organic solid solutions. Lipsett, F JR., and Dekker, A.J. Can. J. Phys. 30: 165–73 (1952) CA 46: 9428cGoogle Scholar
  424. A 423.
    Quenching of the fluorescence of solutions of porphyrins and of chlorophyll. Livingston, R., Thompson, L., and Ramarao, M.V. J. Am. Chem. Soc. 74: 1073–5 (1952) CA 46: 543 8gGoogle Scholar
  425. A 424.
    The preparation of fluorescent screens from colloidal solutions of polycyclic hydrocarbons in water. Ludwig, F., and Noach, P.L. Compt. Rend. 234: 2441–3 (1952) CA 46: 9994hGoogle Scholar
  426. A 425.
    Photochemical reactions in alkali halide crystals. Martienssen, W. Z. Physik 131: 488–504 (1952) CA 46: 6495iGoogle Scholar
  427. A 426.
    Influence of the addition of potassium polyvinyl sulfate upon the absorption spectra and fluorescence of the aqueous rhodamine GG solution. Mataga, N., and Koizumi, M. J. Inst. Polytech., Osaka City Univ. 3: 21–35 (1952) CA 47: 8376bGoogle Scholar
  428. A 427.
    Spin-orbit interaction in aromatic molecules. McClure, D.S.J. Chem. Phys. 20: 682–6 (1952) CA 46: 1085liGoogle Scholar
  429. A 428.
    Some factors influencing fluorescence in minerals. McDougall, D.J. Am. Mineralogist 37: 427–37 (1952) CA 48: 5025iGoogle Scholar
  430. A 429.
    The cellular localization of material after the administration of the carcinogen, j8-naphthylamine: fluorescence microspectroscopy of epithelial cells of the bladder. Mellors, R.C., and Hlinka, J. Cancer 5: 242–8 (1952) CA 46: 6258gGoogle Scholar
  431. A 430.
    Inter- and intramolecular energytransfer processes. Moodie, M.M.J. Chem. Phys. 20: 1212–13, 1510–15 (1952) CA 47: 9780aGoogle Scholar
  432. A 431.
    The clinical value of fluorescent and radioactive tracer methods for the diagnosis and localization of brain tumors. Moore, G.E., Peyton, W.T., French, LA., and Caudill, M. Acta, Unio. Intern. Contra Cancrum 8: 595–8 (1952) CA 48: 9532hGoogle Scholar
  433. A 432.
    The synthesis of organic fluorescent compounds. VIII. Sulfonation of 3,6-dinitroearbazole. Oda, R., Yoshida, Z., and Kato, Y. J. Chem. Soc. Japan, Ind. Chem. Sect. 55: 239–41 (1952) CA 48: 7599gGoogle Scholar
  434. A 433.
    Phosphorescence of alkaline earth sulfides and oxides and of the sulfide and oxide of zinc. Patrovsky, V. Chemie 8: 194–6 (1952) CA 47: 10987eGoogle Scholar
  435. A 434.
    Absorption and fluorescence of several organic compounds pure and in solution. Pesteil, P. Compt. Rend. 234: 2532–4 (1952) CA 46: 9427cGoogle Scholar
  436. A 435.
    Fluorescence of crystalline naphthalene at 20°. Pesteil, P. Compt. Rend. 235: 150–2 (1952) CA 46: 10910gGoogle Scholar
  437. A 436.
    Spectroscopic studies in the rear ultraviolet of the three isomeric dimethylbenzene (xylene) vapors, m. Fluorescence of m-dimethylbenzene (m-xylene). Rao, V.R., and Sastri, M.L.N. J. Chem. Phys. 20: 1552–3 (1952) CA 47: 7326eGoogle Scholar
  438. A 437.
    The absorption and fluorescence spec-tra of p -terphenyl in toluene. Ravilious, C.F. Rev. Sci. Instr. 23: 760 (1952) CA 47: 9772gGoogle Scholar
  439. A 438.
    The lowest triplet levels of aromatic hydrocarbons. Reid, C.J. Chem. Phys. 20: 1214–15 (1952) CA 47: 9780cGoogle Scholar
  440. A 439.
    The effect of pressure on scintillation phosphors (anthracene). Reinsch, A.J., and Drichamer, H.G. J.Appl. Phys. 23: 152–3 (1952) CA 46: 6491dGoogle Scholar
  441. A 440.
    Spectra of ruby. Ritschl, R., and Muller, R. Z. Physik 133: 237–43 (1952) CA 47: 4203eGoogle Scholar
  442. A 441.
    Phosphorescent paint. Rodriquez, C.F., and Espinosa, P. J.P. Span. 206,368 (1952) CA 48: 8557eGoogle Scholar
  443. A 442.
    Production of monochromatic X-radiation for microradiography by excitation of fluorescent characteristic radiation. Roger, T.H.J. Appl. Phys. 23: 881–7 (1952) CA 46: l0864hGoogle Scholar
  444. A 443.
    Properties of the basic blast-furnace slags liable to disintegration. Sabela, W. Prace Inst. Met. 4: 371–6 (1952) CA 47: 8610bGoogle Scholar
  445. A 444.
    The fluorescent substances of the cocoon layer in Bombyx mori. Sakate, S., Kawaguehi, K., and Sato, K. J. Sericult. Sci. Japan 21: 237–9 (1952) CA 48: 10942aGoogle Scholar
  446. A 445.
    Fluorescence quantitative spectropho-tometry of cerebrospinal fluid (CSF) in schizophrenia. Salvi, P. Acta Neurol. 7: 49–58 (1952) CA 47: 11486eGoogle Scholar
  447. A 446.
    Fluorescence studies of some simple benzene derivatives in the near ultraviolet. III. Benzotrifluoride. Sastri, M.L.N., and Sponer, H. J. Chem. Phys. 20: 1428–31 (1952) CA 47: 9779iGoogle Scholar
  448. A 447.
    Determination of the fluorescing intensity of uranium traces. Savic, P., and Draganic, I. Bull. Acad. Serbe Sci., Classe Sci. Math. Nat. 4: 149–50 (1952) CA 50: 7619dGoogle Scholar
  449. A 448.
    Problems of photochemical sensitiza-tion. Scheibe, G. Z. Elektrochem. 56: 723–8 (1952) CA 47: 9194gGoogle Scholar
  450. A 449.
    Term analysis of the emission bands of the sulfide phosphors, m. Schenck, R.Z. Elektrochem. 56: 132–6 (1952) CA 46: 8970fGoogle Scholar
  451. A 450.
    A vibrational analysis of the fluores-cence of naphthalene vapor. Schnepp, O., and McClure, D.S. J. Chem. Phys. 20: 1375–83 (1952) CA 47: 9772eGoogle Scholar
  452. A 451.
    Lattice defects in surfaces. Schwab, G.M. Z. Elektroehem. 56: 297–302 (1952) CA 46: 8447gGoogle Scholar
  453. A 452.
    Fluorescence determinations on filterpaper strips. Semm, K., and Fried, R. Naturwissenschaften 39: 326–7 (1952) CA 47: 7325hGoogle Scholar
  454. A 453.
    Life of the excited state of some phos-phors. Shalimova, K.V., and Belikova, T.P. Dokl. Akad. Nauk SSSR 82: 713–6 (1952) CA 46: 5976fGoogle Scholar
  455. A 454.
    Fluorescence spectrum of coronene in frozen solutions. Shpol’skii, E.V., Ll’ina, A A., and Klimova, LA. Dokl. Akad. Nauk SSSR 87: 935–8 (1952) CA 47: 4205bGoogle Scholar
  456. A 455.
    Fluorescence and associated changes produced upon storage of evaporated milk. Simonson, H.D., and Tarassuk, N.P. J. Dairy Sci. 35: 166–73 (1952) CA 46: 4692dGoogle Scholar
  457. A 456.
    A new case of molecular light scattering by completely miscible liquids. Simova, P. Izv. Bulgar. Akad. Nauk Otd. Fiz.-Mat. i Tekh. Nauki, Ser. Fiz. 3: 3–12 (1952) CA 49: 5128gGoogle Scholar
  458. A 457.
    Bond differences between crystalline and amorphous conditions. Smekal, A.G. Naturwissenschaften 39: 505–6 (1952) CA 47: 9075hGoogle Scholar
  459. A 458.
    Titanium-activated calcium magnesium silicate phosphor. Smith, A.L. U.S. 2,589,513 (1952) CA 46: 4917bGoogle Scholar
  460. A 459.
    Fluorescent screens. Spencer, P.L. U.S. 2,601,178 (1952) CA 46: 7880aGoogle Scholar
  461. A 460.
    Application of fluorescence X-rays to metallurgical microradiography. Splettstosser, H.R., and Seemann, H.E. J. Appl. Phys. 23: 1217–22 (1952) CA 47: 1485cGoogle Scholar
  462. A 461.
    Fluorescence in ultraviolet light in the study of boron deficiency in celery. Spun, A.R. Science 116: 421–3 (1952) CA 47: 12535bGoogle Scholar
  463. A 462.
    Physics of crystal phosphors. Stockman, F. Naturwissenschaften 39: 226–33, 246–54 (1952) CA 47: 2587iGoogle Scholar
  464. A 463.
    Surface-active agents and detergents. Stupel, H. SVF Fachorgan Textilveredlung 7: 219–24 (1952) CA 46: 10647iGoogle Scholar
  465. A 464.
    Chlorophyll a. The polarization of fluorescent light for the determination of the directions of the transition moments of the absorption bands. Stupp, R., and Kuhn, H. Helv. Chim. Acta 35: 2469–82 (1952) CA 47: 3362hGoogle Scholar
  466. A 465.
    Origin of the fluorescence obtained from formic acid and methylene iodide. Style, D.W.G., and Ward, J.C. J. Chem. Soc. 1952: 2125–7 (1952) CA 46: 9996fGoogle Scholar
  467. A 466.
    Solvatochromism. Suhrmann, R., and Perkampus, H.H. Z. Elektroehem. 56: 743–5 (1952) CA 47: 9773aGoogle Scholar
  468. A 467.
    The quenching of fluorescence in solu-tions by additives as a method for investigating the kinetics of bimolecular reactions in solution. Sveshnikov, B.Y. Usp. Fiz. Nauk 46: 331–47 (1952) CA 48: 104l0iGoogle Scholar
  469. A 468.
    Kinetics of photoconductivity and kinetics of phosphorescence. Tolstoi, N.A., and Feofilov, P.P. Izv. Akad. Nauk SSSR, Ser. Fiz. 16: 59–69 (1952) CA 46: 9426dGoogle Scholar
  470. A 469.
    Chemical indicators. I. A study of fluorescence indicators. Tomicek, O., and Suk, V. Chem. Listy 46: 139–44 (1952) CA 46: 11018gGoogle Scholar
  471. A 470.
    Fluorescence spectroscopic investigations of serum mucoproteins in malignant diseases. Tomiser, J., Kraus, H., and Steinbereithner, K. Z. Krebsforsch. 58: 425–37 (1952) CA 47: 2868cGoogle Scholar
  472. A 471.
    Fluorescence of dye solutions. Viscosity and temperature effects. Tawde, N.E., and Ramanathan, N. Proc. Phys. Soc. 65: 33–40 (1952) CA 46: 109l0fGoogle Scholar
  473. A 472.
    Sensitized phosphorescence of organic molecules at low temperatures. Intermolecular energy transfer with excitation of the triplet level. Terenin, A.N., and Ermolaev, V.L. Dokl. Akad. Nauk SSSR 85: 547–50 (1952) CA 46: 9994bGoogle Scholar
  474. A 473.
    Synthesis and X-ray study of uranium sulfate minerals. Traill, R.J. Am. Mineralogist 37: 394–406 (1952) CA 48: 4380cGoogle Scholar
  475. A 474.
    The luminescence of basic magnesium arsenate activated by manganese. Travnicek, M., Kroger, FA., Botden, T.P.J., and Zalm, P. Physica 18: 33–42 (1952) CA 46: 4914bGoogle Scholar
  476. A 475.
    Absorption and fluorescence spectra of anthracene, phenanthrene, and chrysene at low temperatures. Tsujikwa, I., and Kanda, E. Sci. Rept. Res. Inst., Tohoku Univ. 4A: 471–80 (1952) CA 47: 9147eGoogle Scholar
  477. A 476.
    Chemical studies on some minerals of Formosan occurrence. I. Unohara, N., Iimori, H., and Hakomori, S. J. Chem. Soc. Japan 73: 327–31 (1952) CA 47: 265lhGoogle Scholar
  478. A 477.
    Luminescence of the electronic semi-conductor, zinc oxide. Vergunas, F.I., and Konovalov, G A. Zh. Eksperim. i Teor. Fiz. 23: 712–19 (1952) CA 47: 370leGoogle Scholar
  479. A 478.
    Influence of phenylhydrazine on the fluorescence of chlorophyll in solution. Watson, W.F. Trans. Faraday Soc. 48: 526–30 (1952) CA 46: 10901aGoogle Scholar
  480. A 479.
    Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. Weber, G. Biochem. J. 51: 155–67 (1952) CA 46: 6939gGoogle Scholar
  481. A 480.
    Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Weber, G. Biochem. J. 51: 145–55 (1952) CA 46: 6939fGoogle Scholar
  482. A 481.
    The fluorescence of solutions of chlorophyll and related substances. Weil, S.A. Univ. Microfilms 4355, 104 pp. (1952) CA 47: 3l03hGoogle Scholar
  483. A 482.
    Fluorescence shifts of naphthols. Weller, A.Z. Elektrochem. 56: 662–8 (1952) CA 47: 3703fGoogle Scholar
  484. A 483.
    Fluorometric analysis. White, C.E. Anal. Chem. 24: 85–90 (1952) CA 46: 3895bGoogle Scholar
  485. A 484.
    Fluorometric analysis. White, C.E. Proc. U.S. Tech. Conf. Air Pollution 1950: 196–200 (1952) CA 46: 6287dGoogle Scholar
  486. A 485.
    Dye phosphors. I. Phosphorescent bodies suitable for dye phosphors. II. Quenching of the phosphorescence by free water in the dye-gelatin phosphors. Yamamoto, D. J. Chem. Soc. Japan 73: 739–44, 794–6 (1952) CA 47: 3702iGoogle Scholar
  487. A 486.
    Fluorescent substances in the tissues of endoparasites. Yamao, Y. Zool. Mag. Japan 61: 38–40 (1952) CA 48: 7804iGoogle Scholar
  488. A 487.
    Organic fluorescence and its applications. Yoshida, Z. Kagaku 7: 540–4, 616–23 (1952) CA 49: I57l9fGoogle Scholar
  489. A 488.
    Synthesis of organic fluorescent com-pounds. XIII. Emissivity of fluorescence of naphth-l,2-imidazoles and perimidines. Fluorescence of the synthetic compounds. Yoshida, Z., and Oda, R. J. Chem. Soc. Japan, Ind. Chem. Sect. 55: 565–6 (1952) CA 48: 6261eGoogle Scholar
  490. A 489.
    Synthesis of organic fluorescent com-pounds. X. Emissivity of fluorescence of naphth-l,2-imidazoles and perimidines. Yoshida, Z., Shimada, Y., and Oda, R. J. Chem. Soc. Japan, Ind. Chem. Sect. 55: 354–6 (1952) CA 48: 11398cGoogle Scholar
  491. A 490.
    Synthesis of organic fluorescent com-pounds. xn. Emissivity of fluorescence of naphth–1,2-imidazoles and perimidines. Synthesis of perimidines. Yoshida, Z., Shimada, Y., and Oda, R. J. Chem. Soc. Japan 55: 523–4 (1952) CA 49: 102ldGoogle Scholar
  492. A 491.
    The realtion between fluorescence and chemical constitution of organic com-pounds. Yoshida, Z., Shimada, Y., and Oda, R. Bull. Inst. Chem. Res., Kyoto Univ. 28: 76 (1952) CA 46: 11185bGoogle Scholar
  493. A 492.
    The fluorescence of samarium and gadolinium in borax. Zaidel, A.N., and Malakhova, G.P. Dokl. Akad. Nauk SSSR 85: 591–3 (1952) CA 46: 9993iGoogle Scholar
  494. A 493.
    Quantitative absorption and emission measurements on the Acridine Orange cation at room and low temperatures in an organic solvent and their contribution to the explanation of metachromic fluorescence. Zanker, V. Z. Physik. Chem. 200: 250–92 (1952) CA 47: 3119hGoogle Scholar
  495. A 494.
    The proof of definite reversible association of Acridine Orange by absorption and fluorescence measurements in aqueous solution. Zanker, V. Z. Physik. Chem. 199: 225–58 (1952) CA 46: 5968cGoogle Scholar
  496. A 495.
    Polarization of the fluorescence of organic crystals. Zhevandrov, N.D. Dokl. Akad. Nauk SSSR 83: 677–80 (1952) CA 46: 7435aGoogle Scholar
  497. A 496.
    A multiwavelength fluorescence spec-trometer (X-ray fluorescence). Adler, I., and Axelrod, J.M. J. Opt. Soc. Am. 43: 769–72 (1953) CA 48: 39dGoogle Scholar
  498. A 497.
    Aging of fluorescent liquids. Ageno, M., Cortellessa, G., and Querzoli, R. Rend. 1st Super. Sanita 16: 211–6 (1953) CA 48: 1161cGoogle Scholar
  499. A 498.
    The fluorescence and absorption spectra of estrone, estradiol-M, and estriol compounds. Aitken, E.H., and Preedy, J.R.K. J. Endocrinol. 9: 251–60 (1953) CA 47: 10352bGoogle Scholar
  500. A 499.
    Effect of the emitting-action of the exciting light on the yield of phosphorescence. Anikina, L.I. Dokl. Akad. Nauk SSSR 88: 41–4 (1953) CA 47: 580leGoogle Scholar
  501. A 500.
    Effect of the stimulating action of the exciting light on phosphorescence. Anikina, L.I. U.S. At. Energy Comm., Tech. Inform. Serv., Oak Ridge, Tenn. NSF-tr–23 (1953) CA 47: 11999cGoogle Scholar
  502. A 501.
    Response of a zinc sulfide screen to Of-rays of energy less than 5 MeV. Anthony, J.P., and Ambrosino, G. Compt. Rend. 236: 1774–6 (1953) CA 47: 11014cGoogle Scholar
  503. A 502.
    Fluorescent substances. Aoki, Y. Japan 978 (1953) CA 48: 1818gGoogle Scholar
  504. A 503.
    Fluorescent substance. Aoki, Y., and Hanno, M. Japan 6272 (1953) CA 48: 11936gGoogle Scholar
  505. A 504.
    The spectral sensitivity of infraredresponsive zinc sulfide phosphors. Asano, S. Oyo Butsuri 22: 273–7 (1953) CA 48: 3145bGoogle Scholar
  506. A 505.
    Fluorescent substance. Awazu, K., and Ide, H. Japan 1571 (1953) CA 48: 5660bcGoogle Scholar
  507. A 505a.
    The determination of the fluorescence lifetimes of dissolved substances by a phase-shift method. Bailey, E.A., and Rollefson, G.K. J. Chem. Phys. 21: 1315–22 (1953) CA 47: 11997eGoogle Scholar
  508. A 505b.
    Fluorescence or organic single crystals at low temperatures. I. 1,1,4,4-tetraphenyl-l,3 -butadiene. Barbaron, M., and Pesteil, P. Compt. Rend. 236: 1763–4 (1953) CA 47: 10351cGoogle Scholar
  509. A 505c.
    Optical bleaching. Bartkowicz, S. Przemysl Chem. 9: 112 (1953) CA 48: 8549cGoogle Scholar
  510. A 505d.
    New theory concerning the relation between chemical structure and biological activity. Bertrand, D. Compt. Rend. 237: 1800–2 (1953) CA 48: 5236iGoogle Scholar
  511. A 505e.
    Photofluorescence decay times of organic phosphors. Birks, J.B., and Little, W.A. Proc. Phys. Soc. 66: 921–8 (1953) CA 48: 6261dGoogle Scholar
  512. A 505f.
    Absolute scintillation efficiency of anthracene. Birks, J.B., and Szendrei, M.E. Phys. Rev. 91: 197–8 (1953) CA 47: 10357eGoogle Scholar
  513. A 505g.
    The decay in fluorescence efficiency of organic materials on irradiation by particles and photons. Black, FA. Phil. Mag. 44: 263–7 (1953) CA 51: 9328hGoogle Scholar
  514. A 505h.
    Geological features of the Panasqueira tin-tungsten ore occurrence (Portugal). Bloot, C., and deWolf, L.C.M. Bol. Soc. Geol. Port. 11: 1–57 (1953) CA 48: 9874aGoogle Scholar
  515. A 506.
    Spectrophotometry of fluorescence and phosphorescence. Bowen, E.J. Photoelec. Spectrometry Group Bull. 6: 124 (1953) CA 49: 12135hGoogle Scholar
  516. A 507.
    Energy transfer in hydrocarbon solu-tions. Bowen, E.J., and Brocklehurst, B. Trans. Faraday Soc. 49: 1131–3 (1953) CA 48: 6838cGoogle Scholar
  517. A 508.
    Temperature coefficients of fluores-cence. Bowen, E.J., and Cook, R.J. J. Chem. Soc. 1953: 3059–61 (1953) CA 48: 1160iGoogle Scholar
  518. A 509.
    Fluorescence of solutions. Bowen, E.J., and Wokes, F. Longmans, Green amp; Co. 1953, 96 pp. (1953) CA 47: 9160eGoogle Scholar
  519. A 510.
    Fluorescence effects in photoelectric absorption spectrophotometry. Braude, EA., and Timmons, C.J. Photoelec. Spectrometry Group Bull. 6: 139–40 (1953) CA 49: 12135fGoogle Scholar
  520. A 511.
    Correction for absorption and fluores-cence in the determination of molecular weights by light scattering. Br ice, B.A., Nutting, G.C., and Halwer, M. J.Am. Chem. Soc. 75: 824–8 (1953) CA 47: 6203gGoogle Scholar
  521. A 512.
    The fluorescence spectrum of coronene. Broeklehurst, B. J. Chem. Soc. 1953: 3318–9 (1953) CA 48: 1161aGoogle Scholar
  522. A 513.
    Fluorescent screen for electric dis-charge tubes. Broos, H.A., and Kroger, F.A. Ger. 861,897 (1953) CA 48: 10440hGoogle Scholar
  523. A 514.
    Automatic measurement of light absorption and fluorescence on paper chroma tograms. Brown, J A., and Marsh, M.M. Anal. Chem. 25: 1865–9 (1953) CA 48: 2422hGoogle Scholar
  524. A 515.
    Preparation and performance of effi-cient plastic scintillators. Buck, W.L., and Swank, R.K. Nucleonics 11: 48–52 (1953) CA 48: 4325cGoogle Scholar
  525. A 516.
    Photoxidation and stabilization of polythene. Burgess, A.R. Natl. Bur. Std., Circ. 525: 149–58 (1953) CA 48: 7337cGoogle Scholar
  526. A 517.
    Sec A 505aGoogle Scholar
  527. A 518.
    Sec A 505bGoogle Scholar
  528. A 519.
    Sec A 505cGoogle Scholar
  529. A 520.
    Sec A 505dGoogle Scholar
  530. A 521.
    Sec A 505eGoogle Scholar
  531. A 522.
    Sec A 505fGoogle Scholar
  532. A 523.
    Sec A 505gGoogle Scholar
  533. A 524.
    Sec A 505hGoogle Scholar
  534. A 525.
    Luminescent properties of some of the minerals of Arabia Mountain, DeKalb County, Georgia. Coffer, H.E., and Renshaw, E.W. Georgia, Dept. Mines, Mining Geol., Geol. Surv., Bull. No. 60: 312–15 (1953) CA 48: 4379iGoogle Scholar
  535. A 526.
    Colorimetric and fluorometric properties of wheat in relation to germ damage. Cole, E.W., and Milner, M. Cereal Chem. 30: 378–91 (1953) CA 47: 12670iGoogle Scholar
  536. A 527.
    The mechanism of phosphorescence in crystal phosphors. Curie, D. Phys. Rev. 90: 154–5 (1953) CA 47: 9782hGoogle Scholar
  537. A 528.
    The uranium and fluorescent minerals. Dake, H.C. Mineralogist Publ. Co., 70 pp. (1953) CA 48: 9878aGoogle Scholar
  538. A 529.
    Fluorimetric method for the determination of 5-amino-aeridine hydrochloride. Devi, J.G., Khorana, M.L., and Padhye, M.R. Indian J. Pharm. 15: 3–5 (1953) CA 47: 6821eGoogle Scholar
  539. A 530.
    Molded polystyrene scintillators. deWaard, H., Prins, W., and Prins, A. Appl. Sci. Res. B3: 372–6 (1953) CA 48: 380lhGoogle Scholar
  540. A 531.
    Cyanine dyes from /3-naphthaquinaldine. Doja, M.Q., and Sanyal, S.N. J. Indian Chem. Soc. 30: 261–8 (1953) CA 48: 47 9eGoogle Scholar
  541. A 532.
    The free amino acids and the fluores-cent compound of fish autolyzates. Drilhon, A. Bull. Inst. Oceanog. No. 1028, 4 pp. (1953) CA 48: 3575gGoogle Scholar
  542. A 533.
    Coloring of diamonds by neutron and electron bombardment. Dugdale, RA. Brit. J. Appl. Phys. 4: 334–7 (1953) CA 48: 4332bGoogle Scholar
  543. A 534.
    Energy response of some inorganic scintillators. Duggal, V.P. Proc. Indian Acad. Sci. A38: 320–6 (1953) CA 48: 4990iGoogle Scholar
  544. A 535.
    Fluorescence of the condensation products of some aromatic aldehydes and hippuric acid (azlactones). Eisenbrand, J. Arch. Pharm. 286: 441–7 (1953) CA 49: 7554iGoogle Scholar
  545. A 536.
    Fluorimetry. I. Dependence of the fluorescence intensity upon the dilution of fluorescing solutions and the confirmation of Beer’s law of light absorption indirectly in high dilutions. Eisenbrand, J. Z. Anal. Chem. 140: 401–16 (1953) CA 48: 4957hGoogle Scholar
  546. A 537.
    Butter yellow hepatoma and its origin (quinaldine). Euler, H. Arkiv Kemi 5: 251–9 (1953) CA 48: 2712fGoogle Scholar
  547. A 538.
    Spectral properties of reduced forms of chlorophyll a and b. Evstigneev, V.B., and Gavrilova, VA. Dokl. Akad. Nauk SSSR 91: 899–902 (1953) CA 48: 447hGoogle Scholar
  548. A 539.
    Studies on the concept of large activation centers in crystal phosphors. De-pendence of luminescence efficiency on concentration of activator. Ewles, J., and Lee, N. J. Electrochem. Soc. 100: 392–8 (1953) CA 48: 45leGoogle Scholar
  549. A 540.
    Low-temperature absorption and phosphorescence spectra of some iodo compounds. Ferguson, J., and Tredale, T. J. Chem. Soc. 1953: 2959–66 (1953) CA 48: 3146cGoogle Scholar
  550. A 541.
    The kinetics of the polymerization of acrylonitrile in aqueous solution. II. Ferroni, E., and Baistrocchi, R. Ann. Chim. 43: 555–8 (1953) CA 48: 3770iGoogle Scholar
  551. A 542.
    Balanced null-point fluorimeter with photoelectric multipliers. Field, W.E., and Drage, O. Photoelec. Spectrometry Group Bull. 6: 128–32 (1953) CA 49: 12135aGoogle Scholar
  552. A 543.
    A sensitive photometer using modulated light and its application in a uranium fluorimeter. Florida, C.D., and Davey, C.N. J. Sci. Instr. 30: 409–12 (1953) CA 48: 43l8hGoogle Scholar
  553. A 544.
    Emission of molecular complexes of nitro compounds. Foster, R., and Mannick, D.L. Nature 171: 40 (1953) CA 47: 4203dGoogle Scholar
  554. A 545.
    Fluorescence spectra and photochemical activity of chloroplast pigments. French, C.S., and Koski, V.M. Proc. Intern. Botan. Congr., 7th, Stockholm 1950: 741–2 (1953) CA 48: 12928eGoogle Scholar
  555. A 546.
    Activation and deactivation of fluorescence in 7t-electronic systems. I. Various types of activation and deactivation and the activation of fluorescence in p -aminosalicylic acid-acetaldehyde system. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 74: 911–4 (1953) CA 48: 3146hGoogle Scholar
  556. A 547.
    Activation and deactivation of fluorescence in 7T -electronic systems. II. Absorption and fluorescence spectra in the activation of fluorescence in systems of anthrone with aldehyde, ketone, and alcohol. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 74: 983–6 (1953) CA 48: 3147bGoogle Scholar
  557. A 548.
    Activation and deactivation of fluorescence in 7T-electronic systems. III. Activation and deactivation of fluorescence in systems of anthrone derivatives with alcohol, phenol, and aniline. Fujimori, E. J. Chem. Soc. Japan, Pure Chem. Sect. 74: 986–9 (1953) CA 48: 3147cGoogle Scholar
  558. A 549.
    Fluorescent light yields with a-, ß-, and y-radiations. Fürst, M., and Kallmann, H. Phys. Rev. 91: 766–7 (1953) CA 47: 12015eGoogle Scholar
  559. A 550.
    Fluorescence, phosphorescence, and photostimulation of NaCl (AgCl) with high-energy irradiation. Fürst, M., and Kallmann, H. Phys. Rev. 91: 1356–67 (1953) CA 47: 11998gGoogle Scholar
  560. A 551.
    Percentage polarization of the fluorescence of organic monocrystals. Ganguly, S.C., andChaudhury, N.K. Z. Physik 135: 255–9 (1953) CA 47: 11006cGoogle Scholar
  561. A 552.
    Polarized fluorescence of molecules of some single organic crystals. Ganguly, S.C., and Chaudhury, N.K. J. Chem. Phys. 21: 554–7 (1953) CA 47: 5802hGoogle Scholar
  562. A 553.
    Fluorescence in ceramic research. Ghose, S.S., van Cott-Bouvier, H., and Cormier, C. Bull. Soc. Franc. Ceram. 21: 36–44 (1953) CA 50: 9706hGoogle Scholar
  563. A 554.
    Heavy accessory mineral study in the Ducktown basin. Gibson, O. Georgia, Dept. Mines, Mining, Geol., Geol Surv. Bull. 60: 278–88 (1953) CA 48: 4385eGoogle Scholar
  564. A 555.
    Luminescence of thallium and lead halides at low temperatures. Gobrecht, H., and Becker, F. Z. Physik 135: 553–7 (1953) CA 48: 1158cGoogle Scholar
  565. A 556.
    Absorption spectra and fluorescence spectra of chlorophyll and magnesium phthalocyanine in the adsorbed state. Gochkovskii, V.F. Dokl. Akad. Nauk SSSR 93: 511–4 (1953) CA 48: 6828aGoogle Scholar
  566. A 557.
    Phosphorescent inserts for slippers. Goldstein, J. U.S. 2,650,169 (1953) CA 48: 456fGoogle Scholar
  567. A 558.
    Variation in thermal electromotive force in gelatin-dye phosphors. Gombay, L. Kolloid-Z. 133: 40–4 (1953) CA 48: 43lieGoogle Scholar
  568. A 559.
    (Determination of aluminum with salicylaldehyde condensation products.) Goon, E., Retley, J.E., McMullen, W.H., and Wiberly, S.E. Anal. Chem. 25: 608 (1953)Google Scholar
  569. A 560.
    The role of oxygen in the Zn(Cu)S luminophors. Grillot, E. J. Chim. Phys. 50: 515–23 (1953) CA 48: 3795hGoogle Scholar
  570. A 561.
    The fluorescence of biacetyl vapor. Groh, H.J., Jr. J. Chem. Phys. 21: 674–7 (1953) CA 47: 6258gGoogle Scholar
  571. A 562.
    The mechanism of acetone vapor fluorescence. Groh, H.J., Luckey, G.W., and Noyes, W.A., Jr. J. Chem. Phys. 21: 115–18 (1953) CA 47: 3704aGoogle Scholar
  572. A 563.
    Chromatographic and fluorometric in-vestigation of biochemical polyphenia of eye-color genes in Ephestia kuhniella. Hadorn, E., and Kuhn, A. Z. Naturforseh. 8: 582–9 (1953) CA 48: 6035hGoogle Scholar
  573. A 564.
    Pteroid fluorescent substances of the skin and eyes of the frog. Hama, T. Experientia 9: 299–300 (1953) CA 48: 891aGoogle Scholar
  574. A 565.
    Fluorescent compositions. Hanno, M., et al. Japan 4912 (1953) CA 48: 10440iGoogle Scholar
  575. A 566.
    Organic pigment phosphorescent paints. Heidrich, H. German 873,294 (1953) CA 52: 19174gGoogle Scholar
  576. A 567.
    Fluorescence of organic materials excited by fast electrons and gamma rays with emphasis on composition. Herforth, L., and Rosahl, D. Ann. Physik 12: 340–7 (1953) CA 49: 5131cGoogle Scholar
  577. A 568.
    New fluorescence reactions of aluminum. Holzbecher, Z. Chem. Listy 47: 680–8 (1953) CA 48: 3189dGoogle Scholar
  578. A 569.
    Measurement of fluorescent spectra of liquids with a modified Beckman DU spectrophotometer. Huke, F.B., Heidel, R.H., and Fassel, VA. J. Opt. Soc. Am. 43: 400–4 (1953) CA 47: 677liGoogle Scholar
  579. A 570.
    The fluorescence and thermoluminescence of certain marbles. Ignjatovic, N., and Sljivic, S. Srpska Akad. Nauk Sb. Radova 33, Geol. Inst. 5: 303–7 (1953) CA 48: 3867hGoogle Scholar
  580. A 571.
    Certain synthetic fluorescent minerals and aluminosilicate phosphors. Iimori, M., and Iimori, S. Repts. Sci. Research Inst. 29: 463–7 (1953) CA 48: 8054dGoogle Scholar
  581. A 572.
    Fluorescent bleaching agents of benzidine series, in. Synthesis of benzidine–3,3’-disulfonic acid derivatives containing triazine ring. Inukai, K., and Maki, Y. Rept. Govt. Ind. Res. Inst., Nagoya 2: 207–11, 267–71 (1953) CA 50: 16ll2dGoogle Scholar
  582. A 573.
    White fluorescent substances. Ite, H. Japan 6270 (1953) CA 48: 11936fGoogle Scholar
  583. A 574.
    The dye-gelatin phosphors. I. Quenching of the phosphorescence by bound water in the dye-gelatin phosphors. Iwaki, R. J. Chem. Soc. Japan, Pure Chem. Sect. 74: 503–6 (1953) CA 48: 452aGoogle Scholar
  584. A 575.
    Fluorescent emission of resonance lines at higher pressures. Jablonski, A. Nuovo Cimento 10: 573–80 (1953) CA 47: 7900hGoogle Scholar
  585. A 576.
    Investigations of luminescent antimony oxide. Janin, J., and Bernard, R. Compt. Rend. 237: 798–800 (1953) CA 48: 3145eGoogle Scholar
  586. A 577.
    A study of the afterglow of helium excited by centimeter waves. Janin, J., and Eyrand, I. Compt. Rend. 237: 1073–5 (1953) CA 48: 6249hGoogle Scholar
  587. A 578.
    Fluorescence test for serotonin and other tryptamines. Jepson, J.B., and Stevens, B.J. Nature 172: 772 (1953) CA 48: 7l02eGoogle Scholar
  588. A 579.
    The measurement of quantum efficiency of fluorescent lamp phosphors. Jerome, C.W. J. Electrochem. Soc. 100: 586–7 (1953) CA 48: 1815aGoogle Scholar
  589. A 580.
    Differential fluorescence in identification of tobacco trashy leaf. Johanson, R. Nature 171: 753–4 (1953) CA 47: 11668cGoogle Scholar
  590. A 581.
    Porcellaneous phosphors. Kato, K., and Iimori, S. Repts. Sci. Research Inst. 29: 481–7 (1953) CA 48: 8054fGoogle Scholar
  591. A 582.
    Quenching of organic phosphors. II. Kato, S. J. Inst. Polytech., Osaka City Univ. 4C: 155–66 (1953) CA 49: 2873gGoogle Scholar
  592. A 583.
    The nature of fluorescent centers and traps in zinc sulfide. Klasens, HA. J. Electrochem. Soc. 100: 72–80 (1953) CA 47: 11998cGoogle Scholar
  593. A 584.
    Fluorescent substance. Kodera, Y., and Sekine, T. Japan 1964 (1953) CA 48: 5660cGoogle Scholar
  594. A 585.
    Quenching of organic phosphorescence. Koizumi, M., and Kato, S. J. Chem. Phys. 21: 2088–9 (1953) CA 48: 1816cGoogle Scholar
  595. A 586.
    The quenching of organic phosphors (instrument). Koizumi, M., and Kato, S. J. Chem. Soc. Japan, Pure Chem. Sect., 74: 757–60 (1953) CA 48: 1160dGoogle Scholar
  596. A 587.
    Luminescence and electric properties of zinc oxide. Konovalov, GA. Tr. Sibirsk. Fiz.-Tekhn. Inst, pri Tomsk. Gos. Univ. 1953: 32–52 (1953) CA 50: 13612iGoogle Scholar
  597. A 588.
    Liquid settling of fluorescent screens. Krause, P.W. U.S. 2,662,829 (1953) CA 48: 6264gGoogle Scholar
  598. A 589.
    Fluorescence and fluorochromy in biology and medicine. Krieg, A. Klin. Wochschr. 31: 350–6 (1953) CA 47: 70l4gGoogle Scholar
  599. A 590.
    Variation of the state of polarization of the fluorescence of dyes with wavelength of the exciting radiation. Laffitte, E. Compt. Rend. 236: 680–2 (1953) CA 47: 7326fGoogle Scholar
  600. A 591.
    Semidirect determination of coefficients of fluorescence for the K level of certain atoms from measurements of the width of X-rays. Laskar, W. Compt. Rend. 236: 2149–50 (1953) CA 47: 976liGoogle Scholar
  601. A 592.
    Spectrophotometric determinations of nicotinic acid and nicotinamide. LeClerc, A.M., and Douzou, P. Compt. Rend. 236: 2006–8 (1953) CA 47: 9558bGoogle Scholar
  602. A 593.
    The characteristics of ultraviolet sen-sitized photographic plates in the vacuum ultraviolet. Lee, P., and Weissler, G.L. J. Opt. Soc. Am. 43: 512–15 (1953) CA 47: 7891eGoogle Scholar
  603. A 594.
    Phosphorescent effect in lead selenide. Lee, PA. Can. J. Phys. 31: 1023–4 (1953) CA 48: 6260iGoogle Scholar
  604. A 595.
    A study of the a-ray-excited fluores-cence of zinc sulfide by means of a photomultiplier. Leuba, P., and Anthony, J.P. Compt. Rend. 236: 374–7 (1953) CA 47: 4747eGoogle Scholar
  605. A 596.
    Sugars in the spring sap of birch and ironwood. Lohr, E. Physiol. Plantarum 6: 529–32 (1953) CA 48: 5303cGoogle Scholar
  606. A 597.
    Histological evidence of a -emitter through fluorescence. Ludwig, F. Compt. Rend. 236: 751–3 (1953) CA 48: 12855aGoogle Scholar
  607. A 598.
    Fluorescent substance. Maehida, J. Japan 6271 (1953) CA 48: 11936fGoogle Scholar
  608. A 599.
    Action of ultrasonics on some substances present in vegetable oils. Maffei, F., and Buonsanto, M. Olearia 7: 132–6 (1953) CA 47: 12841fGoogle Scholar
  609. A 600.
    Low-temperature fluorescence observed in many silver salts. Makishima, S., and Tomotsu, T. Kagaku 23: 586 (1953) CA 48: 452eGoogle Scholar
  610. A 601.
    Relation between wavelength of excita-tion and banded fluorescence of a tetrahydrofluoroeyclene solution. Malkovskii, Z. Byull. Polsk. Akad. Nauk, Otd. 3, 1(7): 28791 (1953); Referat. Zhur., Fiz. 1955, No. 3526 (1953) CA 50: 3090hGoogle Scholar
  611. A 602.
    Electronic and vibrational energy of tetrahydrofluoroeyelene in benzene solution. Malkovskii, Z. Bull. Acad. Polon. Sci.,Classe (in) 1: 113–17 (1953) CA 48: 6253fGoogle Scholar
  612. A 603.
    Monochromatic excitation of the fluor-escence in tetrahydrofluoroeyelene solutions. Malkovskii, Z. Bull. Acad. Polon. Sci., Classe (in) 1: 287–91 (1953) CA 48: 8656fGoogle Scholar
  613. A 604.
    The phosphorescence of thoria. Mandeville, C.E. Phys. Rev. 90: 992–3 (1953) CA 47: 9778iGoogle Scholar
  614. A 605.
    The a-partiele-induced phosphores-cence of silver-activated sodium chloride. Mandeville, C.E., and Albrecht, H.O. Phys. Rev. 90: 25–8 (1953) CA 47: 9155gGoogle Scholar
  615. A 606.
    Influence of the addition of alkyl sodium and potassium sulfates upon the fluorescence and absorption spectra of aqueous solutions of Rhodamine 6G. Mataga, N., and Koizumi, M. J. Inst. Poly tech., Osaka City Univ. 40: 177–88 (1953) CA 49: 2868bGoogle Scholar
  616. A 607.
    Even-odd character of the 2900-3200 A absorption transition in naphthalene. McConnell, H., and McClure, D.S. J. Chem. Phys. 21: 1296–97 (1953) CA 47: 10999gGoogle Scholar
  617. A 608.
    Mineralogical observations of colemanite, inyoite, meyerhofferite, tertschite, and ulexite from new Turkish borate deposits. Meixner, H. Heidelberger Beitr. Mineral. Petrog. 3: 445–55 (1953) CA 48: 3856bGoogle Scholar
  618. A 609 Bis (alkoxybenzamido) stilbenedisulfon- ate (brightener). Merner, R.R. U.S. 2,635,113 (1953) CA 48: 7636cGoogle Scholar
  619. A 610.
    Fluorescence of aesculoside and methylaesculetol in the presence of horse-chestnut extract. Mesnard, P., and Durand, R. Bull. Soc. Pharm. Bordeaux 92: 162–4 (1953) CA 48: 5437eGoogle Scholar
  620. A 611.
    Luminescent-bitumenological survey in main deposits. Moskalev, N.P. Vesta. Mosk. Univ. 8, No. 3, Ser. Fiz.-Mat. i Estestven. Nauk, No. 2, 157–60 (1953) CA 48: 8706dGoogle Scholar
  621. A 612.
    Some relative fluorescent efficiencies in the Schumann region. Moslen, V.W., White, N.E., and Williams, S.E. Brit. J. Appl. Phys. 4: 303–6 (1953) CA 48: 5655iGoogle Scholar
  622. A 613.
    Absorption and fluorescence of styrene vapor. Morgan, J.V. J. Am. Chem. Soc. 75: 5055–7 (1953) CA 48: l807iGoogle Scholar
  623. A 614.
    Absorption and fluorescence of styrene vapor. Morgan, J.V. Univ. Microfilms 5447, 46 pp. (1953) CA 47: 11980bGoogle Scholar
  624. A 615.
    Effect of plasma on adrenaline fluorescence. My Ion, E., and Roston, S. Am. J. Physiol. 172: 601–11 (1953) CA 47: 6475hGoogle Scholar
  625. A 616.
    Investigation of the spectra of substituted phthalimides in vapor and in solution. Neporent, B.S., Zelinskii, V.V., and Klochkov, V.P. Dokl. Akad. Nauk. SSSR 92: 927–30 (1953) CA 48: 9810iGoogle Scholar
  626. A 617.
    Growth substances in extracts of im-mature corn grain studied through their effects on cultures of Jerusalem artichoke tissue. Netien, G., and Beauchesne, G. Compt. Rend. 237: 1026–8 (1953) CA 48: 4645eGoogle Scholar
  627. A 618.
    Measurements of the decay of the phos-phorescence of several alkali halides. Neuert, H., and Retz-Schmidt, T. Z. Physik 134: 165–72 (1953) CA 47: 9l55dGoogle Scholar
  628. A 619.
    The fluorescence of organic compounds through the action of X-rays. Neunhoeffer, O., and Rosahl, D. Z. Elektrochem. 57: 81–7 (1953) CA 47: 11998eGoogle Scholar
  629. A 620.
    Synthesis and fluorescence of substitu-ted 2-pyrazolines. Neunhoeffer, O., and Rosahl, D. Chem. Ber. 86: 226–31 (1953) CA 48: 674cGoogle Scholar
  630. A 621.
    Chemical determination and metabolism of the steroid hormones of the adrenal cortex. Neyman, B. Bull. Soc. Fribourg. Sci. Nat. 43: 174–218 (1953) CA 49: 5613cGoogle Scholar
  631. A 622.
    Sulfide-type fluorescent substances. Nishikawa, K. Japan 979 (1953) CA 48: 1818hGoogle Scholar
  632. A 623.
    Fluorescent substance. Nishikawa, K., and Yamamoto, M. Japan 5871 (1953) CA 48: 9208bGoogle Scholar
  633. A 624.
    Experimental studies on the pathogene-sis and prevention of chlorinated naphthalene poisoning. VIII–2. Nomura, S. J. Sci. Labour 29: 57–69 (1953) CA 48: 5401hGoogle Scholar
  634. A 625.
    Synthesis of organic fluorescent com-pounds. XXVI. Oda, R., Yoshida, Z., and Yasuda, R. J. Chem. Soc. Japan 56: 549–51 (1953) CA 49: 7546giGoogle Scholar
  635. A 626.
    Fluorescent plate. Ohya, S. Japan 1170 (1953) CA 48: 1164eGoogle Scholar
  636. A 627.
    Fluorescent substance. Ohya, S., and Imada, Y. Japan 1965 (1953) CA 48: 4320aGoogle Scholar
  637. A 629.
    Variations in the decay of phosphoes-cence with frequency of applied field. Olson, K.W. Phys. Rev. 92: 1323 (1953) CA 48: 2479fGoogle Scholar
  638. A 629.
    Ultraviolet absorption spectra of glasses containing titanium and heavy metals. Osada,K. J. Phys. Soc. Japan 8: 226–8 (1953) CA 50: 12646iGoogle Scholar
  639. A 630.
    Extent of the fluorescence effect in ab-sorption spectrophotometry. Ovens ton, T.C.J. Photoelec. Spectrometry Group Bull. 6: 132–8 (1953) CA 49: 12135dfGoogle Scholar
  640. A 631.
    Effect of temperature on the fluores-cence of uranyl sulfate. Pant, D.D. J. Sci. Res. Banaras Hindu Univ. 3: 27–37 (1953) CA 48: 6262aGoogle Scholar
  641. A 632.
    Fluorescence spectra of five samples of uranyl sulfate. Pant, D.D. J. Sci. Res. Banaras Hindu Univ. 3: 19–27 (1953) CA 48: 6261hGoogle Scholar
  642. A 633.
    Mechanism of luminescence of potassi-um chloride-thallium-activated phosphors excited by X-rays. Parfianovich, I A. Zh. Eksperim. i Teor. Fiz. 24: 117–23 (1953) CA 49: 2193cGoogle Scholar
  643. A 634.
    Investigations on the luminescence of minerals, n. Carbonates. Parsanov, G.P., and Sheveleva, VA. Tr. Mineralog. Muzeya, Akad. Nauk SSSR 5: 56–89 (1953) CA 49: 5130cGoogle Scholar
  644. A 635.
    Fluorescence of crystallized acenaphthene at 20°. Peste il, P. Compt. Rend. 237: 235–7 (1953) CA 47: 11998aGoogle Scholar
  645. A 636.
    Fluorescence of organic monoerystals at low temperatures. II. Anthracene, biphenyl, and acenaphthene. Pesteil, P., and Barbaron, M. Compt. Rend. 237: 884–6 (1953) CA 48: 431IfGoogle Scholar
  646. A 637.
    Measurements of scintillation lifetimes. Phillips, H.B., and Swank, R.K. Rev. Sci. Instr. 24: 611–6 (1953) CA 48: 6273fGoogle Scholar
  647. A 638.
    Chelating properties of 8-quinolinol, Mannich bases. Phillips, J.P., and Ferando, Q. J. Am. Chem. Soc. 75: 3768–9 (1953) CA 48: 1873dGoogle Scholar
  648. A 639.
    Noncrystalline fluorescent solids for measurement of radioactivity. Pichot, L., Pesteil, P., and Clement, J. J. Chim. Phys. 50: 26–41 (1953) CA 47: 5808cGoogle Scholar
  649. A 640.
    Color bands in fluorspar. Przibram, K. Nature 172: 860–1 (1953) CA 48: 3795fGoogle Scholar
  650. A 641.
    Fluorescent screens. Putnan, C.W. U. S. 2,660,539 (1953) CA 48: 4320bGoogle Scholar
  651. A 642.
    Effect of concentration on the fluorescence of dye solutions. Ramanathan, N., and Tawde, N.R. Proc. Natl. Inst. Sci. India, Pt. A 19: 405–10 (1953) CA 48: 1816aGoogle Scholar
  652. A 643.
    Photochemistry of porphyrins. Randall, G. U.S. At. Energy Comm., UCRL 2417, 120 pp. (1953) CA 48: 11197dGoogle Scholar
  653. A 644.
    The measurement of the decay of luminescence by means of the phase tube. Rohde, F. Z. Naturforsch. 8a: 156–161 (1953) CA 47: 9l57dGoogle Scholar
  654. A 645.
    Fluorescence spectra and quantum yields of some organic materials excited with ultraviolet light. Rosahl, D. Ann. Physik 12: 35–44 (1953) CA 49: 5972fGoogle Scholar
  655. A 646.
    Thermal extinction of the fluorescence of solutions of biacene. Rosinski, K. Bull. Acad. Polon. Sci., Classe (III) 1: 55–9 (1953) CA 48: 452hGoogle Scholar
  656. A 647.
    Phosphorescence of cellulose. Rousset, A., Lochet, R., and Darrine, J. Compt. Rend. 237: 37–8 (1953) CA 48: 357hGoogle Scholar
  657. A 648.
    Photodielectric effect, ferroelectricity, and thermoluminescence in ultravioletirradiated zinc oxide. Roux, J. Compt. Rend. 236: 2492–4 (1953) CA 48: 10424eGoogle Scholar
  658. A 649.
    Analysis of fluorescent X-radiation by means of proportional counters. Rowland, R.E. J. Appl. Phys. 29: 811–12 (1953) CA 47: 11964hGoogle Scholar
  659. A 650.
    Raman spectra and fluorescence of o and p -chlorotoluene in the solid state. Sanyal, S.B. Indian J. Phys. 27: 447–51 (1953) CA 51: 7866cGoogle Scholar
  660. A 651.
    Fluorescent substance. Sato, Y., and Fukumoto, T. Japan 6020 (1953) CA 48: 11199fGoogle Scholar
  661. A 652.
    Measurements of decay times on liquid and solid solutions with a new fluorometer. Schmillen, A. Z. Physik 135: 294–308 (1953) CA 41: 11006fGoogle Scholar
  662. A 653.
    The decay period of solid solutions of aromatic hydrocarbons. Schmillen, A., Schmillen, L., and Rohde,F. Z. Naturforsch. 8a: 213–14 (1953) CA 47: 9l57fGoogle Scholar
  663. A 654.
    Symmetry assignments for the first two excited singlet electronic states of the naphthalene molecule. Sehnepp, O., and McClure, D.S. J. Chem. Phys. 21: 959 (1953) CA 47: 7890dGoogle Scholar
  664. A 655.
    Radiophotoluminescence dosimetry system of the U.S. Navy. Schulman, J.H. Nucleonics 11: 52–6 (1953) CA 48: 3l56eGoogle Scholar
  665. A 656.
    Fluorescent substance. Shawa, S., et al. Japan 5413 (1953) CA 48: 11199eGoogle Scholar
  666. A 657.
    Change in the fluorescence of deltapine15 seed cotton as a result of heat. Sheehan, W.C. Textile Res. J. 23: 736–43 (1953) CA 48: 1008bGoogle Scholar
  667. A 658.
    Investigation of the structure of intercomplex compounds by the method of vibrational spectra in connection with the question about the nature of the hydrogen bond. Shigorin, D.N. Izv. Akad. Nauk SSSR, Ser. Fiz. 17: 596–603 (1953) CA 48: 5652aGoogle Scholar
  668. A 659.
    Fluorescence and absorption spectra of estrogens heated in sulfuric acid. Slaunwhite, W.R., Jr., Engel, L.L., Scott, J.F., and Ham, C.L. J. Biol. Chem. 201: 615–20 (1953) CA 47: 8805fGoogle Scholar
  669. A 660.
    Effects of neutron bombardment on a zinc sulfide phosphor. Smith, A.W., and Turkevich, H. J. Chem. Phys. 21: 367–8 (1953) CA 47: 9l55iGoogle Scholar
  670. A 661.
    Fluorescence of terramycin and aureomycin. Soncin, E. Boll. Soc. Ital. Biol. Sper. 29: 337–8 (1953) CA 48: 330gGoogle Scholar
  671. A 662.
    Reversible association processes of globular proteins. IV. Fluorescence methods in studying protein interactions. Steiner, R.F. Arch. Biochem. Biophys. 46: 291–311 (1953) CA 49: 8347cGoogle Scholar
  672. A 663.
    Vapor pressures and the heats of sub-limation of anthracene and of 9,10diphenylanthracene. Stevens, B. J. Chem. Soc. 1953: 2973–4 (1953) CA 48: 378ldGoogle Scholar
  673. A 664.
    Influence of linear ion density upon the excitation of ultraviolet and visible fluorescence by y-rays and X-rays. Maier, H. Strahlentherapie 91: 566–75 (1953) CA 47: 11996dGoogle Scholar
  674. A 665.
    Fluorescent spectra from ethyl nitrate. I. Supposed emissions from alkoxy radicals and N02. Style, D.W.G., and Ward, J.C. Trans. Faraday Soc. 49: 999–1002 (1953) CA 48: 497liGoogle Scholar
  675. A 666.
    A study of intensity variations in sensi-tized fluorescence. Swans on, R.E., and Mc Far land, R.H. Phys. Rev. 89: 911–2 (1953) CA 48: 8026fGoogle Scholar
  676. A 667.
    Light-responsive fluorescent media. Switzer, J.L., Switzer, R.C., and Ward, R A. U.S. 2,653,109 (1953) CA 48: 1164bGoogle Scholar
  677. A 668.
    Tetrakis (carboxyphenyl) thiophene (dye). Toland, W.G. U.S, 2,610,191 (1953) CA 48: 7641gGoogle Scholar
  678. A 669.
    Fluorescent heterocyclic compounds. Trosken, O. Ger. 869,490 (1953) CA 52: 16372cGoogle Scholar
  679. A 670.
    The ultraviolet absorption and fluores-cence spectra of acetophenone. Vanselow, R.D., and Duncan, A.B.F. J. Am. Chem. Soc. 75: 829–32 (1953) CA 47: 5251cGoogle Scholar
  680. A 671.
    Titration fluorometer. Vecerek, B., and Shovronsky, O. Chem. Listy 47: 272 (1953) CA 48: 3069eGoogle Scholar
  681. A 672.
    Fluorescence of dermatophytes, Trichophyton mentagrophytes. Vivancos, G. Rev. inst. Malbrán 15: 149–53 (1953) CA 48: 8312bGoogle Scholar
  682. A 673.
    Recent applications of fluorescence to textile fibers. Waliner, L. Teintex 18: 69–93 (1953) CA 47: 5l21dGoogle Scholar
  683. A 674.
    Polarization of the fluorescence of labeled protein molecules. Weber, G. Discussions Faraday Soc. 1953: 33–9 (1953) CA 47: 647IfGoogle Scholar
  684. A 675.
    Rotational Brownian motion and polarization of the fluorescence of solutions. Weber, G. Advan. Protein Chem. 8: 415–59 (1953) CA 48: 3428aGoogle Scholar
  685. A 676.
    Metals in the atomic state in glasses. Weyl, WA. J. Phys. Chem. 57: 753–6 (1953) CA 48: 968aGoogle Scholar
  686. A 677.
    Progress with fluorescent materials. Williams, A.E. Ind. Finishing 6: 324–8 (1953) CA 48: 3704iGoogle Scholar
  687. A 678.
    The fluorescence of living, dying, and dead cells of the Florideae. Wimmer, C., and Hofler, K. Oesterr. Akad. Wiss. Math.-Naturw. Kl., Sitzber. 162: 625–41 (1953) CA 49: 4091iGoogle Scholar
  688. A 679.
    Fluorescence characteristics of mixed organic crystals. Wright, G.T.Proc. Phys. Soc. 66A: 777–83 (1953) CA 47: 11997hGoogle Scholar
  689. A 680.
    Application of fluorescent coatings by a precipitation method. Yamada, M., and Akagi, K. Japan 6040 (1953) CA 48: 11199gGoogle Scholar
  690. A 681.
    Dye phosphors. IV. Contribution of conduction band to the dye phosphors. Yamamoto, D. J. Chem. Soc. Japan.74: 173–83 (1953) CA 47: 5252bGoogle Scholar
  691. A 682.
    The law of damping of the luminescence of solid organic substances. Yastrebov-, V.A. Dokl. Akad. Nauk SSSR 90: 1015–8 (1953) CA 48: 8054gGoogle Scholar
  692. A 683.
    Syntheses of organic fluorescent compounds. Yoshida, Z., Kato, Y., and Oda, R. J. Chem. Soc. Japan 56: 411–13 (1953) CA 49: 6910iGoogle Scholar
  693. A 684.
    Synthesis of organic fluorescent com-pounds. XXIII. Synthesis of 9c arboxymethy 1–3, 6 -diaminoc ar ba zo le 4,4-disulfonic acid and its fluorescence. Yoshida, Z., and Oda, R. J. Chem. Soc. Japan, Ind. Chem. Sect. 56: 261–3 (1953) CA 48: 10748bGoogle Scholar
  694. A 685.
    A new 6100-A band in zinc orthosilicate activated with manganese. Zalm, P., and Klasens, HA. Philips Res. Rept. 8: 386–92 (1953) CA 48: 8657aGoogle Scholar

Copyright information

© Plenum Press Data Division 1967

Authors and Affiliations

  • Richard A. Passwater
    • 1
  1. 1.Fluorescence InstrumentationAmerican Instrument CompanySilver SpringUSA

Personalised recommendations