Skip to main content
  • 202 Accesses

Abstract

Lithium niobate possesses a very unique combination of properties and characteristics: 1) ferroelectric with a high Curie point, 2) large nonlinear optical coefficient, 3) large birefringence, 4) strong piezoelectric effect, 5) excellent acoustic properties, and 6) large electrooptic effect. This unusual dielectric material has been extensively investigated only quite recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, S.C. et al. Ferroelectric Lithium Niobate. Pt. 3: Single Crystal X-Ray Diffraction Study at 24°C. J. of Phys. And Chem. of Solids, v. 27, no. 6/7, June-July 1966. p. 997–1012.

    Article  Google Scholar 

  • Abrahams, S.C. et al. Ferroelectric Lithium Niobate. Pt. 4: Single Crystal Neutron Diffraction Study at 24°C. J. of Phys. And Chem. of Solids, v. 27, no. 6/7, June–July 1966. p. 1013–1018.

    Article  Google Scholar 

  • Abrahams, S.C. et al. Ferroelectric Lithium Niobate. Pt. 5: Polycrystal X-Ray Diffraction Study Between 24°C and 1200°C. J. of Phys. And Chem. of Solids, v. 27, no. 6/7, June-July 1966. p. 1019–1026.

    Article  Google Scholar 

  • Ashkin, A. et al. Optically-Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3. Applied Phys. Letters, v. 9, no. 1, July 1966. p. 72–74.

    Article  Google Scholar 

  • Axe, J.D. and D.F. O’Kane. Infrared Dielectric Dispersion of LiNbO3. Applied Phys. Letters, v. 9, no. 1, July 1966. p. 58–60.

    Article  Google Scholar 

  • Ballman, A.A. Growth of Piezoelectric and Ferroelectric Materials by the Czochralski Technique. American Ceram. Soc, J., v. 48, no. 2, Feb. 1965. p. 112–113.

    Article  Google Scholar 

  • Barker, A.S. and R. Loudon. Dielectric Properties and Optical Phonons in LiNbO3. Phys. Rev., v. 158, no. 2, June 1967. p. 433–445.

    Article  Google Scholar 

  • Bergman, J.G. et al. Curie Temperature Birefringence and Phase-Matching Temperature Variations in LiNbO3 as a function of Melt Stoichiometry. Applied Phys. Letters, v. 12, no. 3, Feb. 1968. p. 92–94.

    Article  Google Scholar 

  • Bergmann, G. The Electrical Conductivity of LiNbO3. Solid State Communications, v. 6, no. 2, Feb. 1968. p. 77–79.

    Article  MathSciNet  Google Scholar 

  • Bernal, E. et al. Low Frequency Electro-Optic and Dielectric Constants of Lithium Niobate. Phys. Letters, v. 21, no. 3, May 1966. p. 259–260.

    Article  Google Scholar 

  • Bjorkholm, J.E. Relative Signs of the Optical Nonlinear Coefficients d31 and d22 in LiNbO3. Applied Phys. Letters, v. 13, no. 1, July 1968. p. 36–37.

    Article  Google Scholar 

  • Bjorkholm, J.E. Relative Measurements of the Optical Nonlinearities of Kdp, Adp, LiNbO3 and alpha-HIO3. Ieee J. Quantum Electronics, v. QE-4, Nov. 1968. p. 970–972. Also Errata v. QE-5, May 1969. p. 260.

    Google Scholar 

  • Bosomworth, D.R. The Far Infrared Optical Properties of LiNbO3 Applied Phys. Letters, v. 9, no. 9, Nov. 1966. p. 330–331.

    Google Scholar 

  • Boyd, G.D. et al. LiNbO3: An Efficient Phase Matchable Nonlinear Optical Material. Applied Phys. Letters, v. 5, no. 11, Dec. 1964. p. 234–236.

    Article  Google Scholar 

  • Boyd, G.D. et al. Refractive Index as a Function of Temperature in LiNbO3. J. of Applied Phys., v. 38, no. 3, Mar. 1967. p. 1941–1943.

    Article  Google Scholar 

  • Byer, R.L. et al. Growth of High-Quality LiNbO3 Crystals from the Congruent Melt. J. of Applied Physics, v. 41, no. 6, May 1970, p. 2320–2325.

    Article  Google Scholar 

  • Camlibel, I. Spontaneous Polarization Measurements in Several Ferroelectric Oxides Using a Pulsed-Field Method. J. of Applied Physics, v. 40, no. 4, Mar. 1969. p. 1690–1693.

    Article  Google Scholar 

  • Carruthers, J.R. et al. Nonstoichiometry and Crystal Growth of Lithium Niobate. J. of Applied Physics, v. 42, no. 5, Apr. 1971. p. 1846–1851.

    Article  Google Scholar 

  • Chen, F.S. Optically Induced Change of Refractive Indices in LiNb03 and LiTaO3. J. of Applied Physics, v. 40, no. 8, July 1969. p. 3389–3396.

    Article  Google Scholar 

  • Chkalova, V.V. et al. Piezoelectric, Elastic and Dielectric Properties of Single Crystal Lithium Niobates and Tantalates. (In Russ.) Akad. Nauk. Izv. Neorgan. Mat., v. 3, no. 9, 1967. p. 1715–1716.

    Google Scholar 

  • Didomenico, M. and S.H. Wemple. Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-Optical and Nonlinear Optical Effects. J. of Applied Physics, v. 40, no. 2, Feb. 1969. p. 720–734.

    Article  Google Scholar 

  • Dixon, R.W. Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners. J. of Applied Physics, v. 38, no. 13, Dec. 1967. p. 5149–5153.

    Article  Google Scholar 

  • Dixon, R.W. and M.G. Cohen. A New Technique for Measuring Magnitudes of Photo-elastic Tensors and its Applications to Lithium Niobate. Applied Phys. Letters, v. 8, no. 8, Apr. 1966. p. 205–207.

    Article  Google Scholar 

  • Fay, H. et al. Dependence of Second-Harmonic Phase-Matching Temperature in LiNbO3 Crystals on Melt Composition. Applied Phys. Letters, v. 12, no. 3, Feb. 1968. p. 89–92.

    Article  MathSciNet  Google Scholar 

  • Guseva, L.M. et al. Investigation of Some of the Optical Characteristics of Ferroelectric Lithium Niobate. Acad. of Sci., Ussr, Bull., Phys. Ser., v. 31, no. 7, July 1967. p. 1181–1183.

    Google Scholar 

  • Hulme, K.F. et al. Optimum Longitudina Electrooptic Effect in Oblique-Cut Lithium Niobate Plates. Electronic Letters, v. 5, no. 8, Apr. 1969. p. 171–172.

    Article  Google Scholar 

  • Hulme, K.F. et al. The Signs of the Electro-Optic Coefficients for Lithium Niobate. J. Phys. C, Ser. 2, v. 2, 1969. p. 855–857.

    Google Scholar 

  • Irisova, N.A. and G.V. Kozlov. Birefringence of Certain Crystals in the Millimeter Wavelength Range. Soviet Physics-Crystall., v. 15, no. 5, Mar. 1971. p. 941–942.

    Google Scholar 

  • Ismailzade, I.G. An X-Ray Diffraction Study of Phase Transitions in Lithium Niobate. Soviet Physics-Crystall., v. 10, no. 3, Nov. 1965. p. 235–237.

    Google Scholar 

  • Ismailzade, I.G. et al. X-Ray Study of Lithium Niobate at High Temperatures. Soviet Physics-Crystall., v. 13, no. 1, July 1968. p. 25–28.

    Google Scholar 

  • Iwasaki, H. et al. Dispersion of the Refractive Indices of LiNbO3 Crystals Between 20° and 900°C. Japan J. of Applied Phys., v. 6, no. 9, Sept. 1967. p. 1101–1104.

    Article  Google Scholar 

  • Iwasaki, H. et al. Temperature and Optical Frequency Dependence of the D.C. Electro-Optic Constants r t22 of LiNbO3. Japan. J. of Applied Phys., v. 6, no. 12, Dec. 1967. p. 1419–1422.

    Article  Google Scholar 

  • Kaminow, I.P. and W.D. Johnston. Quantitative Determination of Sources of the Electrooptic Effect in LiNbO3 and LiTaO3. Phys. Rev., v. 160, no. 3, A0ug. 1967. p. 519–522.

    Article  Google Scholar 

  • Kim, Y.S. and R.T. Smith. Thermal Expansion for Lithium Tantalate and Lithium Niobate Single Crystals. J. of Applied Phys., v. 40, no. 11, Oct. 1969. p. 4637–4641.

    Article  Google Scholar 

  • Kludzin, V.V. Photoelastic Constants of LiNbO3 Crystals. Soviet Physics, Solid State, v. 13, no. 2, Aug. 1971. p. 540–541.

    Google Scholar 

  • Laudise, R.A. The Search for Nonlinear Optical Materials for Laser Communications. Bell Labs. Record, v. 46, no. 1, Jan. 1968. p. 3–7.

    Google Scholar 

  • Lenzo, P.V. et al. Electro-Optic Coefficients in Single-Domain Ferroelectric Lithium Niobate. Optical Soc. of America, J., v. 56, no. 5, May 1966. p. 633–635.

    Article  Google Scholar 

  • Levinstein, H.J. et al. Reduction of the Susceptibility of Optically Induced Index Inhomogeneities in LiTaO3 and LiNbO3. J. of Applied Phys., v. 38, no. 8, July 1967. p. 3101–3102.

    Article  Google Scholar 

  • Maloney, W.T. et al. Measurement of “Shear” Photoelastic Constants in Lithium Niobate. Ieee Proc, v. 57, no. 7, July 1969. p. 1332–1333.

    Article  Google Scholar 

  • Matthias, B.T. and J.P. Remeika. Ferroelectricity in the Ilmenite Structure. Phys. Rev., v. 76, no. 12, Dec. 1949. p. 1886–1887.

    Article  Google Scholar 

  • Midwinter, J.E. Assessment of Lithium Metaniobate for Linear Optics. Applied Phys. Letters, v. 11, no. 4, Aug. 1967. p. 128–130.

    Article  Google Scholar 

  • Midwinter, J.E. Lithium Niobate: Effects of Composition on the Refractive Indices and Optical Second-Harmonic Generation. J. of Applied Phys., v. 39, no. 7, June 1968. p. 3033–3038.

    Article  Google Scholar 

  • Miller, R.C. and A. Savage. Temperature Dependence of the Optical Properties of Ferroelectric LiNbO3 and LiTaO3. Applied Phys. Letters, v. 9, no. 4, Aug. 1966. p. 169–171.

    Article  Google Scholar 

  • Miller, R.C. et al. Dependence of Second Harmonic Generation Coefficients of LiNbO3 on Melt Composition. J. of Applied Phys., v. 42, no. 11, Oct 1971. p.4145–4147.

    Article  Google Scholar 

  • Nassau, K. Lithium Niobate — A new Type of Ferroelectric: Growth, Structure and Properties. In Ferroelectricity, Proceedings of the Symposium on Ferroelectricity. General Motors Res. Lab., Warren, Mich., 1966. Ed. Weller, E.F. Elsevier Pub. Co., N.Y., 1967. p. 259–268.

    Google Scholar 

  • Nassau, K. and H.J. Levinstein. Ferroelectric Behavior of Lithium Niobate. Applied Phys. Letters, v. 7, no. 3, Aug. 1965. p. 69–70.

    Article  Google Scholar 

  • Nassau, K. et al. Ferroelectric Lithium Niobate. Pt. 1: Growth, Domain Structure, Dislocations and Etching. J. of Phys. And Chem. of Solids, v. 27, no. 6/7, June-July 1966. p. 983–988.

    Article  Google Scholar 

  • Nassau, K. et al. Ferroelectric Lithium Niobate. Pt. 2: Preparation of Single Domain Crystals. J. of Phys. And Chem. of Solids, v. 27, no. 6/7, June–July 1966. p. 989–996.

    Article  Google Scholar 

  • Niizeki, N. et al. Growth Ridges, Etched Hillocks and Crystal Structure of Lithium Niobate. Japan. J. of Applied Phys., v. 6, no. 3, Mar. 1967. p. 318–327.

    Article  MathSciNet  Google Scholar 

  • Ohmachi, Y. et al. Dielectric Properties of LiNbO3 Single Crystals up to 9 GHz. Japan. J. of Applied Phys., v. 6, no. 12, Dec. 1967. p. 1467–1468.

    Article  Google Scholar 

  • Parfitt, H.T. and D.S. Robertson. Domain Structures in Lithium Niobate Crystals. British J. of Applied Phys., v. 18, no. 12, Dec. 1967. p. 1709–1713.

    Article  Google Scholar 

  • Peterson, G.E. et al. Electro-Optic Properties of LiNbO3. Applied Phys. Letters, v. 5, no. 3, Aug. 1964. p. 62–64.

    Article  Google Scholar 

  • Reintjes, J. and M.B. Schulz. Photoelastic Constants of Selected Ultrasonic Delay-Line Crystals. J. of Applied Phys., v. 39, no. 11, Oct. 1968. p. 5254–5258.

    Article  Google Scholar 

  • Reisman, A. and F. Holtzberg. Heterogeneous Equilibria in the Systems Li2 O-Ag20-Nb2O5 and Oxide-Models. American Chem. Soc., J., v. 80, no. 24, Dec. 1958. p. 6503–6507.

    Article  Google Scholar 

  • Roitberg, M.B. et al. Characteristic Features of the Pyroelectric Effect and Electrical Conductivity in Single Crystals of LiNbO3 in the Range 20-250°C. Soviet Physics-Crystall., v. 14, no. 5, Mar. 1970. p. 814–815.

    Google Scholar 

  • Shapiro, Z.I. et al. Investigation of the LiTaO3— LiNbO3 System. Acad of Sci., Ussr, Bull., Phys. Ser., v. 29, no. 6, June 1965. p. 1047–1050.

    Google Scholar 

  • Smakula, P.H. and P.C. Claspy. The Electro-Optic Effect in LiNbO3 and Ktn. Aime Metall. Soc, Trans., v. 239, no. 3, Mar. 1967. p. 421–424.

    Google Scholar 

  • Smith, R.T. and F.S. Welsh. Temperature Dependence of the Elastic, Piezoelectric and Dielectric Constants of Lithium Tantalate and Lithium Niobate. J. of Applied Phys., v. 42, no. 6, May 1971. p. 2219–2230.

    Article  Google Scholar 

  • Smolenskii, G.A. et al. The Curie Temperature of LiNbO3. Phys. Status Solidi, v. 13, no. 2, 1966. p. 309–314.

    Article  Google Scholar 

  • Spencer, E.G. et al. Dielectric Materials for Electrooptic, Elastooptic and Ultrasonic Device Applications. Ieee, Proc, v. 55, no. 12, Dec. 1967. p. 2074–2078.

    Article  Google Scholar 

  • Turner, E.H. High-Frequency Electro-Optic Coefficients of Lithium Niobate. Applied Phys. Letters, v. 8, no. 11, June 1966. p. 303–304.

    Article  Google Scholar 

  • Turner, E.H. et al. Dependence of Linear Electro-Optic Effect and Dielectric Constant on Melt Composition in Lithium Niobate. J. of Applied Phys., v. 41, no. 13, Dec. 1970. p. 5278–5281.

    Article  Google Scholar 

  • Vasilevskaya, A.S. et al. Some Optical Properties of Lithium Niobate Single Crystals. Acad. of Sci., Ussr, Bull., Phys. Ser., v. 31, no. 7, July 1967. p. 1178–1180.

    Google Scholar 

  • Vedam, K. and T.A. Davis. Piezo-and Thermo-Optic Behavior of LiNbO3. Applied Phys. Letters, v. 12, no. 4, Feb. 1968. p. 138–140.

    Article  Google Scholar 

  • Vinogradov, E.A. et al. Electro-Optic Effect in LiNbO3 in the Millimeter Range. Soviet Phys. Solid State, v. 12, no. 3, Sept. 1970. p. 605–607.

    Google Scholar 

  • Warner, A.W. et al. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3M). Acoustical Soc. of America, J., v. 42, no. 6, Dec. 1967. p. 1223–1231.

    Article  MathSciNet  Google Scholar 

  • Warner, J. et al. The Temperature Dependence of Optical Birefringence in Lithium Niobate. Phys. Letters, v. 20, no. 2, Feb. 1966. p. 163–164.

    Article  MathSciNet  Google Scholar 

  • Wemple, S.H. and M. Didomenico. Oxygen-Octahedra Ferroelectrics. II. Electro-Optical and Nonlinear-Optical Device Applications. J. of Applied Phys., v. 40, no. 2, Feb.1969. p. 735–752.

    Article  Google Scholar 

  • Wemple, S.H. et al. Relationship Between Linear and Quadratic Electro-Optic Coefficients in LiNbO3, LiTaO3 and Other Oxygen-Octahedra Ferroelectrics Based on Direct Measurement of Spontaneous Polarization. Applied Phys. Letters, v. 12, no. 6, Mar. 1968. p. 209–211.

    Article  Google Scholar 

  • Yamada, T. et al. Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals. Japan. J. of Applied Phys., v. 6, no. 2, Feb. 1967. p. 151–155.

    Article  Google Scholar 

  • Zhdanova, V.V. et al. Thermal Properties of Lithium Niobate Crystals. Soviet Phys. Solid State, v. 10, no. 6, Dec. 1968. p. 1360–1362.

    Google Scholar 

  • Zook, J.D. et al. Temperature Dependence and Model of the Electro-Optic Effect in LiNbO3, Applied Phys. Letters, v. 11, no. 8, Sept. 1967. p. 159–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 IFI/Plenum Data Corporation

About this chapter

Cite this chapter

Milek, J.T., Neuberger, M. (1972). Lithium Niobate. In: Linear Electrooptic Modular Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6168-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6168-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6170-1

  • Online ISBN: 978-1-4684-6168-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics