Advertisement

1969 Data Index

  • John G. Stevens
  • Virginia E. Stevens

Keywords

Derive Parameter MOSSBAUER Spectrum Phys CHEM Solid MOSSBAUER Effect MOSSBAUER Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. M. Friedman, I. Ahmad, J. Milsted, and D. W. Engelkemeir, Nucl. Phys. A127, 33 (1969).Google Scholar
  2. (2).
    Asilomar, P. 1011.Google Scholar
  3. 69K31 AM-243.
    G M Kalvius, S L Ruby, B D Dunlap, C K Shenoy, D Cohen, and M B Brcosky, Phys Lett 298,489(1969), Mossbauer Isomer Shifts in Am243Google Scholar
  4. (1).
  5. (2).
    J. W. Burton, L. D. Roberts, and J. O. Thomson, Bull. Am. Phys. Soc. 13, 250, Fd15 (1968).Google Scholar
  6. (3).
    Average of Values from Asilomar, P. 1009.Google Scholar
  7. (4).
    Asilomar, P. 1009.Google Scholar
  8. (5).
    R. L. Cohen, Bull. Am. Phys. Soc. 13, 666 GL2 (1968).Google Scholar
  9. 69B34 AU-197.
    R J Borg and D N Pipkorn, J Appl Phys 40,1483(1969), Hyperfine Field of Au197 in Au-Fe AlloysGoogle Scholar
  10. 69C31 AU-197.
    R L Cohen, J H Wernick, K W West, R C Sherwood, and G Y Chin, Phys Rev 188,684(1969), Mossbauer Studies of Au197 in Alloys of Gold with Transition MetalsGoogle Scholar
  11. 69R21 AU-197.
    L D Roberts, D O Patterson, J O Thomson, and R P Levey, Phys Rev 179,656(1969), Solid-State and Nuclear Results from A Measurement of the Pressure Dependence of the Energy of the Resonance Gamma Ray of Au197Google Scholar
  12. 69S15 AU-197.
    P Steiner, E Gerdau, W Hautsch, and D Steenken, Z Phys 221, 281(1969), Determination of the Mean Life of Some Excited Nuclear States by Mossbauer ExperimentsGoogle Scholar
  13. 69T12 AU-197.
    T O Tucker, L D Roberts, C W Nestor, Jr, T A Carlson, and F B Malik, Phys Rev 178,998(1969), Relativistic Self-Consistent-Field Calculation of the Wave Functions, Eigenvalues, Isotope Shifts, and the 6S Hyperfine-Structure Coupling Constant as A Function of Pressure for Metallic Gold in the Wigner-Seitz ModelGoogle Scholar
  14. (1).
    J. E. Thun, S. Törnkvist, F. Falk, and H. Snellman, Nucl. Phys. 67, 625 (1965).Google Scholar
  15. 69B42 BA-133.
    A J F Boyle and G J Perlow, Phys Rev 180,625(1969), Moss-Bauer Effect in 7.2-Yr Ba133Google Scholar
  16. (1).
    W. G. Winn and D. G. Sarantites, Phys. Rev. C1, 215 (1970).Google Scholar
  17. (2).
    A. Alexander and J. P. Lau, Nucl. Phys. A121, 612 (1968).Google Scholar
  18. (3).
    F. T. Avignone, G. D. Frey, and L. D. Hendrick, Phys. Rev. C1, 635 (1970).Google Scholar
  19. (4).
    Asilomar, P. 997.Google Scholar
  20. (5).
    L. E. Campbell and G. J. Perlow, Nucl. Phys. A109, 59 (1968).Google Scholar
  21. 69D04 CS-133.
    H De Waard and S R Reintsema, Phys Lett 29A, 290(1969), the Magnetic Hyperfine Field of Cesium in Iron is PositiveGoogle Scholar
  22. 69D11 CS-133.
    H De Waard and S A Crentje, Proc Roy Soc. Ser A 311, 139 (1969), Observations on Implanted Xenon-133 Sources (Erratum, Op Cit 313, 588(1969))Google Scholar
  23. (1).
    R. B. Begzhanov and Kh. M. Sadykov, Yad. Fiz. 10, 445 (1969).Google Scholar
  24. (2).
    M. Vetter, Z. Physik 225, 336 (1969).Google Scholar
  25. (3).
    Asilomar, P. 1001.Google Scholar
  26. (4).
    Average of Values Given in Asilomar, P. 1002.Google Scholar
  27. (5).
    V. Berg and S. G. Malmskog, Nucl. Phys. A135,401 (1969).Google Scholar
  28. (6).
    Asilomar, P. 1074.Google Scholar
  29. 69A16 DY-161.
    T P Abeles, W G Bos, and P J Ouseph, J Phys Chem Solids 30, 2159(1969), Dy161 Isomer Shifts in Dysprosium CompoundsGoogle Scholar
  30. 69C09 DY-161.
    R L Cchen and H J Guggenheim, Nucl Instrm Methods 71,27 (1969), An Improved Source for Dy161 Mossbauer ExperimentsGoogle Scholar
  31. 69E11 DY-161.
    M Eibschutz and L G Van Uitert, Phys Rev 177, 502(1969), Hyperfine Interactions and Paramagnetic Relaxation of Dysprosium Ions in Dycrc3Google Scholar
  32. 69G44 DY-161.
    C V Gorobehenko, I I Lukashevich, V V Sklyarevskii, and N I Filippov, Pis’Ma Zh Eksp Teor Fiz 9,237(1969)/Jetp Letters 9,139(1969), Observation of Interference of Conversion and of the Photoeffect Upon Absorption of 26-Kev Gamma Quanta by Dy2C3Google Scholar
  33. 69N12 DY-161.
    I Nowik, J Appl Phys 40, 414(1969), Dysprosium-Gadolinium Exchange Interactions in Gadolinium MetalGoogle Scholar
  34. 69S18 DY-161.
    S Sylvester, J E Mcqueen, and D Schroeer, Solid State Commun 7,673(1969), Coulcmb Excitation Mossbauer Effect of the 43.8-Kev State Cf Dy161Google Scholar
  35. 69S22 DY-161.
    I Shidlgvsky and I Mayer, J Phys Chem Solids 30,1207(1969), Mossbauer Spectra of Rare Earth Silicides and GermanidesGoogle Scholar
  36. (1).
    NDS, 1964 Revision.Google Scholar
  37. (2).
    Asilomar, P. 1002.Google Scholar
  38. (3).
    E. Münck, Z. Physik 208, 184 (1968).Google Scholar
  39. 69E12 ER-166.
    M Eibschutz, R L Cohen, and K W West, Phys Rev 173, 572 (1969), Müssbauer Effect of Er166 in Erbium OrthochromiteGoogle Scholar
  40. 69H15 ER-166.
    L L Hirst, E R Seidel, and R L Mossbauer, Phys Lett 29A,673 (1969), Observation of Magnetic Hyperfine Splitting in the Paramagnetic State of Er as A Dilute Impurity in ZrGoogle Scholar
  41. 69P05 ER-166.
    G Petrich, Z Phys 221,431(1969), Untersuchungen an Magnetischen Phasen Intermetallischer ErbiumverbindungenGoogle Scholar
  42. 69R10 EP-166.
    R A Reese and R G Barnes, J Appl Phys 40,1493(1969), Mossbauer-Effect Study of Single-Crystal HolmiumGoogle Scholar
  43. 69W11 ER-166.
    J W Wiggins and J C Walker, Phys Rev 177,1786(1969), Measurement of the Nuclear Moments of the First-Excited State of Er170 by the Mossbauer EffectGoogle Scholar
  44. (1).
    L. Funk, et al. Nucl. Phys. A118, 97 (1968).Google Scholar
  45. (2).
    Asilomar, P. 1003.Google Scholar
  46. 69W15 ER-167.
    R M Wilenzick, K A Hardy, J A Hicks, and W R Owens, Phys Lett 308, 167(1969), Mossbauer Effect in Er167 Following Coulomb ExcitationGoogle Scholar
  47. (1).
    F. Schussler and J. A. Pinston, Nucl. Phys. A123, 348 (1969).Google Scholar
  48. (2).
    F. W. Richter, J. Schutt and D. Wiegandt, Z. Physik 213, 202 (1968).Google Scholar
  49. (3).
    R. Avida, Y. Dar, P. Gilad, M. B. Goldberg, K. H. Speidel, and Y. Wolfson, Nucl. Phys. A127, 412 (1969).Google Scholar
  50. 69W11 ER-170.
    J W Wiggins and J C Walker, Phys Rev 177,1786(1969), Measurement of the Nuclear Moments of the First-Excited State of Er170 by the Mossbauer EffectGoogle Scholar
  51. (1).
    E. P. Grigorev et al., Bull. Acad. Sci. Ussr, Phys. Ser. 32, 723 (1969).Google Scholar
  52. (2).
    Asilomar, P. 1071.Google Scholar
  53. (3).
    Average of Values Found in Asilomar, P. 1000.Google Scholar
  54. (4).
    Asilomar, P. 1000.Google Scholar
  55. (5).
    W. Müller, A. Stedel, and H. Walther, Z. Physik 183, 303 (1965).Google Scholar
  56. (6).
    G. Guthöhrlein, Z. Physik 214, 332 (1968).Google Scholar
  57. (7).
    R. Winkler, Phys. Letters 16, 156 (1965).Google Scholar
  58. 69A26 EU-151.
    U Atzmony, E R Bauminger, A Mustachi, I Nowik, S Ofer, and M Tassa, Phys Rev 179, 514(1969), Anisotropy of the Europium-Iron Exchange Interaction in Rare-Earth Iron GarnetsGoogle Scholar
  59. 69B09 EU-151.
    R J Bullock, N R Large, I L Jenkins, A G Wain, P Glent-Worth, and D A Newton, J Inorg Nucl Chem 31,1929(1969), the Preparation of Gadolinium-151 for Mossbauer Spectrometry of Eurcpium-151Google Scholar
  60. 69B17 EU-151.
    O Berkooz, J Phys Chem Solids 30, 1763(1969), I Somer Shifts of Eu151 in Divalent Europium CompounosGoogle Scholar
  61. 69B79 EU-151.
    E R Bauminger, I Nowik, and S Ofer, Phys Lett 29A,328 (1969), Experimental Evidence for A Canted Spin Structure in Substituted Rare-Earth Iron GarnetsGoogle Scholar
  62. 69C05 EU-151.
    R L Cohen, S Hufner, and K W West, Phys Rev 184,263(1969), First-Order Phase Transition in Europium MetalGoogle Scholar
  63. 69C10 EU-151.
    R L Cohen, S Hufner, and K W West, Phys Lett 28A,582 (1969), A First Order Phase Transition in Europium MetalGoogle Scholar
  64. 69C11 EU-151.
    R L Cohen, S Hufner, and K W West, J Appl Phys 40,1366 (1969), Anomalous Critical-Point Behavior in Europium MetalGoogle Scholar
  65. 69021 EU-151.
    E Catalano, R G Bedford, V G Silveira, and H H Wickman, Phys Chem Solids 30,1613(1969), Nonstoichiometry in Rare-Earth FluoridesGoogle Scholar
  66. 69C27 EU-151.
    G Crecelius and S Hufner, Phys Lett 30A, 124(1969), Hyper-Fine Structure Anomaly in Eu151Google Scholar
  67. 69E20 EU-151.
    G J Ehnholm, T E Katila, O V Lounasmaa, P Reivari, and G M Kalvius, Mossbauer Studies of Several Eu2+ Compounds Below 1K, In “Proceedings of the Eleventh International Conference on Low Temperature Physics. St Andrews, 1968,” Edited by J F Allen, D M Finlayson, and D M Mccall (University of St Andrews Printing Dept, St Andrews, Scotland, 1969), Vol 1, P 528Google Scholar
  68. 69G30 EU-151.
    A A Gomes, R M Xavier, and J Danon, Chem Phys Lett 4,239 (1969), On the Correlation Between the Mossbauer Parameters and the Magnetic Properties of Europium ChalcogenidesGoogle Scholar
  69. 69K27 EU-151.
    G M Kalvius, G K Shenoy, G J Ehnholm, T E Katila, O V Lounasmaa, and P Reivari, Phys Rev 187,1503(1969), Quadrupole Moment of the 21.6-Kev State of Eu151Google Scholar
  70. 69L02 EU-151.
    N R Large, R J Bullock, P Glentworth, and D A Newton, Phys Lett 29A, 352(1969), Isomer Shift of the Mossbauer Spectrum of Euf3(Eu151)Google Scholar
  71. 69L11 EU-151.
    M Loewenhaupt and S Hufner, Phys Lett 30A,309(1969), Hyper-Fine Interaction in Europium Tin Intermetallic CompoundsGoogle Scholar
  72. 69R25 EU-151.
    M Richter, W Henning, and P Kienle, Z Phys 218,223(1969), Magnetic Moment and Change of the Mean Square Charge Radius of the 83.4 Kev Rotational State in Eu153Google Scholar
  73. 69S22 EU-151.
    I Shidlovsky and I Mayer, J Phys Chem Solids 30,1207(1969), Mossbauer Spectra of Rare Earth Silicides and GermanidesGoogle Scholar
  74. 69S33 EU-151.
    M Stachel, S Hufner, G Crecelius, and D Quitmann, Phys Rev 186,355(1969), Hyperfine Interactions in Europium Iron GarnetGoogle Scholar
  75. (1).
    J. Ungrin and M. W. Johnson, Nucl. Phys. A127, 353 (1969).Google Scholar
  76. (2).
    K. Muhlbauer, Z. Physik 230, 18 (1970).Google Scholar
  77. (3).
    Average of Values Found in Asilomar, P. 1071.Google Scholar
  78. (4).
    Average of Values Found in Asilomar, P. 1000.Google Scholar
  79. (5).
    Asilomar, P. 1000.Google Scholar
  80. 69A08 EU-153.
    H Armon, E R Bauminger, J Hess, A Mustachi, and S Ofer, Phys Lett 28A,528(1969), Hyperfine Interactions of Eu Nuclei in Smfe7, Sm2Co17 and Sm2Ni17Google Scholar
  81. 69B70 EU-153.
    E R Bauminger, I Nowik, and S Ofer, Phys Lett 29A,199 (1969), Electric Field Gradients and Crystalline Fields in Europium Iron GarnetGoogle Scholar
  82. 69R25 EU-153.
    M Richter, W Henning, and P Kienle, Z Phys 218,223(1969), Magnetic Moment and Change of the Mean Square Charge Radius of the 83.4 Kev Rotational State in Eu153Google Scholar
  83. (1).
    T. E. Ward, P. H. Pile, and P. K. Kuroda, Nucl. Phys. A134, 60 (1969).Google Scholar
  84. (2).
    Asilomar, P. 991.Google Scholar
  85. (3).
  86. (4).
    M. Rosenberg, S. Mandache, H. Niculescu-Majewska, G. Filotti, and V. Gomolea, Phys. Letters 31A, 84 (1970).Google Scholar
  87. (5).
    J. O. Artman, A. H. Muir, and H. Wiedersich, Phys. Rev. 173, 337 (1968).Google Scholar
  88. (6).
    G. D. Sprouse and S. S. Hanna, Nucl. Phys. A137, 658 (1969).Google Scholar
  89. 69A03 FE-57.
    A V Ablov, V I Gol’Danskii, R A Stukan, K I Turta, and V N Zubarev, Dokl Nauk Sssr 186,850(1969)/Soviet Phys-Dokl 186, 339(1969), Influence of Substituents on the Parameters of the Gamma-Resonance Spectra in Octahedral Complexes of Iron (II) with Nitrogen-Containing LigandsGoogle Scholar
  90. 69A06 FE-57.
    R Alben, J Phys Soc Jap 26,261(1969), Theory of Magneticcipole Excitations in Ferrous ChlorideGoogle Scholar
  91. 69A07 FE-57.
    A Apostolov and R Chevalier, Dokl Bolg Akad Nauk 22,987 (1969), Assay of Magnetic Properties of Fecrcu204 by Means of Thermomagnetic Measurements, Mossbauer Effect and Neutron DiffractionGoogle Scholar
  92. 69A10 FE-57.
    L A Alekseev, P L Gruzin, and V I Sheshin, Dokl Akad Nauk Sssr 184,629(1969)/Soviet Phys-Dokl 184,53(1969), the Use of the Nuclear Gamma Resonance Method to Determine the Mean Square Displacements of the Atoms of Different Kinds in Substitutional Solid SolutionsGoogle Scholar
  93. 69A11 FE-57.
    H Asand, J Phys Soc Jap 27,542(1969), Magnetism of Gamma Fe-Ni Invar Alloys with Low Nickel ConcentrationGoogle Scholar
  94. 69A15 FE-57.
    A A Abdullaev, L M Belyaev, T V Dmitrieva, G F Dobrzhanskii, V V Ilyukhln, and I S Lyubutin, Kristallografiya 14 473(1969)/Soviet Phys-Crystallogr 14,389(1969), Distribution of Iron and Tin Impurity Atoms in Vanadium Pentoxide as Studied with the Mossbauer EffectGoogle Scholar
  95. 69A18 FE-57.
    M Avrahami and R M Golding, N Z J Sci 12,594(1969), Mossbauer Spectroscopy as A Tool in Analytical ChemistryGoogle Scholar
  96. 69A22 FE-57.
    G A Adadurov, G V Novikov, N S Ovanesyan, V A Trukhtanov, and V M Shekhtman, Fiz Tverd Tela 11, 1988(1969)/Soviet Phys-Solid State 11,1601(1970), Nuclear Gamma Resonance Study of Structure Transformations by Shock CompressionGoogle Scholar
  97. 69A23 FE-57.
    G Asti, G Albanese, and C Bucci, Phys Rev 184,260(1969), Frequency Modulation of Resonant Gamma Rays in Iron Foils: Influence of the State of MagnetizationGoogle Scholar
  98. 69A25 FE-57.
    A I Akiem’Ev, O N Generalov, N A Rozanov, E P Stepanov, and M L Kharakhan, Use of Multiline Mossbauer Sources for the Phase Analysis of Iron-Containing Ores, In “Issled Fiz Svoistv Gorn Porod,” Edited by A D Sukhanov, (A D Mosk Gorn Inst, Mcscow, 1969), P 13 (In Russian)Google Scholar
  99. 69A26 FE-57.
    U Atzmony, E R Bauminger, A Mustachc, I Nowik, S Ofer, and M Tassa, Phys Rev 179,514(1969), Anisotropy of the Europium-Iron Exchange Interaction in Rare-Earth Iron GarnetsGoogle Scholar
  100. 69B01 FE-57.
    S Blow, J Phys Chem Solids 30,1549(1969), A Mossbauer Effect Study of the Metallic Compounds U6Fe and Pu6Fe, and the Relevance of the Results to Theories of the Behaviour of Actinioe MetalsGoogle Scholar
  101. 69B02 FE-57.
    T Birchall, N N Greenwood, and A F Reid, J Chem Soc A 1969, 2382(1969), Mossbauer, Electron Spin Resonance, Optical, and Magnetic Studies of Iron(III) in Oxide Host LatticesGoogle Scholar
  102. 69B03 FE-57.
    M Bcrnaz, G Filoti, A Gelberg, and M Rosenberg, Proc Phys Soc, London (Solid State Phys), Ser 2 2,1008(1969), Mossbauer Study of Iron ManganitesGoogle Scholar
  103. 69B04 FE-57.
    K Burger, A Vertes, and I N Czako, Magy Kem Foly 75,257 (1969)/Acta Chim (Budapest) 63,115(1970), the Study of Solvation of Iron (II) Chloride with the Aid of the Mossbauer EffectGoogle Scholar
  104. 69B05 FE-57.
    W G Berger, Z Phys 225,139(1969), Mossbauereffekt an Fe57 Nach Neutroneneinfang in Fe56Google Scholar
  105. 69B06 FE-57.
    S I Berul, B N Veits, and A M Ioffe, Latv Psr Zinat Akad Vestis, Fiz Teh Zinat Ser No 2,66(1969), Sodium Metaphos-Phate-Ferric Oxide and Potassium Metaphosphate-Ferric Oxide Systems Studied by Means of the Mossbauer Effect (In Russian)Google Scholar
  106. 69B07 FE-57.
    V G Bhide and S K Date, J Inorg Nucl Chem 31,2397(1969), Mossbauer Effect for Fe57 in Sn02Google Scholar
  107. 69B10 FE-57.
    D B Brown and D F Shriver, Inorg Chem 8,37(1969), Structures and Solid-State Reactions of Prussian Blue Analogs Containing Chromium, Manganese, Iron, and CobaltGoogle Scholar
  108. 69B12 FE-57.
    T Birchall and N N Greenwood, J Chem Scc A 1969,286(1969), the Mossbauer Spectra and Structure of Some 1,2-Dithiolene Complexes Cf IronGoogle Scholar
  109. 69B13 FE-57.
    G M Bancroft, M J Mays, and B E Prater, Chem Commun 1969, 39(1969), Partial Mossbauer Centre Shifts in Low-Spin Irun(II) Compounds: A Correlation with the Spectrochemical SeriesGoogle Scholar
  110. 69B15 FE-57 Sh Sh Bashkiruv, G I Zharkova, G D Kurbatcv, R A Manapov, E K Sadykov, and V A Chistyakov, Zh Strukt Khim 10,465 (1969)/J Struct Chem 10,383(1969), Fe57 Mossbauer Spectra in Febr2 and Fei2Google Scholar
  111. 69B16 FE-57.
    B V Borshagovskii, V I Gol’Danskii, S P Gubin, L I Denisovich, and R A Stukan, Teor Eksp Khim 5,372(1969)/Theor Exp Chem, Gamma-Resonance Spectroscopic Study of Compounds Containing A Pi-Allyliron Tricarbonyl GroupGoogle Scholar
  112. 69B19 FE-57.
    V A Bokov, G V Popov, and S I Yushchuk, Fiz Tverd Tela 11, 1194(1969)/Soviet Phys-Solid State 11,1607(1969), Role of Vanadium(V) Ions in Indirect Exchange Reactions in Yttrium-Calcium-Iron-Vanacium GarnetsGoogle Scholar
  113. 69B21 FE-57.
    B S Bokshtein, Yu B Voitkuvskii, and N I Vinichenko, Izv Vyssh Ucheb Zaved, Chern Met 12,No 5,110(1969), Aging of Heat-Resisting Alloys Studied by the Mossbauer Effect (In Russian)Google Scholar
  114. 69B24 FE-57.
    S Blow, Phys Lett 29A,676(1969), Mossbauer Spectra of Pufe2 Contained in A Perspex MediumGoogle Scholar
  115. 69B25 FE-57.
    L H Bowen, S B Weed, and J G Stevens, Amer Mineral 54,72 (1969), Mossbauer Study of Micas and Their Potassium-Depleted ProductsGoogle Scholar
  116. 69B28 FE-57.
    G M Bancroft and J M Dubery, J Chem Phys 50,2264(1969), Mossbauer Spectrum of ((Ch3 )4N)2Fecl4Google Scholar
  117. 69B29 FE-57.
    A N Buckley, G V H Wilson, and K S Murray, Solid State Commun 7,471(1969), Relaxation Effects in the Mossbauer Spectra of Some Dimeric Ircn CompoundsGoogle Scholar
  118. 69B31 FE-57.
    K Burger, L Korecz, and G Bor, J Inorg Nucl Chem 31,1527 (1969), Chemistry of Mixed Ligand Complexes V. The Mossbauer Investigation of Polynuclear Mixed Iron (O) Carbonyl ComplexesGoogle Scholar
  119. 69B32 FE-57.
    V A Bokov, S I Yushchuk, and G V Popov, Solid State Commun 7,373(1969), Non-Equivalency of the Octahedral-Site Fe3+ Ions in Substituted Ferrite-GarnetGoogle Scholar
  120. 69B33 FE-57.
    E Banks and M Mizushima, J Appl Phys 40,1408(1969), Mossbauer Study of Perovskites of Composition Srfe(1-X)Cr(X)O(3-Y)Google Scholar
  121. 69B35 FE-57.
    V A Bokov, G V Popov, and S I Yushchuk, Fiz Tverd Tela 11, 593(1969)/Soviet Phys-Solid State 11,479(1969), Effect of the Number of Iron(III) Ion Exchange Bonds on the Effective Magnetic Fields on Nuclei Cf These Ions in Y(3-2X)Ca (2X)Fe(5-X)V(X)012 GarnetsGoogle Scholar
  122. 69B36 FE-57.
    L M Belyaev, I S Lyubutin, B V Mill, and V A Povitskii, Fiz Tverd Tela 11, 795(1969)/Soviet Phys-Solid State 11,644 (1969), Electric Quadrupole Interactions for Octahedral Iron(III) Ions in GarnetsGoogle Scholar
  123. 69B37 FE-57.
    G N Belozerskii, V N Gittsovich, and A N Murin, Pis’Ma Zh Eksp Tegr Fiz 9,352(1969)/Jetp Letters 9,207(1969), Moss-Bauer Effect in Indium-Gallium Iron GarnetGoogle Scholar
  124. 69B40 FE-57.
    S I Bondarevskii, V T Shipatgv, P P Seregin, and K V Perepech, Fiz Tverd Tela 11,2388(1969)/Soviet Phys-Solid State 11,1929(1970), Use of A Black Absorber to Measure the Mossbauer Coefficient in Cobalt OxidesGoogle Scholar
  125. 69B43 FE-57.
    V F Belov, P P Kirichok, G S Podval’Nykh, T A Khimich, E V Korneev, and D E Bondarev, Fiz Tverd Tela 11,2675(1969)/ Soviet Phys-Solid State 11,2164(1970), Local Distortions of the Symmetry in the Neighborhood of Fe(3+)Ions in Magnesium-Manganese FerritesGoogle Scholar
  126. 69B45 FE-57.
    V A Bokov, G V Novikov, V A Trukhtanov, and S I Yushchuk, Fiz Tverd Tela 11,2871(1969)/Soviet Phys-Solid State 11, 2324(1970), Mossbauer Effect for Fe57 Nuclei in Bi2Fe409Google Scholar
  127. 69B49 FE-57.
    R R Bukrey, P F Kenealy, G B Beard, and H O Hooper, J Appl Phys 40,4289(1969), Study of Structure and Crystallite Formation in the Glass System Fe203-Na20-B203 by Use of the Mossbauer EffectGoogle Scholar
  128. 69B50 FE-57.
    V F Belov, T A Khimich, E V Korneev, V V Korovushkin, and L M Letyuk, Fiz Tverd Tela 11,3338(1969)/Soviet Phys-Solid State 11,2705(1970), Mossbauer-Effect Study of Aging Phenomena in Copper FerriteGoogle Scholar
  129. 69B52 FE-57.
    G M Bancroft, M J Mays, and B E Prater, Chem Phys Lett 4, 248(1969), the Single Line Mossbauer Spectrum of (Fe(Nh3)6)2+Google Scholar
  130. 69B53 FE-57.
    G M Bancroft, K G Dharmawardena, and A G Maddock, J Chem Soc A 1969,2914(1969), Mossbauer Studies of the Decomposition of Potassium. Trisoxalatoferrate(III) Part II.Google Scholar
  131. 69B55 FE-57.
    K Burger, L Korecz, S Papp, and B Mohai, Radiochem Radioanal Lett 2,153(1969), Chemistry of Mixed Ligand Complexes. VI. The Mossbauer Investigation of Prussiate Type Iron Cyanide Mixed ComplexesGoogle Scholar
  132. 69B56 FE-57.
    T Birchall, Can J Chem 47,4563(1969), Mossbauer Spectra of Toluene-3,4-Dithiolene and Cis-1,2-Bistrifluoromethyl-1,2-Ethylenedithiolene Complexes of Iron(III)Google Scholar
  133. 69B58 FE-57.
    V G Bhide and B R Tambe, J Mater Sci 4,955(1969), Investigation of the Mgo:Fe System Using the Mossbauer EffectGoogle Scholar
  134. 69B59 FE-57.
    V I Belyakov, A V Kalyamin, B G Lur’E, L A Marshak, A N Murin, and S B Tomilov, Fiz Tverd Tela 11,3600(1969)/Soviet Phys-Solid State, Mossbauer Study of the (Co, Fe)304 SystemGoogle Scholar
  135. 69B61 FE-57.
    G M Bancroft, M J Mays, and B E Prater, Discuss Faraday Soc No 47,136(1969), Bonding and Structure in Fe(II) Low-Spin Compounds Using the Mossbauer EffectGoogle Scholar
  136. 69B64 FE-57.
    K Burger, Kem Kozlem 32,69(1969), Mossbauer Investigation of Mixed Ligand Coordination Compounds (In Hungarian)Google Scholar
  137. 69B65C FE-57.
    S C Bhargava and P K Iyengar, Mossbauer Studies of (Co,Zn) Fe204, In “Proc Nucl Phys Solid State Phys Symp, 13Th (Department of Atomic Energy, Bombay, 1969), Vol 3, P 450Google Scholar
  138. 69B72 FE-57.
    M Bacmann, E F Bertaut, A Blaise, R Chevalier, and G Roult, J Appl Phys 40,1131(1969), Magnetic Structures and Properties of Ufe04Google Scholar
  139. 69B74 FE-57.
    G M Bancroft, M J Mays, and B E Prater, Chem Commun 1969, 585(1969), A New Route to Molecular Nitrogen ComplexesGoogle Scholar
  140. 69B75 FE-57.
    G M Bancroft and R G Burns, Mineral Soc Amer Spec Pap 2 137(1969), Mossbauer and Absorption Spectral Study of Alkali AmphibolesGoogle Scholar
  141. 69B76 FE-57.
    G M Bancroft and P G L Williams, Mineral Soc Amer Spec Pap 2,59(1969), Mossbauer Spectra of UmphacitesGoogle Scholar
  142. 69B77 FE-57.
    T Birchall, Can J Chem 47,1351(1969), An Investigation of Some Iron Halide Complexes by Mossbauer SpectroscopyGoogle Scholar
  143. 69B78 FE-57.
    G M Bancroft, Chem Geol 5,255(1969/1970), Quantitative Site Population in Silicate Minerals by the Mossbauer EffectGoogle Scholar
  144. 69B79 FE-57.
    E R Bauminger, I Nowik, and S Ofer, Phys Lett 29A,328 (1969), Experimental Evidence for A Canted Spin Structure in Substituted Rare-Earth Iron GarnetsGoogle Scholar
  145. 69B80 FE-57.
    F F Brown and A M Pritchard, Earth Planet Sci Lett 5,259 (1969), the Mossbauer Spectrum of Iron OrthoclaseGoogle Scholar
  146. 69B81 FE-57.
    W G Berger and G Czjzek, Raciation Effects in Ordered Fe-Al Alloys: Mossbauer Experiments Following Neutron Capture, Kernforschungszentrum Karlsruhe No 932, Karlsruhe, Germany, Feb, 1969Google Scholar
  147. 69B83 FE-57.
    L Broussard, J Phys Chem 73,1848(1969), the Disproportionation of WustiteGoogle Scholar
  148. 69C02 FE-57.
    E R Czerlinsky, Phys Status Solidi 34,483(1969), Cation Distribution in Gallium-Substituted Yttrium Iron Garnets by Mossbauer Effect SpectroscopyGoogle Scholar
  149. 69C03 FE-57.
    W R Cullen, D A Harbourne, B V Liengme, and J R Sams, Inorg Chem 8,1464(1969), Five-Coordinate Iron Carbonyl Complexes with Flucrocarbon-Bridged LiganosGoogle Scholar
  150. 69C04 FE-57.
    J Chappert, R B Frankel, A Misetich, and N A Blum, Phys Lett 28B,406(1969), Quadrupole Moment of Fe57MGoogle Scholar
  151. 69C07 FE-57.
    M Cox, B W Fitzsimmons, A W Smith, L F Larkworthy, and K A Rogers, Chem Commun 1969,183(1969), A Correlation Between Mossbauer Spectra and Paramagnetic Measurements for High-Spin Iron(III) Compounds: the Case of Chlorobispentane-2, 4-Dicnatoiron(III)Google Scholar
  152. 69C12 FE-57.
    J Chappert, R B Frankel, A Misetich, and N A Blum, Phys Rev 179,578(1969), Multiple Charge States, Hyperfine Interactions, and Relaxation Processes of Fe in Co57-D0Ped MgoGoogle Scholar
  153. 69C15 FE-57.
    I A Cohen, J Amer Chem Soc 91,1980(1969), the Dimeric Nature of Hemin HydroxidesGoogle Scholar
  154. 69C16 FE-57.
    D R Cousins and K G Dharmawardena, Nature 223,732(1969), Use Cf Mossbauer Spectroscopy in the Study of Ancient PotteryGoogle Scholar
  155. 69C20 FE-57.
    J M D Coey, G A Sawatzky, and A H Morrish, Phys Rev 184,334 (1969), Magnetization and Temperature Dependence of the Mossbauer Spectrum Shift for an InsulatorGoogle Scholar
  156. 69C22 FE-57.
    J S Carlow and R E Meads, Proc Phys Soc, London (Solid State Phys), Ser 2 2,2120(1969), Mossbauer Measurement of Curie Temperatures and X-Ray Measurement of Lattice Parameters of Some Iron-Palladium-Hydrogen AlloysGoogle Scholar
  157. 69C25 FE-57.
    L Cser, I Gladkih, L Keszthelyi, D L Nagy, and I Vincze, Decomposition of the Mossbauer Spectrum of Magnetite at 4.2K, Kfki Report 28, Budapest, Hungary, Oct, 1969Google Scholar
  158. 69C26 FE-57.
    J F Cavanagh, Phys Status Solidi 36,657(1969), Mossbauer Effect for Fe57 in Cocl2 and Cof2Google Scholar
  159. 69C32 FE-57.
    W S Caughey, H Eberspaecher, W H Fuchsman, S Mccoy, and J O Alben, Ann N Y Acad Sci 153,722(1969), Pi-Interactions in Metalloporphyrins and HemeproteinsGoogle Scholar
  160. 69D01 FE-57.
    J M Daniels and A Rosencwaig, J Phys Chem Solids 30,1561 (1969), Mussbauer Spectroscopy of Stoichiometric and Non-Stoichiometric MagnetiteGoogle Scholar
  161. 69D03 FE-57.
    A N Delgass, R L Garten, and M Boudart, J Chem Phys 50,4603 (1969), Mossbauer Effect of Exchangeable Ferrous Ions in Y Zeclite and Dowex 50 ResinGoogle Scholar
  162. 69D05 FE-57.
    H G Crickamer, R W Vaughn, and A R Champion, Accounts Chem Res 2,40(1969), High-Pressure Mossbauer Resonance Studies with Iron-57Google Scholar
  163. 69D06 FE-57.
    I Dezsi, A Vertes, and L Kiss, J Radioanal Chem 2,183 (1969), Mossbauer Study of the Corrosion Products of IronGoogle Scholar
  164. 69D08 FE-57.
    H G Drickamer, G K Lewis, Jr, and S C Fung, Science 163,885 (1969), the Oxidation State of Iron at High PressureGoogle Scholar
  165. 69D09 FE-57.
    R J Dosser, W J Eilbeck, A E Underhill, P R Edwards, and C E Johnson, J Chem Soc A 1969,810(1969), Magnetic and Mossbauer Studies of A 5T-1A Equilibrium in Some Iron(II)-2-(2-Pyridyl) Imidazole ComplexesGoogle Scholar
  166. 69D10 FE-57.
    J F Duncan, C R Kanekar, and K F Mok, J Chem Soc A 1969,480 (1969), Some Trinuclear Iron(III) Carboxylate ComplexesGoogle Scholar
  167. 69D13 FE-57.
    I Ya Dekhtyar, P S Nizin, and R G Fedchenko, Fiz Metal Metalloved 27,431(1969)/Phys Metals Mttallogr, Effect of Quenching on the Mossbauer Spectrum in Dilute Solid Solutions (Iron-Containing Palladium)Google Scholar
  168. 69D14 FE-57.
    W N Delgass, R L Garten, and M Boudart, J Phys Chem 73, 2970(1969), Dehydration and Adsorbate Interactions of Fe-Y Zeolite by Mossbauer SpectroscopyGoogle Scholar
  169. 69D15 FE-57.
    I Dezsi, A Balazs, and B Molnar, J Inorg Nucl Chem 31,1661 (1969), Mossbaur Study of Phtalocyamneiron(II) and Phtalocyan Inechloroiron Down to 4.8KGoogle Scholar
  170. 69D17 FE-57.
    I Ya Dekhtyar, E G Madatova, P S Nizin, and R G Fedchenko, Ukr Fiz 2H (Russ Ed) 14,924(1969)/Ukr Phys J, Paramagnetic Susceptibility, Electrical Resistivity, and the Mossbauer Effect in Alloys Based on Platinum Studied During Plastic DefgrmaticnGoogle Scholar
  171. 69C20 FE-57.
    J T Oehn and L N Mulay, J Inorg Nucl Chem 31,3103(1969), Electronic Structure of Metallocenes II Mossbauer Measurements and Molecular Orbital Descriptions of FerroceneGoogle Scholar
  172. 69C22 FE-57.
    L M Dautov and C K Kaipov, Izv Akad Nauk Kaz Ssr, Ser Fiz-Mat 7,No 4,1(1969), Simultaneous X-Ray and Mossbauer Spectra, I. (in Russian)Google Scholar
  173. 69D25 FE-57.
    G De Alti, V Galasso, A Bigctto, and G Costa, Inorg Chim Acta 3,533(1969), M O Studies for Transition Metal Complexes with Polydentate Ligands. II. Electronic Structure and Related Properties of Fe(II) (Dmg)2L2 and Co(III)(Dmg)2 L2 ComplexesGoogle Scholar
  174. 69D27 FE-57.
    C Do-Dinh, E F Bertaut, and J Chappert, J Phys (Paris) 30, 566(1969), Etude Par Rayons X Diffraction Neutrunique Et Effet Mossbauer Du Monoferrite De Baryum Fe203-BaoGoogle Scholar
  175. 69D28 FE-57.
    J V Cilorenzo and M Kaplan, Chem Phys Lett 3,216(1969), Phase Transformations in Doped Ice: Concentration Effect in Frozen Ferrous SolutionsGoogle Scholar
  176. 69E01 FE-57.
    D J Elias and J W Linnett, Trans Faraday Soc 65,2673(1969), Oxidation of Metals and Alloys Part 3. Mossbauer Spectrum and Structure of WustiteGoogle Scholar
  177. 69E03 FE-57.
    A N Ermakcv, S M Aleksandrov, V V Kurash, and T V Malysheva, Geokhimiya 1969,1217(1969), Gamma-Resonance Spectroscopic Study of Magnesium and Iron Isomorphism in Borates of the Ludwigite-Vonsenite Series (In Russian)Google Scholar
  178. 69E04 FE-57.
    A A Efimov, V T Shipatov, and P P Seregin, Fiz Tverd Tela 11,3032(1969)/Soviet Phys-Solid State 11,2462(1970), Moss-Bauer Effect for Iron Impurities in C0304Google Scholar
  179. 69E05 FE-57.
    M Eibschutz, L Holmes, H J Guggenheim, and H J Levinstein, J Appl Phys 40,1312(1969), Magnetization and Hyperfine Structure of Fe57 in Csfef3Google Scholar
  180. 69E07 FE-57.
    M Eibschutz, U Ganiel, and S Shtrikman, J Mater Sci 4,574 (1969), Mossbauer and Magnetic Studies of Dicalcium Ferrite (Ca2Fe205)Google Scholar
  181. 69E09 FE-57.
    L M Epstein and C K Straub, Inorg Chem 8,453(1969), Mossbauer Spectra of Some Ferric HyoroxamatesGoogle Scholar
  182. 69E10 FE-57.
    L M Epstein and D K Straub, Inorg Chem 8,560(1969), Mossbauer Spectra of Some Bis(N,N-Disubstituted Dithiocarbamato)Iron(III) CompoundsGoogle Scholar
  183. 69E14 FE-57.
    L M Epstein and D K Straub, Inorg Chem 8,784(1969), Mossbauer Spectra of Some Tris(N,N-Disubstituted Dithiocarbamato)Iron(III) CompoundsGoogle Scholar
  184. 69E15 FE-57.
    B J Evans and S S Hafner, J Appl Phys 40,1411(1969), Fe57 Hyperfine Fields in Magnetite (Fe304)Google Scholar
  185. 69E16 FE-57.
    U Erich, E Kankeleit, H Prange, and S Hufner, J Appl Phys 40,1491(1969), Hyperfine Fields in Nickel Alloys Measured by the Ni61 Mossbauer EffectGoogle Scholar
  186. 69E17 FE-57.
    H Eicher and A Trautwein, J Chem Phys 50,2540(1969), Electronic Structure and Quadrupole Splittings of Ferrous Iron in HemcglcbinGoogle Scholar
  187. 69E19 FE-57.
    Y Endoh, Y Ishikawa, and T Shinjo, Phys Lett 29A,310(1969), Iron Impurities in the Ant Iferromagnetic Manganese Copper (Mn(0.95)Cu(0.05)) AlloyGoogle Scholar
  188. 69F01 FE-57.
    S Foner, A J Freeman, N A Blum, R B Frankel, E J Mcniff, Jr, and H C Praddaude, Phys Rev 181,863(1969), High-Field Studies of Band Ferromagnetism in Fe and Ni by Mossbauer and Magnetic Moment MeasurementsGoogle Scholar
  189. 69F02 FE-57.
    V Fano and I Ortalli, Phys Status Solidi 33,K109(1969), Study of Iron Ions in Fe57 Doped Te and Pbte Using the Mossbauer EffectGoogle Scholar
  190. 69F04 FE-57.
    T Fujita, A Ito, and K Ono, J Phys Soc Jap 27,1143(1969), the Mossbauer Study of the Ferrous Ion in Some Anhydrous Dihalices of Iron-Group ElementsGoogle Scholar
  191. 69F05 FE-57.
    G H Frischat and G Tomandl, Glastech Ber 42,182(1969), Mossbaueruntersuchung Von Wertigkeitsverhaltnis Und Koordination Des Eisens in S IlicatglasernGoogle Scholar
  192. 69F08 FE-57.
    J M Friedt and J P Adloff, Inorg Nucl Chem Lett 5,163 (1969), Mossbauer Spectrum of Co57: Cof3Google Scholar
  193. 69F09 FE-57.
    S C Fung and H G Drickamer, Proc Nat Acad Sci Usa 62,38 (1969), the Effect of Pressure on the Oxidation State of Iron, IV. Thiocyanate and Isothiocyanate LignadsGoogle Scholar
  194. 69F10 FE-57.
    D W Forester and N C Koon, J Appl Phys 40,1316(1969), Mossbauer Investigation of Metamagnetic Feco3Google Scholar
  195. 69F11 FE-57.
    J M Friedt and J P Adloff, C R Acad Sci, Ser C 268, 1342(1969), Spectres Mossbauer De Fe57 Dans Cof2 Et Cof2, 4H20Google Scholar
  196. 69F12 FE-57.
    E Frank and C R Abeledo, J Inorg Nucl Chem 31,989(1969), Mossbauer Effect in Nitrosyl Iron(II) Bis-DithiocarbamatesGoogle Scholar
  197. 69F15 FE-57.
    R B Frankel, Y Chow, L Grodzins, and J Wulff, Phys Rev 186, 381(1969), Nuclear Zeeman Effect in W182 in IronGoogle Scholar
  198. 69F16 FE-57.
    E Fluck and K F Brauch, Z Anorg Allg Chem 364,107(1969), Mossbauer-Spektren Von Eisen(II)-Kqmplexen Mit Einem Vierzahmgen LigandenGoogle Scholar
  199. 69F17 FE-57.
    C W Frank, G De Pasquali, and H G Drickamer, J Phys Chem Solids 30,2321(1969), the Effect of Pressure on the Isomer Shift of Fe57(Co57) as an Impurity in Znse, Znte, and CoteGoogle Scholar
  200. 69F18 FE-57.
    J M Friedt, and L Asch, Radiochim Acta 12,208(1969), Spectroscopie Mossbauer Du Fer 57 Forme Par Capture Electrcnique Du Cobalt 57 Dans Les Oxalates De Cobalt(II) Et Le Trioxalatgcobaltate(III) De PotassiumGoogle Scholar
  201. 69F19 FE-57.
    J Fenger, Nucl Instrum Methods 69,268(1969), Design of A Simple Mossbauer Resonance CounterGoogle Scholar
  202. 69F20 FE-57.
    A G Freeman and J P Larkindale, J Chem Soc A 1969,1307 (1969), Preparation, Mossbauer Spectra, and Structure of Intercalation Compounds of Boron Nitride with Metal HalidesGoogle Scholar
  203. 69G01 FE-57.
    P K Gallagher, J B Macchesney, and R C Sherwood, J Chem Phys 50,4417(1969), Mossbauer Effect in the System Co(1-X)Fe(X)S2Google Scholar
  204. 69G02 FE-57.
    A Gelberg, Rev Roum Phys 14,183(1969), On Point-Charge Calculation of the Quadrupole Splitting in Mossbauer SpectraGoogle Scholar
  205. 69G04 FE-57.
    U Ganiel, Chem Phys Lett 4,87(1969), On the Quadrupole Splitting in Ferrous CompoundsGoogle Scholar
  206. 69G05 FE-57.
    V I Gol’Danskii, V V Khrapov, and R A Stukan, Organometal Chem Rev, Sect A 4,225(1969), Application of the Mossbauer Effect in the Study of Organometallic CompoundsGoogle Scholar
  207. 69G09 FE-57.
    R W Grant, J Chem Phys 51,1156(1969), Nuclear Electric Field Cradient at the Iron Sites in Ca2Fe205 and Ca2Felo5Google Scholar
  208. 69G10 FE-57.
    F D Grigutsch, D Hohlwein, and A Knappwost, Z Phys Chem (Frankfurt am Main) 65,322(1969), Die Bindungsverhaltnisse in Graphit-Eisenchlorid-Einlagerungsverbindungen Nach Mossbauer-Effekt-Messungen an Fe57Google Scholar
  209. 69G14 FE-57.
    A N Garg and P S Goel, J Inorg Nucl Chem 31,697(1969), Mossbauer Effect Evidence of Hydrogen Bonding in Ferrocyanic AcidGoogle Scholar
  210. 69G15 FE-57.
    R W Grant, R M Housley, and U Gonser, Phys Rev 178,523 (1969), Nuclear Electric Field Gradient and Mean Square Displacement of the Iron Sites in Sodium Ni Tropruss IdeGoogle Scholar
  211. 69G16 FE-57.
    U Ganiel and S Shtrikman, Phys Rev 177,503(1969), Crystalfield Studies of Fe2+ by the Mossbauer Effect: Fef2Google Scholar
  212. 69G20 FE-57.
    V I Gol’Danskii, I P Suzdalev, A S Plachinda, and V P Korneev, Dokl Akad Nauk Sssr 185,629(1969)/Soviet Phys-Dokl 185,203(1970), the Hyperfine Structure of the Mossbauer Spectra of the Fe(+3) Ion in Sulfonic Acid Ion Exchange Resins with Different Degrees of HydrationGoogle Scholar
  213. 69G21 FE-57.
    P Gutlich and K M Hasselbach, Angew Chem Int Ed Eng 8,600 (1969), Application of the Mossbauer Effect to Investigation of the Solid State Reaction of Iron(II) Sulfate with Potassium CyanioeGoogle Scholar
  214. 69G25 FE-57.
    R M Golding, F Jackson, and E Sinn, Theor Chim Acta (Berl) 15,123(1969), the Strengths of Bonding and Degree of Distortion from Octahedral Symmetry by Mossbauer SpectroscopyGoogle Scholar
  215. 69G26 FE-57.
    H Gabriel, Phys Rev 184,359(1969), Effect of Radio-Frequency Fields on Mossbauer SpectraGoogle Scholar
  216. 69G27 FE-57.
    T C Gibb and N N Greenwood, J Inorg Nucl Chem 31,947(1969), the Mossbauer Spectra of Natural IlmenitesGoogle Scholar
  217. 69G28 FE-57.
    C Ghezzi, A Merlini, and S Pace, Nuovo Cimento 64B,103 (1969), Determination of the Thermal Diffuse Scattering in A Siliccn Crystal by Means of the Mossbauer EffectGoogle Scholar
  218. 69G29 FE-57.
    S Greenblatt and F T King, J Appl Phys 40,4498(1969), Mossbauer Spectra of Some Magnetic Iron Hydroxides Precipitated by Porcls SilicaGoogle Scholar
  219. 69G31 FE-57.
    R Greatrex and N N Greenwood, Discuss Faraday Soc No 47,126 (1969), Mossbauer Spectra, Structure, and Bonding in Iron Carbonyl DerivativesGoogle Scholar
  220. 69G32 FE-57.
    V A Golovnin, S M Irkaev, R N Kuz’Min, V K Slovyanskikh, L G Chachkhiani, and V I Chechernikov, Vestn Mosk Univ, Fiz, Astrgn 24,No 5,130(1969)/Moscow Univ Phys Bull, Temperature Dependence of the Mossbauer Effect in Ufe2 CompoundsGoogle Scholar
  221. 69G33 FE-57.
    M L Grigor’Ev, Fiz Metal Metalloved 28,603(1969)/Phys Metals Metallogr, Mossbauer Spectra of Ferromagnets with 180K Dcmain BoundariesGoogle Scholar
  222. 69G34 FE-57.
    T G Gleason and J C Walker, Phys Rev 188,893(1969), Mossbauer-Ffect Study of the Ferroelectric Transitions in Potassium Ferrocyanide Trihydrate and Ferric Ammonium Sulfate DodecahydrateGoogle Scholar
  223. 69G36C FE-57.
    V K Garg and S P Puri, Mossbauer Electric Field Gradient Parameters in Iron Sulfate Tetrahydrate Single Crystals, In “Proc Nucl Phys Solid State Phys Symp, 13Th” (Department of Atomic Energy, Bombay, 1969), Vol 3, P 467Google Scholar
  224. 69G38 FE-57.
    U Gonser, R M Housley, and R W Grant, Phys Lett 29A,36 (1969), Sign and Anisotropy of the Paramagnetic Fe2+ Hyperfine Interaction in Fec03Google Scholar
  225. 69G39 FE-57.
    R W Grant and L E Topol, Biophys J 9,1446(1969), A Comparison of the Iron Bonding in Anhydrohemoglobin and AnhydromycglobinGoogle Scholar
  226. 69G40 FE-57.
    K Garbett, D W Darnall, I M Klotz, and R J P Williams, Arch Biochem Biophys 103,419(1969), Spectroscopy and Structure of HemerythrinGoogle Scholar
  227. 69G41 FE-57.
    U Gakiel and M Malamud, Amer Mineral 54,299(1969), On the Valence of Iron in Tripuhyite: A Mossbauer StudyGoogle Scholar
  228. 69G43 FE-57.
    G Ggrodetsky and L M Levinson, Solid State Commun 7,67 (1969), Spin Re-Orientation in Smfe03Google Scholar
  229. 69G45 FE-57.
    F Gresovnik, Zelezarski Zb 3,319(1969), Mossbauer Effect and Its Possible Use in Steel Analysis (In Slovenian)Google Scholar
  230. 69H01 FE-57.
    F S Ham, W M Schwarz, and M C M O’Brien, Phys Rev 185,548 (1969), Jahn-Teller Effects in the Far-Infrared Epr, and Mossbauer Spectra of Mg0:Fe2+Google Scholar
  231. 69H02 FE-57.
    R H Herber, Inorg Chem 8,174(1969), Mossbauer Spectroscopy of Organometallic Compounds: Fe(C2B9H11)2-and (Pi-C5H5Fe(C2B9H1)Google Scholar
  232. 69H03 FE-57.
    L Haggstrom, R Wappling, and H Annersten, Phys Status Solidi 33,741(1969), Mossbauer Study of Oxidized Iron Silicate MineralsGoogle Scholar
  233. 69H05 FE-57.
    Y Hazony and R H Herber, J Inorg Nucl Chem 31,321(1969), Possible Origin of “Anomalous Charge States” in Mossbauer SpectraGoogle Scholar
  234. 69H06 FE-57.
    C L Herzenberg and D L Riley, J Phys Chem Solids 30,2108 (1969), Mossbauer Resonant Absorption in the Garnet-Type Compound Ferric MolybdateGoogle Scholar
  235. 69H08 FE-57.
    C L Herzenberg, R D Lamoreaux, and D L Riley, Z Kristallogr 128,414(1969), Mossbauer Resonant Absorption in Ferberite and WolframiteGoogle Scholar
  236. 69H09 FE-57.
    C L Herzenberg and C L Riley, Acta Crystallogr, Sect A 25, 389,(1969), Oxidation States and Site Symmetries of Iron in Ilvaite Using Mossbauer SpectrometryGoogle Scholar
  237. 69H10C FE-57.
    W Herr and B Skerra, Mossbauer Spectroscopy Applied to the Classification of Stone Meteorites, In “Meteorite Research” (Proceedings of the Meteorite Research Symposium, 1968), Edited by P M Millman (D Reidel Publishing Company, Dordrecht-Holland, 1969), P 106Google Scholar
  238. 69H11 FE-57.
    C L Herzenberg and D L Riley, Nature 224,259(1969), Interpretation of the Mossbauer Spectra of Marine Iron-Manganese NodulesGoogle Scholar
  239. 69H13 FE-57.
    W Holzapfel and H G Drickamer, J Chem Phys 50,1480(1969), Effect of Pressure on the Oxidation State of Iron in Fecl3-6H20, Fecl3-6Nh3, and Fef3-3H20Google Scholar
  240. 69H19 FE-57.
    C Hghenemser, R Reno, H C Benski, and J Lehr, Phys Rev 184, 298(1969), Time-Differential Perturbed Angular-Correlation Experiment for Fe57 in A Ni Host, and A Comparison with the Mossbaler EffectGoogle Scholar
  241. 69H20 FE-57.
    N D Heiman, J C Walker, and L Pfeiffer, Phys Rev 184,281 (1969), Selective Excitation of Nuclear SublevelsGoogle Scholar
  242. 69H22 FE-57.
    D O Hall, M C W Evans, J F Gibson, C E Johnson, and F R Whatley, Some Properties of Ferredoxins, In “Progress in Photosynthesis Research, Vol III,” (Proceedings of the International Congress of Photosynthesis Research, Freudenstadt, Germany, 1968), Edited by H Metzner (H Laupp, Tubingen, 1969), P 1433Google Scholar
  243. 69H23 FE-57.
    L Haggstrom, R Wappling, and H Annersten, Chem Phys Lett 4, 107(1969), Mossbauer Study of Iron-Rich BiotitesGoogle Scholar
  244. 69H25 FE-57.
    W B Holzapfel, J A Cohen, and H G Drickamer, Phys Rev 187, 657(1969), Effect of Pressure on the Curie Temperatures of Pdcc AlloysGoogle Scholar
  245. 69H27 FE-57.
    Y Hazony and H N Ok, Phys Rev 188,591(1969), 3D Charge Density Distribution and Crystal Field in Fecl2: A Mossbauer StudyGoogle Scholar
  246. 69H28 FE-57.
    A Hrynkiewicz, B Sawicka, and J Sawicki, the Temperature Dependence of the Electric Field Gradient in Ferricyanides, Inst Nucl Phys, Cracow Report 683, Warsaw, Poland, Oct, 1969Google Scholar
  247. 69H29 FE-57.
    A Hrynkiewicz, B Sawicka, and J Sawicki, the Effective Magnetic Fields in Cubic Ferricyanides, Inst Nucl Phys, Cracow Report 685, Warsaw, Poland, Oct, 1969Google Scholar
  248. 69H30 FE-57.
    W B Holzapfel and H G Drickamer, Phys Rev 184,323(1969), Effect of Pressure on the Neel Temperature of Cubaltous IronGoogle Scholar
  249. 69H32 FE-57.
    S S Hafner and C Virgo, Science 165,285(1969), Cooling History of OrthopyroxenesGoogle Scholar
  250. 69I02 FE-57.
    A Ito and K Ono, J Phys Soc Jap 26,1548(1969), Mossbauer Study of Fe6+ in Potassium Ferrate, K2Fe04Google Scholar
  251. 69104 FE-57.
    R Ingalls, Phys Rev 188,1045(1969), Comments on Divalentfe57M Quadrupolar Coupling ConstantsGoogle Scholar
  252. 69J02 FE-57.
    R Jagannathan and H B Mathur, J Inorg Nucl Chem 31,3363 (1969), Mossbauer Spectroscopic Investigation of the Valency States of Iron Formed in the Decay of Co57(2+) in Co(Cr2)04 and C0(Cr2)S4Google Scholar
  253. 69J03 FE-57.
    R Jagannathan and H B Mathur, Inorg Nucl Chem Lett 5,89 (1969), Chemical Effects of Electron Capture in Co57(III) (1–10 Phenanthroline)3(Clo4)3-2H2OGoogle Scholar
  254. 69J04 FE-57.
    C E Johnson, R Rickards, and H A O Hill, J Chem Phys 50, 2594(1969), Mossbauer-Effect Study Cf Nitrosyliron Bis(N,N-Diethyldithiocarbamate)Google Scholar
  255. 69J05 FE-57.
    R Jagannathan, R Thacker, and H B Mathur, Indian J Chem 7, 353(1969), Mossbauer Spectroscopic Study of the Effects of Electrcn Capture in K57Cof3Google Scholar
  256. 69J06 FE-57.
    C E Johnson and G P Glasby, Nature 222,376(1969), Mossbauer Effect Determination of Particle Size in Microcrystalline Iron-Manganese NodulesGoogle Scholar
  257. 69J08 FE-57.
    A Johansson, J Inorg Nucl Chem 31,3273(1969), Mossbauer Spectra of Fe57 in Ion Exchange ResinsGoogle Scholar
  258. 69J09 FE-57.
    C E Johnson, Proc Phys Soc, London (Solid State Phys), Ser 2 2,1996(1969), Antiferromagnetism of Gamma Feooh: A Mossbauer Effect StudyGoogle Scholar
  259. 69J10 FE-57.
    C Janot and G Lelay, C R Acad Sci, Ser B 269,823(1969), Etude Par Effet Mossbauer De La Precipitation Du Fer Dans L’AlumimumGoogle Scholar
  260. 69J11 FE-57.
    C E Johnson, R C Bray, R Cammack, and D O Hall, Proc Nat Acad Sci USA 63,1234(1969), Mossbauer Spectroscopy of the Iron-Sulfur ProteinsGoogle Scholar
  261. 69J12 FE-57.
    D P Johnson, Solid State Commun 7,1785(1969), Mossbauer Study of the Local Environments of Fe57 in FeoGoogle Scholar
  262. 69K01 FE-57.
    T A Kovats and J C Walker, Phys Rev 181,610(1969), Mossbauer Absorption in Fe57 in Metallic Iron from the Curie Point to the Gamma-Delta TransitionGoogle Scholar
  263. 69K04 FE-57.
    V S Kortov, R I Mints, and Yu N Sekisov, Metalloved Term Obrab Metal 1969,11(1969)/Metal Sci Heat Treat (Ussr) 1969, 13(1969), Mossbauer Effect in Plastically Deformed Austenitic SteelsGoogle Scholar
  264. 69K05 FE-57.
    L Konig, Y Gros, and G Chol, Phys Status Solidi 33,811 (1969), Study of the Sublattices Magnetisations in Mn(0.6)Zn(0.4)Fe204 by Neutron Diffractometry and Mossbauer SpectrometryGoogle Scholar
  265. 69K06 FE-57.
    H R Kirchmayr, Z Angew Phys 27,18(1969), Magnetische Eigenschaften Von Verbindungen Der Seltenen Erdmetalle Mit Mangan Und EisenGoogle Scholar
  266. 69K07 FE-57.
    E Konig, K Madeja, and W H Bohmer, J Amer Chem Soc 91,4582 (1969), Diselenocyanatobis(2,2-Bipyridyl)Iron(II), A Possible Iron(II) Analog of the Yellow Lifschitz Nickel(II) ComplexesGoogle Scholar
  267. 69K12 FE-57.
    W Kundig and R S Hargrove, Solid State Commun 7,223(1969), Electrcn Hopping in MagnetiteGoogle Scholar
  268. 69K14 FE-57.
    W Kundig, M Kobelt, H Appel, G Constabaris, and R H Lindquist, J Phys Chem Solids 30,819(1969), Mossbauer Studies of C0304; Bulk Material and Ultrafine ParticlesGoogle Scholar
  269. 69K15 FE-57.
    E Kostiner and A G Massey, J Organometal Chem 19,233(1969), the Mossbauer Spectra of Some Bis(Pentafluorophenyl)-Dichalcogenide-Bridged Iron Carbcnyl ComplexesGoogle Scholar
  270. 69K16 FE-57.
    W Klumpp and K W Hoffmann, Z Phys 227,254(1969), Mossbauereffekt in Fecl2, Feso4 Und Feso4-7H2OGoogle Scholar
  271. 69K17 FE-57.
    J J Kokalas, D N Kramer, A A Temperley, and R Levin, Spectrosc Lett 2,283(1969), Mossbauer-Effect Spectra of Iron Phosphonate CompoundsGoogle Scholar
  272. 69K18 FE-57.
    S L Kordyuk, I P Suzdalev, and V I Lisichenko, Ukr Fiz Zh (Russ Ed) 14,692(1969)/Ukr Phys J, Mossbauer Effect in Ferric Hydroxioe GelsGoogle Scholar
  273. 69K20 FE-57.
    T A Khimich, V F Belov, M N Shipko, and E V Korneev, Zh Eksp Teor Fiz 57,395(1969)/Soviet Phys-Jetp 30,217(1970), Investigation of Some Hexagonal Ferrites with an M Structure by Employing the Mossbauer EffectGoogle Scholar
  274. 69K21 FE-57.
    T A Khimich, V F Belov, M N Shipko, and E V Korneev, Fiz Tverd Tela 11,2093(1969)/Soviet Phys-Solid State 11,1690 (1970), Magnetic Structure and Fe2 Ion Positions in the Hexagonal Ferrite Baco(1.75 )Fe(0.25)Fe 16027Google Scholar
  275. 69K22 FE-57.
    D S Kulgawczuk, E Nowicka, B Sawicka, J Sawicki, I Stronski, and K Tomala, Iron Chelate Complexes Investigated by the Mossbauer Effect Method, Inst Nucl Phys, Cracow Report 684, Warsaw, Poland, Oct, 1969Google Scholar
  276. 69K35 FE-57.
    S Kachi and H Asano, J Phys Soc Jap 27,536(1969), Concentration Fluctuations and Anomalous Properties of the Invar AlloyGoogle Scholar
  277. 69K36 FE-57.
    D S Kulgawczuk, Nukleonika 14,777(1969), Mossbauer Study of Iron Oxy-Hydroxides (In Russian)Google Scholar
  278. 69K37 FE-57.
    P Kamenov, Dokl Bolg Akad Nauk 22,1373(1969), Scattering of Gamma-Radiation by the Mossbauer Level of Iron-57 in A Domain Near the ResonanceGoogle Scholar
  279. 69L01 FE-57.
    V A Lagunov, V I Polozenko, and V A Stepanov, Fiz Tverd Tela 11,238(1969)/Soviet Phys-Solid State 11,191(1969), Effect of Plastic Deformation on the Mossbauer Effect in Stainless SteelGoogle Scholar
  280. 69L04 FE-57.
    L M Levinson, M Luban, and S Shtrikman, Phys Rev 177,864 (1969), Mossbauer Studies on Fe57 Near the Curie TemperatureGoogle Scholar
  281. 69L05 FE-57.
    S K Lahiri, D Chandra, L H Schwartz, and M E Fine, Trans Aime 245,1865(1969), Modulus and Mossbauer Studies of Precipitation in Fe-1.67 At. Pct CuGoogle Scholar
  282. 69L06 FE-57.
    G Lang and W T Oosterhuis, J Chem Phys 51,3608(1969), Calculated Paramagnetic Mossbauer Spectra of Spin-1/2 Iron SaltsGoogle Scholar
  283. 69L08 FE-57.
    F K Lotgering, R P Van Stapele, G H A M Van Der Steen, and J S Van Wieringen, J Phys Chem Solids 30,799(1969), Magnetic Properties, Conductivity and Ionic Ordering in Fe(1-X)Cu(X)Cr2S4Google Scholar
  284. 69L09 FE-57.
    S Lazarski and K Tomala, Nukleonika 14,947(1969), Liquid Helium Cryostat for Mossbauer ExperimentsGoogle Scholar
  285. 69L10 FE-57.
    G Longworth, Phys Lett 30A,180(1969), Mossbauer Effect Study of Palladium Gold Iron AlloysGoogle Scholar
  286. 69L12 FE-57.
    B G Livshits, I V Sidash, and V I Solodikhin, Izv Vyssh Ucheb Zaved, Chern Met 12,No 9,122(1969), Transformation in an Iron-Nickel Alloy with 50% Nickel Studied by the Mossbauer Method (In Russian)Google Scholar
  287. 69L13 FE-57.
    S J Lewis and P A Flinn, Appl Phys Lett 15,331(1969), Measurement of Iron Diffusion in an Fe-3% Si Alloy by Means of the Mossbauer TechniqueGoogle Scholar
  288. 69L15 FE-57.
    G Lang, T Asakura, and T Yonetani, Proc Phys Soc, London (Solid State Phys), Ser 2 2,2246(1969), Mossbauer Spectroscopy of Protohaem and Meschaem Cytochrome C Peroxidases and their FluoridesGoogle Scholar
  289. 69M01 FE-57.
    H B Mathur and M P Gupta, Chem Phys Lett 3, 191(1969), A Mossbauer Spectroscopic Study of the Nature of the Bonding in Bis-Cithioacetylacetone Tetrachloro-Ferrate(II)Google Scholar
  290. 69M02 FE-57.
    L E Millet and D L Decker, Phys Lett 29A,7(1969), Mossbauer Measurements on Iron at High Pressure and Elevated TemperaturesGoogle Scholar
  291. 69M05 FE-57.
    M Mahnig and E Wicke, Z Naturforsch 24A,1258(1969), Mossauer-Effekt Von Fe57 und Sn119 in Pallaoiumlegierungen Verschiedenen Wasserstoff-GehaltesGoogle Scholar
  292. 69M07 FE-57.
    R A Mazak and R L Collins, J Chem Phys 51,3220(1969), Mossbauer Studies of Iron Organometallic Complexes. VII. Iron(-II) Tetrahedral CompoundsGoogle Scholar
  293. 69M08 FE-57.
    S K Misra, Nuovo Cimento 59B,152(1969), Resonant Absorption of Gamma-Ray Multipole Mixtures with Applications to Oriented NucleiGoogle Scholar
  294. 69M09 FE-57.
    H Mosbaek and K G Puulsen, Chem Commun 1969,479(1969), Investigation of Pentamminenitrosyliron Dichloride by Mossbauer SpectroscopyGoogle Scholar
  295. 69M10 FE-57.
    P K Mathur, Indian J Chem 7,183(1969), Mossbauer Studies on Chemical Consecuences of Precursor Nuclear Events in Triscipyridyl Ccbalt(III) PerchlorateGoogle Scholar
  296. 69M12 FE-57.
    J P Motte, R Streiff, and C Janot, C R Acad Sci, Ser C 268, 1185(1969), Etude Par Spectrometrie Mossbauer De La Nature Des Liaisons Dans Les Nitrures Ternaires De Lithium Et Fer Et De Calcium Et FerGoogle Scholar
  297. 69M13 FE-57.
    W A Mundt and T Sonnino, J Chem Phys 50,3127(1969), Mossbauer Effect in Frozen Solutions of NitroprussideGoogle Scholar
  298. 69M14 FE-57.
    C K Mathews, J Inorg Nucl Chem 31,2853(1969), Mossbauer and Optical Spectra and Magnetic Susceptibilities of Some Iron(III)-Beta-Diketone ComplexesGoogle Scholar
  299. 69M16 FE-57.
    T H Moss, A J Bearden, and W S Caughey, J Chem Phys 51,2624 (1969), Mossbauer Studies of Bonding in Iron Porphyrin-Li-Gand SystemsGoogle Scholar
  300. 69M17 FE-57.
    N Malathi, S P Puri, and I P Saraswat, J Phys Soc Jap 26, 680(1969), Mossbauer Studies of Iron in Illite and MontmorilloniteGoogle Scholar
  301. 69M18 FE-57.
    T H Moss, A Ehrenberg, and A J Bearden, Biochemistry 8,4159 (1969), Mossbauer Spectroscopic Evidence for the Electronic Configuration of Iron in Horseradish Peroxidase and Its Peroxide DerivativesGoogle Scholar
  302. 69M19 FE-57.
    A N Nurin, S I Bondarevskii, and P P Seregin, Radiokhimiya 11,474(1969)/Soviet Radiochem 11,464(1969), Chemical Consequences of Nuclear Conversions in Compounds of Tin, Iron, and Cobalt, Studied by the Mossbauer Method and Radiochemical AnalysisGoogle Scholar
  303. 69M21 FE-57.
    J E Haling and M Weissbluth, the Application of Mossbauer Spectroscopy to the Study of Iron in Heme Protein, In “Solid State Biophysics,” Edited by S J Wyard (Mcgraw-Hill, New York, 1969), P 327Google Scholar
  304. 69M22 FE-57.
    J Mishory and C I Bolef, Ultrasonics 7,121(1969), Acoustic Measurements Using the Mossbauer EffectGoogle Scholar
  305. 69M23 FE-57.
    T V Malysheva, V V Kurash, and A N Ermakov, Geokhimiya 1969,1405(1969), Study of Isomorphic Replacement of Magnesium and Iron(II) in Olivines by Mossbauer Gamma-Resonance Spectroscopy (In Russian)Google Scholar
  306. 69M24 FE-57.
    G Mima and M Yamaguchi, Nippon Kinzoku Gakkaishl 33,No 11,3 (1969), Miscibility Gap in the Iron-Chromium-Vanadium Ternary System (In Japanese)Google Scholar
  307. 69M26 FE-57.
    J A Morice, L V C Rees, and D T Rickaro, J Inorg Nucl Chem 31,3797(1969), Mossbauer Studies of Iron SulphidesGoogle Scholar
  308. 69M27 FE-57.
    W Meisel, Monatsber Deut Akad Wiss Berlin 11,355(1969), Die Hfs der Gestreuten Mossbauer-Linie und Die Spin-Gitter-Relaxationszeit Beim Alpha-Fe203Google Scholar
  309. 69M28 FE-57.
    Y Morita, Tampakushitsu Kakusan Koso 14,652(1969), Mossbauer Effect of Heme Proteins (In Japanese)Google Scholar
  310. 69N01 FE-57.
    S Nasu, H Yoshida, and Y Murakami, Nippon Kinzoku Gakkaishi 33,651(1969), Mossbauer Effect Study of Small Additional Co Elements in Cu-2 Wt% Be Alloy (In Japanese)Google Scholar
  311. 69N02 FE-57.
    S Nasu, Y Murakami, and H Yoshida, Jap J Appl Phys 8,282 (1969), Mossbauer Effect Study in Cu-12.6% Be-0.2% Co-0.1% Zn AlloyGoogle Scholar
  312. 69No4 FE-57.
    T Nakagawa, K Yoshikawa, and S Nomura, J Phys Soc Jap 27, 880(1969), Electrical Properties and Mossbauer Effect in the System Sr2(Femo(X)W(1-X)06Google Scholar
  313. 69N06 FE-57.
    H Nagasawa and N Sakai, J Phys Soc Jap 27,1150(1969), Notes on the Localized Moment of Fe Impurity in Nb-Mo AlloysGoogle Scholar
  314. 69N07 FE-57.
    S Nasu, M Nishio, Y Tsuchida, Y Murakami, and T Shinjo, J Phys Soc Jap 27,1363(1969), Temperature Shift of the Fe57 Mossbauer Line in the Quenched Al-0.01% Fe AlloyGoogle Scholar
  315. 69N08 FE-57.
    A J Nozik, J C Wood, Jr, and G Haacke, Solid State Commun 7,1677(1969), High Resolution Mossbauer Spectrum of Fe4N (Erratum, Op Cit 8,No 12,P VIII(1969))Google Scholar
  316. 69N10 FE-57.
    Y Nakamura, M Shiga, and Y Takeda, J Phys Soc Jap 27,1470 (1969), Mossbauer Effect and Neutron Diffraction of Fe65 (Ni(1-X)Mn(X))35 AlloysGoogle Scholar
  317. 69N13 FE-57.
    A Nath and M P Klein, Nature 224,794(1969), Direct Observation of Isotopic Exchange in the Solid StateGoogle Scholar
  318. 69O01 FE-57.
    W T Costerhuis and G Lang, J Chem Phys 50,4381(1969), Mossbauer Effect in Low-Spin (D7) Complex Molecules of FeGoogle Scholar
  319. 69Oo2 FE-57.
    W T Costerhuis and G Lang, Phys Rev 178,439(1969), Mossbauer Effect in K3Fe(Cn)6Google Scholar
  320. 69O03 FE-57.
    M Y Okamura, I M Klotz, C E Johnson, M R C Winter, and R J P Williams, Biochemistry 8,1951(1969), the State of Iron in Hemerythrin. A Mossbauer StudyGoogle Scholar
  321. 69O04 FE-57.
    H N Ok, Phys Rev 185,472(1969), Relaxation Effects in Antiferromagnetic Ferrous CarbonateGoogle Scholar
  322. 69O05 FE-57.
    H N Ok, Phys Rev 185,477(1969), Mossbauer Studies of Natural ApatiteGoogle Scholar
  323. 69O06 FE-57.
    R N Ord, Appl Phys Lett 15,279(1969), A Mossbauer Resonance Effect Study Using A Backscatter GeometryGoogle Scholar
  324. 69O07 FE-57.
    W O’Reilly, Application of Neutron Diffraction and Mossbauer Effect to Rock Magnetism, In “The Application of Modern Physics to the Earth and Planetary Interiors,” Edited by S K Runcorn (Interscience Publishers, New York, 1969), P 479Google Scholar
  325. 69O08 FE-57.
    H N Ok, Phys Rev 181,563(1969), Electron Relaxation of Fe Ion in Antiferromagnetic Cobaltous CarbonateGoogle Scholar
  326. 69O09 FE-57.
    D A O’Connor and E R Spicer, Phys Lett 29A,136(1969), the Scattering of Gamma Rays by Optical Phonons in Barium Ti-TanateGoogle Scholar
  327. 69C11 FE-57.
    J Olsen, Nucl Instrum Methods 70,109(1969), Determination of the Polarization of Bragg-Reflected Gamma Rays by Means of the Mossbauer EffectGoogle Scholar
  328. 69P04 FE-57.
    D Palaith, C W Kimball, R S Preston, and J Crangle, Phys Rev 178,795(1969), Magnetic Behavior of the Pt+Fe System Near Pt3FeGoogle Scholar
  329. 69P06 FE-57.
    J W Pebler and F W Richter, Z Phys 221,480(1969), Kritisches Temperaturverhalten Des Magnetfeldes am Kernort Von Fe57 in Wasserfreiem Eisenhalogenid Fef3Google Scholar
  330. 69P13 FE-57.
    M V Plotnikova, K P Mitrofanov, A G Kapyshev, Yu N Venevtsev, and V S Shpinel, IZv Akad Nauk Sssr, Ser Fiz 33, 1142(1969)/Bull Acad Sci Ussr, Phys Ser 33,1060(1969), the Mossbauer Effect for Fe57 and Sn119 in Some Perovskite-Type Ferroelectrics with High Curie PointsGoogle Scholar
  331. 69P14 FE-57.
    Yu D Perfil’Ev, L A Kulikov, A M Babeshkin, and A N Nesmeyanov, Vestn Mosk Umv, Khim 24,No 5,11 (1969)/Moscow Univ Chem Bull, Aftereffects of Cobalt-57 Electron Capture in K3(Fe(C2O4))-3H2O by A Nuclear Gamma-Resonance MethodGoogle Scholar
  332. 69P15 FE-57.
    W J Potvin, Jr, and S Greenblatt, J Phys Chem Solids 30, 2792(1969), Mossbauer Study of the Disintegration Products of A High Surface Area Iron Oxide GelGoogle Scholar
  333. 69P16 FE-57.
    A M Pritchard and C M Dobson, Nature 224,1295(1969), Mossbauer Effect and Iron Corrosion KineticsGoogle Scholar
  334. 69Q01 FE-57.
    S M Gaim, Proc Phys Soc, London (Solid State Phys), Ser 2 2,1434(1969), Hyperfine Structure of the 14.4 Kev Mossbauer Gamma Line of Fe57 in Close-Packed Hexagonal Metals 3Google Scholar
  335. 69R01 FE-57.
    M S Ridout, Proc Phys Soc, London (Solid State Phys), Ser 2 2,1258(1969), A Study of Dilute Alloys of Iron in Gold Using the Mossbauer EffectGoogle Scholar
  336. 69R02 FE-57.
    J Reedijk and A M Van Der Kraan, Recl Trav Chim Pays-Bas 88,828(1969), Mossbauer Effect of Octahedral Iron(II) SolvatesGoogle Scholar
  337. 69R03 FE-57.
    M Robbins, G K Wertheim, A Menth, and R C Sherwood, J Phys Chem Solids 30,1823(1969), Preparation and Properties of Polycrystalline Cerium Orthoferrite (Cefe03)Google Scholar
  338. 69R04 FE-57.
    R Rickards, C E Johnson, and H A O Hill, J Chem Phys 51, 846(1969), Mossbauer Effect Investigation of Relaxation Effects in Ircmiii) PyrrolidyldithiocarbamateGoogle Scholar
  339. 69R07 FE-57.
    W M Reiff, N E Erickson, and W A Baker, Jr, Inorg Chem 8, 2019(1969), MONO(2,2′,2″-Terpyridine) Complexes of Iron(II)Google Scholar
  340. 69R08 FE-57.
    V P Romanov, V C Checherskii, and V V Eremenko, Phys Status Solidi 31,K153(1969), On the Change of Mossbauer Spectra at the Low-Temperature Phase Transition in MagnetiteGoogle Scholar
  341. 69R09 FE-57.
    A Rosenowaig, M Ron, A Kidron, and H Shechter, J Phys Chem Solids 30,359(1969), Polarization and Opacity Effects on Mossbaler Spectral AreaGoogle Scholar
  342. 69R11 FE-57.
    C Raj and S P Puri, J Chem Phys 50,3184(1969), Mossbauer Spectra of Tetrahedral Alkali Dithioferrates(III)Google Scholar
  343. 69R12 FE-57.
    J Reedijk, Recl Trav Chim Pays-Bas 88,499(1969), the Ligand Properties of Pyridine-N-Oxide. Extension and DiscussionGoogle Scholar
  344. 69R13 FE-57.
    C Raj and S P Puri, Nuovo Cimento 606,261(1969), On the Mossbauer Effect of ChalcgpyriteGoogle Scholar
  345. 69R14 FE-57.
    J G Rensen and J S Van Wieringen, Solid State Commun 7,1139 (1969), Anisotropic Mossbauer Fraction and Crystal Structure of Bafe12019Google Scholar
  346. 69R17 FE-57.
    R Rickards, C E Johnson, and H A O Hill, Trans Faraday Soc 65,2847(1969), Mossbauer Effect Investigation of Magnetic Hyperfine Interactions in Bis(N,N-Diethyldithiocarbamato) Iron(III) ChlorideGoogle Scholar
  347. 69R22 FE-57.
    P Reivari, Phys Rev Lett 22,167(1969), Dependence of Nuclear Polarized Fe57 Mossbauer Spectra on the Magnitude and Sign of the Hyperfine FieldGoogle Scholar
  348. 69R27 FE-57.
    C M Rice and J M Williams, Mineral Mag 37,210(1969), A Mossbauer Study of Biotite WeatheringGoogle Scholar
  349. 69S01 FE-57.
    K Shibata, N Wakabayashi, and K Ueda, Mem Fac Eng, Kobe Univ 15,1(1969), Attempt to Measure Temperature Utilizing the Mossbauer EffectGoogle Scholar
  350. 69S02 FE-57.
    T Shinjo, T Ichida, and T Takada, J Phys Soc Jap 26,1547 (1969), Internal Magnetic Field at Fe57 in Hexavalent StatesGoogle Scholar
  351. 69S04 FE-57.
    J Suwalski, J Piekgszewski, and J Leciejewicz, J Phys Soc Jap 26,1546(1969), Mossbauer Measurements on Fe(1.11)TeGoogle Scholar
  352. 69S05 FE-57.
    T Shinjo, T Takada, and N Tamagawa, J Phys Soc Jap 26,1404 (1969), Mossbauer Effect of Fe57 in Cr02Google Scholar
  353. 69S06 FE-57.
    L V Skalkina, I P Suzdalev, I K Kolchin, and L Ya Margolis, Kinet Katal 10,456(1969)/K Inet Catal 10,378 (1969), Investigations of Catalysts for the Oxidizing Ammonolysis of Propylene Using the Mossbauer EffectGoogle Scholar
  354. 69S08 FE-57.
    J A Shideler and C Terry, Phys Lett 28A,759(1969), Mossbauer Effect in Antiferromagnetic Li(Fe,Mn)Po4Google Scholar
  355. 69S09 FE-57.
    G A Sawatzky, F Van Der Wouce, and A H Wukkish, Phys Rev 183,383(1969), Recoilless-Fraction Ratios for Fe57 in Octahedral and Tetrahedral Sites of A Spinel and A GarnetGoogle Scholar
  356. 69S10 FE-57.
    S Shtrikman and S Somekh, Rev Sci Instrum 40,1151(1969), Mossbauer Spectroscopy with Monochromatic Circularly Polarized RadiationGoogle Scholar
  357. 69S11 FE-57.
    D J Simkin, Phys Rev 177,1008(1969), Mossbauer Study of Metamagnetic Transition in Fecl2 and Febr2Google Scholar
  358. 69S13 FE-57.
    G D Sprouse, S S Hanna, and G M Kalvius, Phys Rev Lett 23, 1014(1969), Preservation of Alignment of Recoiling Nuclei and Detection with the Mossbauer EffectGoogle Scholar
  359. 69S20 FE-57.
    L J Swartzendruber and L H Bennett, J Appl Phys 40,1489 (1969), Dilute Fe57 Mossbauer Studies in Cu-Ni AlloysGoogle Scholar
  360. 69S21 FE-57.
    G A Sawatzky, J M C Coey, and A H Morrish, J Appl Phys 40, 1402(1969), Mossbauer Study of Electron Hopping in the Octahedral Sites Cf Fe3O4Google Scholar
  361. 69S23 FE-57.
    G K Shenoy, G M Kalvius, and S S Hafner, J Appl Phys 40, 1314(1969), Magnetic Behavior of the Fesi03-Mgs103 Orthopyroxene SystemGoogle Scholar
  362. 69S25 FE-57.
    J K Srivastava and R P Sharma, Phys Status Solidi 35,491 (1969), Spin Fluctuations in A Magnetically Ordered Cr203-Fe203 SystemGoogle Scholar
  363. 69S27 FE-57.
    K Sato, K Adachi, and E Ando, J Phys Soc Jap 26,855 (1969), Mossbauer Effect of Fe2PGoogle Scholar
  364. 69S28 FE-57.
    G V Smirnov, V V Sklyarevskii, R A Voskanyan, and A N Artem’Cv, Pis’Ma Zh Eksp Teor Fiz 9,123(1969)/Jetp Letters 9,70(1969), Nuclear Diffraction of Resonant Gamma Radiation by an Antiferromagnetic CrystalGoogle Scholar
  365. 69S29 FE-57.
    I P Suzoalev, V P Kcrneev, and Yu F Krupyanskii, Zh Eksp Teor Fiz 57,439(1969)/Soviet Phys-Jetp 30,240(1970), Effect of a Weak Magnetic Field on the Hyperfine Structure of Fe(3+) Mossbauer Spectra in Paramagnetic Substances with Nonaxial Symmetry of the Crystal FieldGoogle Scholar
  366. 69S30C FE-57.
    E L Sprenkl-Segel, Mossbauer Investigation of the Unequilibrated Ordinary Chondrites, In “Meteorite Research” (Proceedings of the Meteorite Research Symposium, 1968), Edited by P M Millman (D Reidel Publishing Company, Dordrecht-Holland, 1969), P 93Google Scholar
  367. 69S35 FE-57.
    G A Sawatzky, F Van Der Woude, and A H Morrish, Phys Rev 187,747(1969), Mossbauer Study of Several Ferrimagnetic SpinelsGoogle Scholar
  368. 69S36 FE-57.
    J P Senateur, A Roger, R Fruchart, and J Chappert, C R Acad Sci, Ser C 269,1385(1969), Etude De Fep Par Spectrometrie Mossbaler. Effet Du Manganese Sur Le Point De NeelGoogle Scholar
  369. 69S37 FE-57.
    A Simopoulos and I Pelah, J Chem Phys 51,5691(1969), Mossbauer Effect of Fe57 Impurities Bound in Vanadium and Vanacium HydridesGoogle Scholar
  370. 69S38 FE-57.
    I P Suzdalev and Yu F Krupyanskii, Kinet Katal 10,1255 (1969)/Kinet Catal (USSR), Formation and Growth of Ferric Oxide Particles During the Topochemical Decomposition of Iron Oxalates Studied by Mossbauer SpectroscopyGoogle Scholar
  371. 69S43 FE-57.
    N Sadasivan, H I Eberspaecher, W H Fuchsman, and W S Caughey, Biochemistry 8,534(1969), Substituted Deuteroporphyrins VI Ligand-Exchange and Dimerization Reactions of DeuteroheminsGoogle Scholar
  372. 69T01 FE-57.
    Y Takashima, Y Maeda, and S Umemoto, Bull Chem Soc Jap 42, 1760(1969), the Mossbauer Spectrum of Iron Adsorbed on an Anion Exchange ResinGoogle Scholar
  373. 69T02 FE-57.
    J Traff, Phys Status Solidi 34,K139(1969), Mossbauer Studies on Iron in the Perovskites Lafe(X)Al(1-X)03 (1>X>0)Google Scholar
  374. 69T03 FE-57.
    R Taube, H Drevs, E Fluck, P Kuhn, and K F Brauch, Z Anorg Allg Chem 364,297(1969), Mossbauer-Spektren Von Eisenphthalocyanin-KomplexenGoogle Scholar
  375. 69T05 FE-57.
    J M Trocster, Phys Status Solidi 32,179(1969), Mossbauer Investigation of Ferroelectric BoracitesGoogle Scholar
  376. 69T06 FE-57.
    W Triftshauser and D Schroeer, Phys Rev 187,491(1969), Investigations of Charge States in Co57-Doped Oxides Using the Mossbauer-Effect and Delayed-Coincidence TechniquesGoogle Scholar
  377. 69T07 FE-57.
    Y Takashima and Y Maeda, J Inorg Nucl Chem 31,1337(1969), the Mossbauer Effect in Mixed Crystals of Fe(P,As)O4-2H2O and (Fe,Al)Po4-2H2GGoogle Scholar
  378. 69T09 FE-57.
    A A Temperley and D W Pumplin, J Inorg Nucl Chem 31,2711 (1969), Mossbauer-Effect and Infrared-Absorption Study of the Radiolysis Products of Potassium Trisoxalatoferrate (III)Google Scholar
  379. 69T10 FE-57.
    T Tachibana, T Ohya, T Yoshioka, J Koezuka, and H Ikoma, Bull Chem Soc Jap 42,2180(1969), Mossbauer Spectral Observation of Alpha-Fe2O3 Supported on Silica Gel During ActivationGoogle Scholar
  380. 69T13 FE-57.
    M Takeda and T Tominaga, Kagaku No Ryoiki 23,1093(1969), Mossbauer Spectroscopic Study of Thermal Decomposition of Metal Complexes (In Japanese)Google Scholar
  381. 69T14 FE-57.
    T Takaca, M Kiyama, Y Bando, and T Shinjo, Bull Inst Chem Res, Kyoto Univ 47,298(1969), Magnetic Properties of Several Iron Compounds Studied by the Mossbauer EffectGoogle Scholar
  382. 69V01 FE-57.
    A Vertes, T Szekely, and T Tarnoczy, Magy Kem Foly 75,172 (1969)/Acta Chim (Budapest) 63,1(1970), Mossbauer Parameters of Iron(II)-Salt HydratesGoogle Scholar
  383. 69V02 FE-57.
    A Van den Bergen, K S Murray, B O West, and A N Buckley, J Chem Soc A 1969,2051(1969), Magnetic Properties and Mossbauer Spectra of Some Terdentate Schiff-Base-Iron(III) Halice ComplexesGoogle Scholar
  384. 69V03 FE-57.
    B C Van Zorge, F Van Der Woude, and W J Caspers, Z Phys 221,113(1969), Determination of Relaxation Times for Iron Ions From Mossbauer DataGoogle Scholar
  385. 69V04 FE-57.
    A Vertes, T Tarnoczy, C L Egyed, E Papp-Molnar, and K Burger, Magy Kem Foly 75,17(1969)/Acta Chim (Budapest) 59,19 (1969), On the Mossbauer Investigation and Magnetic Behaviour of A Few Iron(II) ComplexesGoogle Scholar
  386. 69V05 FE-57.
    A Vertes, K Burger, T Tarnoczy, E Papp-Molnar, and C L Egyed, Magy Kem Foly 75,15(1969)/Acta Chim (Budapest) 59,15 (1969), On the Mossbauer Investigation and Magnetic Behaviour of Iron(III) DiethyldithiocarbamateGoogle Scholar
  387. 69M06 FE-57.
    E F Kakarov, A S Marfunin, A R Mkrtchyan, G N Nadzharyan, V A Povitskii, and R A Stukan, Fiz Tverd Tela 11,495(1969)/ Soviet Phys-Solid State 11,391(1969), Mossbauer Study of the Magnetic Properties of Fe3S4Google Scholar
  388. 69V07 Fe-57 Yu B Voitkovskii, O N Generalov, N A Rozanov, A D Sukhanov, and M L Kharakhan, Use of the Mossbauer Effect to Study the Phase Composition of Fe304, In “Issled Fiz Svoistv Gorn Porod,” Edited by A D Sukhanov, (A D Mosk Gorn Inst, Moscow, 1969), P 3 (In Russian)Google Scholar
  389. 69V08 FE-57.
    A Vertes, Magy Kem Foly 75,175(1969)/Acta Chim (Budapest) 63,9(1970), Investigations on the Hydrational and Solvational Conditions of Iron(II)-Salt Solutions by Mossbauer EffectGoogle Scholar
  390. 69V09 FE-57.
    I Vincze, L Cser, and D L Nagy, Conduction Electron Polarization Investigated by the Temperature Dependence of the Hyperfine Field in Fe-Mn Alloy, Kfki Report L8, Budapest, Hungary, July, 1969Google Scholar
  391. 69V10 FE-57.
    K S Venkateswarlu, P K Mathur, and V Ramshesh, Indian J Chem 7,915(1969), Mossbauer Studies on N-Substituted Salicylaldimine Complexes of Ircn(III)Google Scholar
  392. 69V11 FE-57.
    A Vertes, K Burger, and L Suba, Magy Kem Foly 75,317(1969)/ Acta Chim (Budapest) 63,123(1970), Investigation of the Solvation of Anhyorous Iron(II)Chloride in Methanol-Formamide Mixtures with the Aid of the Mossbauer EffectGoogle Scholar
  393. 69V12 FE-57.
    I Vincze and L Cser, Phys Status Solidi 35,K25(1969), Mossbauer Spectra of Fe-Ga AlloysGoogle Scholar
  394. 69V14 FE-57.
    B N Veits, V Grigalis, Yu D Lisin, C A Matveev, Yu V Rud, and I M Taksar, Latv Psr Zinat Akad Vest1S, Fiz Teh Zinat Ser No 2,54(1969), Mossbauer Effect in Silicon Carbioe and Cadmium Telluride (In Russian)Google Scholar
  395. 69V16 FE-57.
    D Virgo and S S Hafner, Mineral Soc Amer Spec Pap 2,67 (1969), Fe(+2),Mg Order-Disorder in Heated OrthopyroxenesGoogle Scholar
  396. 69V22 FE-57.
    V N Veits, N I Vitrikhovskii, V Grigalis, and Yu D Lisin, Latv Psr Zinat Akad Vestis, Fiz Teh Zinat Ser No 5,17 (1969), Mossbauer Effect of Iron-57 Impurity Nuclei in Semiconducting A(II)B(VI) Compounds (In Russian)Google Scholar
  397. 69V24 FE-57.
    L I Vinokurova, I N Nikolaev, E V Mel’Nikov, I K Adis’Evich, and Yu B Reutov, Fiz Metal Metalloved 28,1098 (1969)/Phys Metal Metallogr, Ferro-Antiferromagnetic Transformations in Iron-Platinum Alloys Studied by the Mossbauer EffectGoogle Scholar
  398. 69W01 FE-57.
    P Weinzierl, Acta Phys Austr 29,26(1969), Neuere Ergebnisse in Der Physik Des Flussigen ZustandesGoogle Scholar
  399. 69W02 FE-57.
    H H Wickman and C F Wagner, J Chem Phys 51,435(1969), Orbitally Ncndegenerate Iron(III) Dithiocarbamates. I. Mossbauer Relaxation PhenomenaGoogle Scholar
  400. 69W03 FE-57.
    R Wclfe, R D Pierce, M Eibschutz, and J W Nielsen, Solid State Commun 7,949(1969), Magnetization and Mossbauer Effect in Single Crystal Fe3Bo6Google Scholar
  401. 69W05 FE-57.
    G K Wertheim and D N E Buchanan, Chem Phys Lett 3,87(1969), Stabilization of Defect Charge States in SolidsGoogle Scholar
  402. 69W06 FE-57.
    R W J Wedd, B V Liengme, J C Scott, and J R Sams, Solid State Commun 7,1091(1969), Mossbauer Investigation of Iron Species in A ZeoliteGoogle Scholar
  403. 69W08 FE-57.
    P G L Williams and G M Bancroft, Chem Phys Lett 3,110 (1969), the Analytical Determination of the Hyperfine Parameters in the Mossbauer Spectroscopy of Iron (Erratum, Private Communication)Google Scholar
  404. 69W12 FE-57.
    B Window and C E Johnson, Phys Lett 29A,703(1969), Mossbauer Effect Evidence for Clustering in Cu-Ni-Fe AlloysGoogle Scholar
  405. 69W13 FE-57.
    G K Wertheim, H J Guggenheim, and D N E Buchanan, J Appl Phys 40,1319(1969), Magnetization of Impurity Fe2+ Ions in Mnf2 and Ccf2Google Scholar
  406. 69W19 FE-57.
    I D Weisman, L J Swartzendruber, and L H Bennett, Phys Rev 177,465(1969), Resonance Studies in Ferromagnetic Fe2B and Fe2ZrGoogle Scholar
  407. 69W21 FE-57.
    G K Wertheim, H J Guggenheim, M Butler, and V Jaccarino, Phys Rev 178,804(1969), Mn(+2)-F-Fe(+2) Exchange InteractionsGoogle Scholar
  408. 69Y02 FE-57.
    C M Yagnik and H B Mathur, Mol Phys 16,625(1969), Electric Field Gradients in Normal SpinelsGoogle Scholar
  409. 69Y03 FE-57.
    T Yoshicka and H Ikoma, Oyo Butsuri 38,77(1969), Study of Small Particles of Iron Oxide by Mossbauer Effect (In Japanese)Google Scholar
  410. 69Y06 FE-57.
    N J Yassuglou and J B Peterson, Soil Sci Soc Amer, Proc 33,967(1969), Mossbauer Effect in Clay-Iron Oxide ComplexesGoogle Scholar
  411. 69Y07 FE-57.
    C M Yagmk, J P Canner, R Gerson, and W J James, J Appl Phys 40,4713(1969), Mossbauer Effect in the Ferroelectric Pbti03-Bife03 Solid SolutionsGoogle Scholar
  412. 69Y10 FE-57.
    T Yoshicka, J Koezuka, and I Toyoshima, J Catal 14,281 (1969), A Mossbauer Study on the Ammonia Synthetic Iron CatalystGoogle Scholar
  413. 69Z010 FE-57.
    A K Zhetbaev, D K Kaipov, and A I Tsytsyn, Physiochemical Properties of Iron(III) Hexacyanoferratei(II), In “Vop Obshch Prikl Fiz, Tr Respub Konf, 1St,” Edited by M Korsunskii (Izd “Nauka” Kaz Ssr, Alma-Ata, USSR, 1969), P 65 (In Russian)Google Scholar
  414. (1).
    R. A. Meyer, Phys. Rev. 170, 1089 (1968).Google Scholar
  415. (2).
    Aailomar, P. 1072.Google Scholar
  416. (3).
    Average of Values Given in Asilomar, P. 1000.Google Scholar
  417. 69R23 GD-154.
    K E Rehm, W Henning, and P Kienle, Phys Rev Lett 22,790 (1969), Isomer Shift of the 123-Kev Gapma Rays of Gd154Google Scholar
  418. (1).
    R. A. Meyer and J. W. T. Meadows, Nucl. Phys. A132, 177 (1969).Google Scholar
  419. (2).
    P. Alexander, Nucl. Phys. A108, 145 (1968).Google Scholar
  420. (3).
    A. Krusche, B. Bloess, and F. Munnich, Z. Physik 192, 490 (1966).Google Scholar
  421. (4).
    J. M. Baker, G. M. Copland, and B. M. Wanklyn, Proc. Phys. Soc., London (Solid State Phys. ), Series 2, 869 (1969).Google Scholar
  422. (5).
    P. J. Unsworth, Proc. Phys. Soc., London (Atomic Molec. Phys.), Series 2 2, 122 (1969).Google Scholar
  423. (6).
  424. (7).
    H. Blumberg, B. Persson, and M. Bent, Phys. Rev. 170, 1076 (1968).Google Scholar
  425. (8).
    Asilomar, P. 1001.Google Scholar
  426. 69B63 GD-155.
    E R Bauminger, D Froindlich, A Mustachi, I Nowik, S Ofer, and S Samuelov, Phys Lett 30B, 531(1969), Magnetic and Quadruple Moments of the 86.5 Kev Excited State of Gd155Google Scholar
  427. 69871 GD-155.
    A E Balabanov, N N Delyagin, E N Kornienko, and L N Pankratova, Yad Fiz 9,1116(1969)/Soviet J Nucl Phys 9,653(1969), Cuadrupcle Moment of the 86.5-Kev Excited State of Gd155Google Scholar
  428. 69M11 GD-155.
    H Maletta, R B Frankel, W Henning, and R L Mossbauer, Phys Lett 28A,557(1969), Absence of Induced Magnetic Fields at Gd Nuclei in Gdfe2Google Scholar
  429. 69R23 GD-155.
    K E Rehm, W Henning, and P Kienle, Phys Rev Lett 22,790 (1969), Isomer Shift of the 123-Kev Gamma Rays of Gd154Google Scholar
  430. (1).
    Asilomar, P. 1072.Google Scholar
  431. (2).
    Average of Values from Asilomar, P. 1001.Google Scholar
  432. (3).
    B. Persson, H. Blumberg, and M. Bent, Phys. Letters 27A, 189 (1968).Google Scholar
  433. (4).
    Asilomar, P. 1001.Google Scholar
  434. 69F07 GD-156.
    R B Frankel, Phys Lett 30A,269(1969), Hyperfine Interaction in GD in Diamagnetic, Metallic HostsGoogle Scholar
  435. (1).
    D. G. Douglas, Can. J. Phys. 47, 1813 (1969).Google Scholar
  436. (2).
    G. Czjzek, J. L. C. Ford, J. C. Love, F. E. Obenshain, and H. H. F. Wegener, Phys. Rev., 174, 331 (1968).Google Scholar
  437. (3).
    Asilomar, P. 992.Google Scholar
  438. 69S24 GE-73.
    D Seyboth, Proc Roy Soc, Ser A 311,119(1969), Mossbauer Experiments with Coulomb Excited NI61 and GE73 After Recoil ImplantationGoogle Scholar
  439. 69V21 GE-73.
    Y P Varshni and R Blanchard, Phys Lett 30A,238(1969), Temperature Depencence of the Mossbauer Effect in GF73Google Scholar
  440. (1).
    T. Tamura, J. Phys. Soc. Japan 23, 691 (1967).Google Scholar
  441. (2).
    Asilomar, P. 1078.Google Scholar
  442. (3).
    Average of Values Given in Asilomar, P. 1005.Google Scholar
  443. 69B66 HF-178.
    P Boolchand, B L Robinson, and S Jha, Phys Rev 187,475 (1969), Mossbauer-Effect Studies in Hafnium-Metal Single CrystalsGoogle Scholar
  444. 69J01 HF-178.
    C G Jacobs, Jr, N Hershkowitz, and J B Jeffries, Phys Lett 29A,498(1969), Recoil Radiation Damage Following Coulomb ExcitationGoogle Scholar
  445. 69S07 HF-178.
    P Steiner, E Gerdau, and D Steenken, Proc Roy Soc, Ser A 311,177(1969), Determination of the Magnetic Hyperfine Field of Hf in Fe by Mossbauer ExperimentsGoogle Scholar
  446. (1).
    Asilomar, P. 1078.Google Scholar
  447. (2).
    Ibid, P. 1005.Google Scholar
  448. (3).
    I. Ben-Zvi, P. Gilap, G. Goldring, P. Hillman, A. Schwarzschild, and Z. Vager, Nucl. Phys. A109, 201 (1968).Google Scholar
  449. (4).
    E. Gerdau, H. J. Körner, J. Lerch, and P. Steiner, Z. Naturforsch A21, 941 (1966).Google Scholar
  450. 69S07 HF-18C.
    P Steiner, E Gerdau, and D Steenken, Proc Roy Soc, Ser A 311,177(1969), Determination of the Magnetic Hyperfine Field of Hf in Fe by Mossbauer ExperimentsGoogle Scholar
  451. (1).
    Asilomar, P. 1066.Google Scholar
  452. (2).
    Ibid, P. 996.Google Scholar
  453. 69E06 I-127.
    BS Ehrlich and M Kaplan, J Chem Phys 51,603(1969), Mossbauer Effect in Csi3 and Tri-Iodide Complexes of Benzamide and AmyloseGoogle Scholar
  454. 69E13 I-127.
    BS Ehrlich and M Kaplan, J Chem Phys 50,2041(1969), Mossbauer Studies of Iodine Bond Hybridization in IodomethanesGoogle Scholar
  455. 69R18 I-127.
    S L Ruby and G K Shenoy, Phys Rev 186,326(1969), Change in Nuclear Radius Upon Excitation for Sn119, Sb121, Te125, I127, 129, and Xe129 from Mossbauer Isomer ShiftsGoogle Scholar
  456. (1).
    Average of Values from Asilomar, P. 1066.Google Scholar
  457. (2).
    Asilomar, P. 996.Google Scholar
  458. 69B14 I-129.
    S Bukshpan, C Goldstein, and J Soriano, J Chem Phys 51,3976 (1969), Mossbauer Study of If5 and If7Google Scholar
  459. 69B54 I-129.
    S Bukshpan, J Soriano, and J Shamir, Chem Phys Lett 4,241 (1969), Mossbauer Study of If6Asf6 and Csif6: Structure and Nature of the BondGoogle Scholar
  460. 69E02 I-129.
    BS Ehrlich and M Kaplan, Chem Phys Lett 3,161(1969), Chemical Bonding in Sn14Google Scholar
  461. 69E06 I-129.
    BS Ehrlich and M Kaplan, J Chem Phys 51,603(1969), Mossbauer Effect in Csi3 and Tri-Iodide Complexes of Benzamide and AmyloseGoogle Scholar
  462. 69E13 I-129.
    BS Ehrlich and M Kaplan, J Chem Phys 50,2041(1969), Mossbauer Studies of Iodine Bond Hybridization in IodomethanesGoogle Scholar
  463. 69G18 I-129.
    C Goldstein and M Pasternak, Phys Rev 177,481(1969), Internal Field Studies of Ferromagnetic Cri3 by Means of the Mossbauer Effect in 1129Google Scholar
  464. 69G22 I-129.
    Yu S Grushko, B G Lur’E, and A N Murin, Fiz Tverd Tela 11, 2144(1969)/Soviet Phys-Solid State 11,1733(1969), Mossbauer Study of Iodine DioxideGoogle Scholar
  465. 69P11 I-129.
    M Pasternak, Phys Rev 184,523(1969), Magnetization Near an Iodine Impurity in Antiferromagnetic Mnte2Google Scholar
  466. 69R18 I-129.
    S L Ruby and G K Shenoy, Phys Rev 186,326(1969), Change in Nuclear Radius Upon Excitation for Sn119, Sb121, Te125, 1127, 129, and Xe129 from Mcssbauer Isomer ShiftsGoogle Scholar
  467. 69S16 I-129.
    T Sonnino, Chim Ind (Milan) 51,15(1969), Mossbauer Effect of 1129 in Chemical Research (In Italian)Google Scholar
  468. 69W07 I-129.
    C I Wynter, J Hill, W Bledsoe, G K Shenoy, and S L Ruby, J Chem Phys 50,3872(1969), Mossbauer Effect of 1129 in Pyridine Complexes of Iodine MonohalidesGoogle Scholar
  469. (1).
    S. G. Malmskog, V. Berg, A. Backlin, and G. Hedin, Nucl. Phys. A143, 160 (1970).Google Scholar
  470. (2).
    A. Narath, Phys. Rev. 165, 506 (1968).Google Scholar
  471. (3).
    Asilomar, P. 1008.Google Scholar
  472. (4).
    Ibid, P. 1007.Google Scholar
  473. (5).
  474. (6).
  475. 69012 IR-191.
    W R Owens, B L Robinson, and S Jha, Phys Rev 185,1555 (1969), Gyromagnetic Ratio of the 129-Kev State in Iridium-191Google Scholar
  476. 69S15 IR-191.
    P Steiner, E Gerdau, W Hautsch, and D Steenken, Z Phys 221, 281(1969), Determination of the Mean Life of Some Excited Nuclear States by Mossbauer ExperimentsGoogle Scholar
  477. (I).
    V. Berg, S. G. Malmskog, and A. Bäcklin, Nucl. Phys. A143, 177 (1970)Google Scholar
  478. (2).
    C. R. Cothern, H. J. Hennecke, J. C. Manthuruthil, and R. C. Lange, Phys. Rev. 182, 1286 (1969).Google Scholar
  479. (3).
    J. Lindskog, K-G Välivaara, Z. Awwad, S-E. Hägglund, A. Marelius, and J. Phil, Nucl. Phys. A137, 511 (1969).Google Scholar
  480. (4).
    Asilomar, P. 1008.Google Scholar
  481. 69P07 IR-193.
    G J Perlow, W Henning D Olson, and G L Goodman, Phys Rev Lett 23,680(1969), Hyperfine Anomaly in Ir193 by Mossbauer Effect, and Its Application to Determination of the Orbital Part of Hyperfine FieldsGoogle Scholar
  482. 69R06 IR-193.
    P Rother, F Wagner, and U Zahn, Radiochimica Acta 11,203 (1969), Chemical Consequences of Thf Os193(Beta-)Ir 193 Decay in Osmium Compounds Studied by the Mossbauer MethodGoogle Scholar
  483. 69S15 IR-193.
    P Steiner, E Gerdau, W Hautsch, and D Steenken, Z Phys 221, 281(1969), Determination of the Mean Life of Some Excited Nuclear States by Mossbauer ExperimentsGoogle Scholar
  484. (1).
    J. F. Boulter, W. V. Prestwich, and B. Arad, Can. J. Phys. 47, 591 (1969).Google Scholar
  485. (2).
    Average of Values Given in Asilomar, P. 989.Google Scholar
  486. (3).
    E. P. Jones and S. R. Hartman, Phys. Rev. Letters 22, 867 (1969).Google Scholar
  487. 69R24 K-40.
    D Raj and S P Puri, Phys Status Solidi 34,K13(1969), Recoilless Fraction and Thermal Shift for 29.4 Kev Transition in Reaction Produced K40Google Scholar
  488. (1).
    Asilomar, P. 1059.Google Scholar
  489. (2).
    S. L. Ruby, Y. Hazoni and M. Pasternak, Phys. Rev. 129, 826 (1963).Google Scholar
  490. (3).
    D. Brinkman, Phys. Letters 27A, 466(1968)Google Scholar
  491. (4).
    Average of Values Given in Asilomar, P. 992.Google Scholar
  492. (5).
    Asilomar, P. 992.Google Scholar
  493. 69B62 KR-83.
    J S Brown, Phys Rev 187,401(1969). Anharmonic Effects on the Mossbauer Recoilless Fraction of Solid KryptonGoogle Scholar
  494. 69C08 KR-83.
    L E Campbell, G J Perlow, and M A Grace, Phys Rev 178,1728 (1969), Magnetic Moment of the First Excited State in Kr83 by the Mossbauer EffectGoogle Scholar
  495. 69G17 KR-83.
    M Greenshpan, D Treves, S Bukshpan, and T Sonnino, Phys Rev 178,1802(1969), Magnetic Moment of the 9.3-Kev Nuclear Level of Kr83Google Scholar
  496. 69K02 KR-83.
    V M Krasnoperov, A N Murin, N K Cherezov, and I A Yutlanduv, Dokl Akad Nauk SSSR 186,296(1969)/Soviet Phys-Dokl 14,458(1969), Existence of Charged States of Krypton in Rubidium Halide Matrices as Indicated by the Mossbauer MethodGoogle Scholar
  497. (1).
    R. Beraud, I. Berkes, J. Daniére, M. Lévy, G. Marest, and R. Roughy, Nucl. Phys. A99, 577 (1967).Google Scholar
  498. (2).
    Asilomar, P. 1055.Google Scholar
  499. (3).
    Ibid, P. 991.Google Scholar
  500. (4).
  501. 69A05 NI-61.
    F Ambe, S Ambe, M Takeda, H H Wei, K Ohki, and N Saito, Radiochem Radioanal Lett 1,341(1969), Radiochemical Preparation of Cu61-Copper Single Line Source for the Measurement of the Mossbauer Effect in Ni61Google Scholar
  502. 69E08 NI-61.
    U Erich, Z Phys 227,25(1969), Mossbauereffekt am Ni61Google Scholar
  503. 69E16 NI-61.
    U Erich, E Kankeleit, H Prange, and S Hufner, J Appl Phys 40,1491(1969), Hyperfine Fields in Nickel Alloys Measured by the Ni61 Mossbauer EffectGoogle Scholar
  504. 69E18 NI-61.
    U Erich, K Frolich, P Gutlich, and G A Webb, Inorg Nucl Chem Lett 5,855(1969), Ni61 Mossbauer Spectra of Some Complexes of Ni(II)Google Scholar
  505. 69O10 NI-61.
    F E Obenshain, J C Love, and G Czjzek, Mossbauer Measurements with Ni61 in 3D Transition Metal Alloys, In Proceedings of the Eleventh International Conference on Low Temperature Physics. St Andrews, 1968, “Edited by J F Allen, D M Finlayson, and D M Mccall (University of St Andrews Printing Dept, St Andrews, Scotland, 1969), Vol 1, P 532Google Scholar
  506. 69S24 NI-61.
    D Seyboth, Proc Roy Soc, Ser A 311,119(1969), Mossbauer Experiments with Coulomb Excited Ni61 and Ge73 After Recoil ImplantationGoogle Scholar
  507. (1).
    Asilomar, P. 1087.Google Scholar
  508. (2).
    J. A. Stone and W. L. Pillinger, Phys. Rev. 165, 1319 (1968).Google Scholar
  509. 69D21 NP-237.
    B D Dunlap, M B Brodsky, G M Kalvius, G K Shenoy, and D J Lam, J Appl Phys 40,1495(1969), Hyperfine Interaction and Susceptibility in Some Actinide Metals and Intermetallic CompoundsGoogle Scholar
  510. 69D24 NP-237.
    B D Dunlap and G M Kalvius, Phys Rev 186,1296(1969), Nuclear Quadrupole Moment of Np237Google Scholar
  511. 69S19 NP-237.
    J A Stone, W L Pillinger, and D G Karraker, Inorg Chem 8, 2519(1969), Mossbauer Spectra of Some Neptunium(VII) CompoundsGoogle Scholar
  512. (1).
    Asilomar, P. 1007.Google Scholar
  513. (2).
    B. Persson, H. Blumberg, and D. Agresti, Phys. Rev. 170, 1066 (1968).Google Scholar
  514. (3).
    D. Kucheida, F. Wagner, G. Kaindl, and P. Kienle, Z. Physik 216, 346 (1968).Google Scholar
  515. 69G03 OS-189.
    M C Gregory, B L Robinson, and S Jha, Phys Rev 180,1158 (1969), Studies of Os189: Gamma Rays, Lifetimes, and Mossbauer EffectGoogle Scholar
  516. 69W20 OS-189.
    F Wagner, G Kaindl, H Bohn, U Biebl, H Schaller, and P Kienle, Phys Lett 288,548(1969), Lifetime and Magnetic Moment of the 36.2 Kev Level of Os189Google Scholar
  517. (1).
    K. J. Hofstetter and P. J. Daly, Nucl. Phys. A106, 382 (1968).Google Scholar
  518. (2).
    Asilomar, P. 1082.Google Scholar
  519. (3).
    T. Fink and N. Benczer-Koller, Nucl. Phys. A138, 337 (1969).Google Scholar
  520. (4).
    Asilomar, P. 1008.Google Scholar
  521. (5).
    Average of Values Given in Asilomar, P. 1008.Google Scholar
  522. 69M29 PT-195.
    N Malathi and V K Garg, Phys Lett 30A,219(1969), Recoilless Fractions and Thermal Shifts of 99 and 129 Kev Transitions in Pt195Google Scholar
  523. 69W14 PT-195.
    R M Wilenzick, K A Hardy, J A Hicks, and W R Owens, Phys Lett 29A,678(1969), Mossbauer Effect of the 129 Kev State in Pt195Google Scholar
  524. (1).
    Asilomar, P. 1060.Google Scholar
  525. (2).
    Ibid, P. 993.Google Scholar
  526. 69C06 RU-99.
    C A Clausen, R A Prados, and M L Good, Chem Commun 1969, 1188(1969), Mossbauer Effect Parameters in Ruthenium CompoundsGoogle Scholar
  527. 69K33 RU-99.
    G Kaindl, W Potzel, F Wagner, U Zahn, and R L Mossbauer, Z Phys 226, 103 (1969), Isomer Shifts of the 90 Kev Gamma-Rays of Ru99 in Ruthenium CompoundsGoogle Scholar
  528. (1).
    R. E. Snyder and G. B. Beard, Nucl. Phy. A113, 581 (1968).Google Scholar
  529. (2).
    Asilomar, P. 1065.Google Scholar
  530. (3).
    Average of Values Given in Asilomar, P. 996.Google Scholar
  531. (4).
    Asilomar, P. 996.Google Scholar
  532. 69B38 SB-121.
    L H Bowen, J G Stevens and G G Long, J Chem Phys 51, 2010 (1969), Sb121 Isomer Shifts in Antimony HalidesGoogle Scholar
  533. 69848 SB-121.
    V A Bryukhanov, B Z Iofa, and S I Semenov, Radiokhimiya 11, 362(1969)/Soviet Radiochem 11,356(1969), Investigation of the Hydrolysis of Antimony(V) in Solutions of Hydrochloric Acid with the Aid of the Mossbauer EffctGoogle Scholar
  534. 69L03 SB-121.
    G G Long, J G Stevens, L H Bowen, and S L Ruby, Inorg Nucl Chem Lett 5,21(1969), the Oxidation Number of Antimony in Antimony PentasulfideGoogle Scholar
  535. 69L14 SB-121.
    G G Long, J G Stevens, and L H Bowen, Inorg Nucl Chem Lett 5,799(1969), Sb121 Mossbauer Spectra of Antimony OxidesGoogle Scholar
  536. 69R18 SB-121.
    S L Ruby and G K Shenoy, Phys Rev 186, 326(1969), Change in Nuclear Radius Upon Excitation for Sn119, Sb121, Te125, I127, 129, and Xe129 from Mossbauer Isomer ShiftsGoogle Scholar
  537. 69V17 SB-121.
    A Vaivads, B N Veits, V Grigalis, V K Dombrovskaya, Z Konstants, Yu D Lisin, and I M Taksar, Latv Psr Zinat Akad Vestis, Khim Sek 1969,504(1969), Antimony-121 Mossbauer Effect in Glasses of the P205-Sb203-R(X) O (Y) (R Ti, V, Mn, Fe, Co, Nl) Type (In Russian)Google Scholar
  538. 69V18 SB-121.
    A Vaivads, B N Veits, V Grigalis, V K Dombrovskaya, Z Kunstants, Yu D Lisin, and I M Taksar, Latv Psr Zinat Akad Vestis, Kim Ser 1969,505 (1969), Antimony-121 Mossbauer Effect in P205-Sb203 and Fe203-Sb203 Systems (In Russian)Google Scholar
  539. (1).
    F. W. Richter, J. Schütt, and D. Wiegandt, Z. Physik 213, 202 (1968).Google Scholar
  540. (2).
    P. H. Stelson and L. Grodzins, Nucl. Data A1, 21 (1965).Google Scholar
  541. (3).
    Asilomar, P. 1000.Google Scholar
  542. (4).
  543. (5).
    I. Ben Zvi, P. Gilad, M. Goldberg, G. Goldring, A. Schwarzschild, A. Sprinzak and Z. Vager, Nucl. Phys. A121, 592 (1968).Google Scholar
  544. 69W17 SM-154.
    R M Wheeler, U Atzmony, and J C Walker, Phys Rev 186,1280 (1969), Magnetic Dipole and Electric Quadrupole Moments of the First 2 + State of Sm154Google Scholar
  545. (1).
    Asilomar, P. 1065.Google Scholar
  546. (2).
    Asilomar, P. 996.Google Scholar
  547. (3).
    Average of Values Given in Asilomar, P. 995.Google Scholar
  548. 69A02 SN-119.
    M A Abidov, R N Kuz’Min, and S V Nikitina, Zh Eksp Teor Fiz 56, 1785 (1969)/Soviet Phys-Jetp 29, 957 (1969), the Mossbauer Effect in the Antiferpomagnetic Compound Mnsn2Google Scholar
  549. 69A04 SN-119.
    N E Alekseevskii, A P Kir’Yanov, Yu A Samarskii, and V I Tsebro, Dukl Akad Nauk Sssr 186, 1284 (1969)/Soviet Phys-Dokl 14, 581 (1969), Moss8Auer Effect at Sn119 Nuclei in Tin Films Deposited at 4.2KGoogle Scholar
  550. 69A09 SN-119.
    N E Alekseevskii and A P Kir’Yanov, Pis’Ma Zh Eksp Teor Fiz 9, 92 (1969)/Jftp Letters 9, 53 (1969), Cuncerning the Aniso-Tropy Cf the Probability of the Mossbauer Effect on Sn119 Nuclei in the Lattice of White TinGoogle Scholar
  551. 69A10 SN-119.
    L A Alekseev, P L Gruzin, and V I Sheshin, Dokl Akad Nauk Sssr 184, 629 (1969)/Soviet Phys-Dokl 184, 53 (1969), the Use of the Nuclear Gamma Resonance Method to Determine the Mean Square Displacements of the Atoms of Different Kinds in Substitutional Solid SolutionsGoogle Scholar
  552. 69A13 SN-119.
    L A Alekseev, P L Gruzin, and Yu L Rcdicnov, Fiz Metal Metalloved 27, 1112 (1969)/Phys Metals Metallogr, Mossbauer Spectra in Tin-119 Nuclei in Ordered and Disordered Copper-Gold AlloysGoogle Scholar
  553. 69A20 SN-119.
    L A Alekseev, P L Gruzin, and Yu L Rodionov, Fiz Metal Metalloved 28, 550 (1969)/Phys Metal Metallogr, Nuclear Gamma-Resonance Study of the Redistribution of Impurity Atoms in Deformed Solid Solutions During Isothfrmal AnnealingGoogle Scholar
  554. 69A21 SN-119.
    K M All, D Cunningham, M J Frazer, J D Donaldson, and B J Senior, J Chem Soc A 1969, 2836 (1969), Mossbauer Spectra of Tin (Iv) Complexes with Chelating LigandsGoogle Scholar
  555. 69802 SN-119.
    I Birchall, N N Greenwood, and A F Reid, J Chem Soc A 1969, 2382 (1969), Mossbauer, Electron Spin Resonance, Optical, and Magnetic Studies of Iron(III) in Oxide Host LatticesGoogle Scholar
  556. 69B08 SN-119.
    V N Belcgurov, V F Vasil’Ev, E Luksa, P E Sen’Kov, and V Vanaga, Latv Psr Zinat Akad Vestis, Fiz Teh Zinat Ser No 3, 63 (1969), Chlorostannates of Some Quinoline Derivatives Studied by Means of the Mossbauer Effect (In Russian)Google Scholar
  557. 69B20 SN-119.
    B I Boltaks, S I Bondarevskii, P P Seregin, and V T Shipa-Tov, Fiz Tverd Tela 11, 1839 (1969)/Soviet Phys-Solid State 11, 1483 (1970), Effect of Crystal Fields on Parameters of the Nuclear Gamma-Resonance Spectra of Tin-119Google Scholar
  558. 69B23 SN-119.
    L M Belyaev, I S Lyubutin, L N Dem’Yanets, T V Dmitrieva, and L P Mitina, Fiz Tverd Tela 11, 528 (1969)/Soviet Phys-Solid State 11, 424 (1969), Mossbauer Effect in Rare Earth Stannates R2Sn207Google Scholar
  559. 69B26 SN-119.
    A A Bekker, V N Panyushkin, V I Gotlib, A M Babeshkin, and A N Nesmeyanov, Vestn Mosk Univ, Khim 24,No 3, 127 (1969)/ Moscow Univ Chem Bull, Mossbauer Spectral Study of Tin Oxides Prepared Under High PressureGoogle Scholar
  560. 69B27 SN-119.
    V I Baranovskii, V P Sergeev, and B E Dzevitskii, Dokl Akad Nauk Sssr 184, 632 (1969)/Soviet Phys-Dokl 184, 55 (1969), Mossbauer Spectra and Chemical Bonding of Certain Platinum Metal Complexes with Divalent TinGoogle Scholar
  561. 69B30 SN-119.
    L W Bonchev, A Jordanov, and A Minkova, Nucl Instrum Methods 70, 36 (1969), Method of Analysis of Thin Surface Layers by the Mossbauer EffectGoogle Scholar
  562. 69B44 SN-119.
    K A Bilevich, V I Gol’Danskii, V Ya Rochev, and V V Khra-Pov, Izv Akad Nauk Sssr, Ser Khim 1969, 1705 (1969)/Bull Acad Sci Ussr, Chem Ser 1969, 1583 (1969), Investigation of Solutions of Triphenyltimlithium in Dipolar Aprotonic Solvents by the Method of Gamma-Resonance SpectroscopyGoogle Scholar
  563. 69B47 SN-119.
    A M Babeshkin, E N Efrfmov, A A Bekker, and A N Nesmeya-Nov, Vestn Mosk Univ, Khim 24, No 4, 78 (1969)/Moscow Univ Chem Bull, Bismuth Stannate and Rare-Earth Stannates Studied by Gamma-Resonance SpectroscopyGoogle Scholar
  564. 69B60 SN-119.
    A E Balabancv and N N Delyagin, Zh Eksp Teor Fiz 57, 1947 (1969)/Soviet Phys-Jetp, Temperature Dependence of Magnetic Hyperfine Interaction of Impurity Atoms in Metallic Ferro-MagnetsGoogle Scholar
  565. 69B67 SN-119.
    A M Babeshkin, A A Bekker, E N Efremov, and A N Nesmeya-Nov, Vestn Mosk Univ, Khim 24, No 5, 40 (1969)/Moscow Univ Chem Bull, Mossbauer-Effect Studies Cf Neutron-Irradiated Stannous Oxide Curing Thermal AnnealingGoogle Scholar
  566. 69C01 SN-119.
    M Cordey-Hayes, R D W Kemmitt, R D Peacock, and G D Rimmer, J Inorg Nucl Chem 31, 1515 (1969), the Mossbauer Spectra of Some Pentachlorophenyl Tin CompoundsGoogle Scholar
  567. 69013 SN-119.
    T Chivers and J R Sams, Chem Commun 1969, 249 (1969), Snii9 Mossbauer Quadrupole Splittings in Polyhalogenoaryltin CompoundsGoogle Scholar
  568. 69C14 SN-119.
    T E Cranshaw, J Appl Phys 40, 1481 (1969), andmalous Temperature Dependence of the Hyperfine Field at Sn119 in CoGoogle Scholar
  569. 69C18 SN-119.
    V V Chekin, V G Naumov, and L I Ponakshin, Ukr Fiz Zh (Russ Ed) 14, 969 (1969)/Ukr Phys J, Electronic Properties of Copper-Base Alloys Studied by Means of the Mossbauer Effect for Tin-119 Impurity NucleiGoogle Scholar
  570. 69C19 SN-119.
    V V Chekin, O P Balkashin, and G D Sultanov, Ukr Fiz Zh (Russ Ed) 14, 105 (1969)/Ukr Phys J, Phase Transition in Tin Telluride Studied by the Mossbauer EffectGoogle Scholar
  571. 69C23 SN-119.
    A J Carty, T W Ng, W Carter, G J Palenik, and T Birchall, Chem Commun 1969, 1101 (1969), Structural Characterisation of an Acetylenic Diphosphine Derivative of Pi-Cyclopentadi-Enyliron Dicarbonyl Dimer: an Unusual Mossbauer EffectGoogle Scholar
  572. 69D07SN-119.
    M A Doskey and C Curran, Inorg Chim Acta 3, 169 (1969), Moss-Bauer and Infrared Spectra of Some Tin(II) ComplexesGoogle Scholar
  573. 69D12 SN-119.
    J D Donaldson and B J Senior, J Inorg Nucl Chem 31, 881 (1969), An Interpretation of the SN-119M Mossbauer Quadrupole Splitting Data for Some Tin(II) CompoundsGoogle Scholar
  574. 69D16 SN-119.
    J D Donaldson and B J Senior, J Chem Soc A 1969, 2358 (1969), the Mossbauer Effect in Tin(II) Compounds. Part VI. Spectra of Ternary Tin(II) HalidesGoogle Scholar
  575. 69U19 SN-119.
    V M Dubinin, Teor Eksp Khim 5, 429 (1969)/Theor Exp Chem (Ussr), Effect of A Peptizing Agent on the Temperature Dependence of the Mossbauer Effect in Colloidal Solutions of Alpha-and Beta-Stannic AcidsGoogle Scholar
  576. 69D23 SN-119.
    R F Dalton and K Jones, Inorg Nucl Chem Lett 5, 785 (1969), the Mossbauer Spectra of Some AminostannanesGoogle Scholar
  577. 69E02 SN-119.
    BS Ehrlich and M Kaplan, Chem Phys Lett 3, 161 (1969), Chemical Bonding in Sni4Google Scholar
  578. 69F03 SN-119.
    B W Fitzsimmons, N J Seeley, and A W Smith, J Chem Soc A 1969, 143 (1969), the Mossbauer Effect and Chemistry. Part Iii. Six-Co-Ordinate Complexes of Tin(Iv) Containing Tin-Carbcn BondsGoogle Scholar
  579. 69F06 SN-119.
    D E Fentqn and J J Zuckerman, Inorg Chem 8, 1771 (1969), the Tin-119M Mossbauer Isomer Shift and the Valence State of Tin in Transition Metal CompoundsGoogle Scholar
  580. 69F13 SN-119.
    D S Faleev, G S Zhdanov, and R N Kuz’Min, Fiz Metal Metal-Loved 27, 792 (1969)/Phys Metals Metallogr, Isomeric Shifts in Tin-119 Nuclei in Calcium-Tin AlloysGoogle Scholar
  581. 69F14 SN-119.
    B F E Ford, B V Liengme, and J R Sams, J Organometal Chem 19, 53 (1969), Organotin Carboxylates 1. Mossbauer and Infrared Study Cf Triphenyltin Carboxylates and the Novel Compounds Rsn(O) OcorGoogle Scholar
  582. 69G12 SN-119.
    V I Gol’Danskii, N A Plate, Yu A Purinson, and V V Khrapuv, Vysokomol Soedin, Ser B 11, 498 (1969), Use of Gamma Resonance Spectroscopy to Study the Structure and Reactivity of Organotin Derivatives of Poly (Vinyl) Chloride (In Russian)Google Scholar
  583. 69G13 SN-119.
    V Gutthardt, H S Moller, and R L Mossbauer, Phys Lett 23A, 480 (1969), Magnetic Field at Snu9 in GadoliniumGoogle Scholar
  584. 69G19 SN-119.
    B Gassenheimer and R H Herber, Inorg Chem 8, 1120 (1969), Mossbauer Spectroscopy of Organometallic Compounds: Alkyltin Cyanides, Thiocyanates, and Related MoleculesGoogle Scholar
  585. 69G24 SN-119.
    B A Goodman and N N Greenwood, Chem Commun 1969, 1105 (1969), Magnetic Hyperfine Interaction in Sn119 Mossbauer SpectraGoogle Scholar
  586. 69H07 SN-119.
    J C Hill, R S Drago, and R H Herber, J Amer Chem Soc 91, 1644 (1969), A Mossbauer Study of the Adducts of Trimethyl-Tin Chloride with Lewis BasesGoogle Scholar
  587. 69H14 SN-119.
    R H Herber and H Cheng, Inorg Chem 3, 2145 (1969), Mossbauer Spectroscopy of Octahedral Tin ComplexesGoogle Scholar
  588. 69H17 SN-119.
    G P Huffman, F C Schwerer, and G R Dnmyre, J Appl Phys 40, 1487 (1969), Mossbauer and Resistivity Study of Dilute SN-Transition Metal AlloysGoogle Scholar
  589. 69H18 SN-119.
    P Hannaford and J W G Wignall, Phys Status Solidi 35, 809 (1969), Mossbauer Studies of Tin 119M Recoil Atoms in Some Mixed Oxides of Tin I. The Nature of the Recoil Effects in Mg2Sno4Google Scholar
  590. 69H21 SN-119.
    P G Harrison and J J Zuckerman, J Amer Chem Soc 91, 6885 (1969), Tin-119M Mossbauer and Nuclear Magnetic Resonance Study of Dicyclopentadienyltin(II)Google Scholar
  591. 69H31 SN-119.
    K M Harmon, L L Hesse, L P Klemann, C W Kocher, S V Mckinley, and A E Young, Inorg Chem 8, 1054 (1969), Carbonium Ion Salts. XIII. Stable Triarylcarbonium Pentahalostannate (Iv) SaltsGoogle Scholar
  592. 69101 SN-119.
    S Ichiba, M Mishima, and H Negita, Bull Chem Soc Jap 42, 1486 (1969), Mossbauer Effect of Sn119 in Molecular Complexes of Tin(Iv) Chloride with Several Aromatic CompoundsGoogle Scholar
  593. 69K08 SN-119.
    S L Kordyuk, Izv Vyssh Ucheb Zaveo, Fiz 12, No 6, 150 (1969), Diffusion Broadening of A Mossbauer Line (In Russian)Google Scholar
  594. 69K13 SN-119.
    V Kotkhekar and V S Shpinel, Zh Strukt Khim 10, 37 (1969)/J Struct Chem 10, 33 (1969), Classification of the Isomeric Shifts and Quadrupole Splittings in Organic Tin CompoundsGoogle Scholar
  595. 69K19 SN-119.
    S L Korduk and V I Lisichenko, Phys Status Solidi 35, K127 (1969), Mossbauer Study of Sn2 + Hydroxide GelsGoogle Scholar
  596. 69K24 SN-119.
    D Khristov, TSV Bonchev, B Manushev, D Dimov, and Khr Chakarov, Dokl Bolg Akad Nauk 22, 771 (1969), User Die Chemische Veranderung Einiger Zinnsalze Bei Ihrer Wechselwirkung Mit ButadiennitrilkautschukGoogle Scholar
  597. 69K25 SN-119.
    R N Kuz’Min, S V Nikitina, and O Kherkner, Vestn Mosk Univ, Fiz, Astron 24, No 5, 11 (1969)/Moscow Univ Phys Bull, Isomer Shifts on Tin-119 Nuclei in Binary Tin AlloysGoogle Scholar
  598. 69K26 SN-119.
    R N Kuz’Min and D S Faleev, Vestn Mosk Univ, Fiz, Astrom 24, No 5, 120 (1969)/Moscow Univ Phys Bull, Determination of the Probability of the Mossbauer Effect in Calcium-Tin AlloysGoogle Scholar
  599. 69K28 SN-119.
    A I Kaplienkc, B N Lecnov, and V V Chek In, Fiz Tverd Tela 11, 3613 (1969)/Soviet Phys-Solid State, Dynamics of A Magnetic Transition in Mn2SnGoogle Scholar
  600. 69L11 SN-119.
    M Loewenhaupt and S Hufner, Phys Lett 30A, 309 (1969), Hyper-Fine Interaction in Europium Tin Intermetallic CompoundsGoogle Scholar
  601. 69M04 SN-119.
    W Geisel, K Hennig, and H Schnorr, Phys Status Solidi 34, 577 (1969), Mossbaueruntersuchungen an Sn119-Dotiertem Agcl 69M05 SN-119 M Mahnig and E Wicke, Z Naturforsch 24A,1258 (1969), Moss-Bauer-Effekt Von Fe57 Und Sn119 in Palladiumlegierungen Verschiedenen Wasser S Toff-GehaltesGoogle Scholar
  602. 69M05 SN-119.
    H Maletta, R B Frankel, W Henning, and R L Mossbauer, Phys Lett 28A, 557 (1969), Absence of Induced Magnetic Fields at Gu Nuclei in Gdfe2Google Scholar
  603. 69M11 SN-119.
    A M Murin, S I Bondarevski I, and P P Seregin, Radiokhimiya 11, 474 (1969)/Soviet Radiochem 11, 464 (1969), Chemical Consequences of Nuclear Conversions in Compounds of Tin, Iron, and Cobalt, Studied by Thf Mossbauer Method and Radiochemical AnalysisGoogle Scholar
  604. 69M15 SN-119.
    D Moras and R Weiss, Acta Crystallogr, Sect B 25, 1726 (1959), Etude Structurale Du Dioxychlorure De Phosphore-Hexachlorodietain (Iv)-Di-Mu-Dichlorcphosphate. Ii. Etude Des Spectres Mossbauer Et InfrarougeGoogle Scholar
  605. 69M25 SN-119.
    A N Murin, S I Bondarevskii, and P P Seregin, T Eor Eksp Khim 5, 709 (1969)/Theor Exp Chem (Ussr), Determination of the Electronic Structure of Tin(II) Compounds by the Mossbauer EffectGoogle Scholar
  606. 69N03 SN-119.
    G V Novikcv, V A Trdkhtanov, L Cser, S I Yushchuk, and V I Gol’Danskii, Zh Eksp Teor Fiz 56, 743 (1969) /Soviet Phys-Jetp 29, 403 (1969), Magnetic Fields of Tin Nuclei in Substituted Nickel FerriteGoogle Scholar
  607. 69N05 SN-I19 H Negita, T Dkuda, and M Mishima, Bull Chem Soc Jap 42, 2509 (1969), The Bond Character of the on of Bonds in the Hv-Drates of Tin(Iv) ChlorideGoogle Scholar
  608. 69N09 SN-119.
    E Niki and N Watanabe, J Fac Eng, Univ Tokyo, Ser A 7, 56 (1969), Instrumentation for Mossbauer Effect (In Japanese)Google Scholar
  609. 69N11 SN-119.
    G V Ngvikov, V A Trukhtanov, A P Khrushch, A E Shilov, and V I Gol’Danskii, Dokl Akad Nauk Sssr 189, 1294 (1969)/Soviet Phys-Dokl 189, 822 (1970), Use of Nuclear Gamma Resonance to Investigate A Solution of Pt-SN-Chloride Complex in MethanolGoogle Scholar
  610. 69P02 SN-119.
    I Pelah and S L Ruby, J Chem Phys 51, 38 3 (1969). Conductivity and Mossbauer Measurements in Doped IceGoogle Scholar
  611. 69P03 SN-119.
    P A Pella, J R Devue, D K Snediker, and L May, Anal Chfm 41, 46 (1969), Problems in Using Mossbauer Spectrometry for Quantitative Analysis: Application to TinGoogle Scholar
  612. 69P0G SN-119.
    R V Parish and R H Platt, J Chem Soc A 1969, 2145 (1969), Studies in Mossbauer Spectroscopy. Part 1. Interpretation of Quadrupole Splitting Data for Tin(Iv) CompoundsGoogle Scholar
  613. 69P09 SN-119.
    C Poder and J R Sams, J Organometal Chem 19, 67 (1969), Or-Ganotin Carboxylates Ii. Mossbauer and Infrared Study of Bonding Differences in Trimethyltin HaloacetatesGoogle Scholar
  614. 69P10 SN-119.
    R C Poller and J N R Rucdick, J Chem Soc A 1969, 2273 (1969), Mossbauer and Infrared Spectra of Organotin OxinatesGoogle Scholar
  615. 69P12 SN-119.
    R C Poller, J N R Ruddick, M Thevarasa, and W R Mcwhinnie, J Chem Soc A 1969, 2327 (1969), Mossbauer and Infrared Spectra of Six-Co-Ordinate Complexes of Some Ciorganotin (Iv) Halides with Nitrogen DonorsGoogle Scholar
  616. 69P13 SN-119.
    M V Plctnikova, K P Mitrofanov, A G Kapyshev, Yu N Venevtsev, and V S Shpinel, I Zv Akad Nauk Sssr, Ser Fiz 33, 1142 (1969)/Bull Acad Sci Ussr, Phys Ser 33, 1060 (1969), the Mossbauer Effect for Fe57 and Sn119 in Some Perovskite-Type Ferroelectr1Cs with High Curie PointsGoogle Scholar
  617. 69R18 SN-119.
    S L Ruby and G K Shenoy, Phys Rev 186, 326 (1969), Change in Nuclear Radius Upon Excitation for Sn119, Sb121, Te125, 1127, 129, and XE129 from Mossbauer Isomer ShiftsGoogle Scholar
  618. 69R26 SN-119.
    R E Rioenour and E E Flagg, J Organometal Chem 16, 393 (1969), Tin-Oxygen-Phosphorous CompoundsGoogle Scholar
  619. 69S03 SN-119.
    R A Stuart, A J Donghoe, and A J F Boyle, Determination of Tin in Cassiterite Ores by an Application of the Mossbauer Effect, Australas Inst Mining Met, Proc Report 230, Park-Ville, Australia, June, 1969Google Scholar
  620. 69S06 SN-119.
    L V Skalkina, I P Suzdalev, I K Kolchin, and L Ya Margolis, Kinet Katal 10, 456 (1969)/Kinet Catal 10, 378 (1969), Investigations of Catalysts for the Oxidizing Ammonolysis of Propylene Using the Mossbauer EffectGoogle Scholar
  621. 69S17 SN-119.
    H A Stcckler and H Sano, J Chem Phys 50, 3813 (1969), Moss-Bauer-Effect Studies of Lattice Dynamic Anisotropy and Line Asymmetry in Semiconductor and Organometallic-Tin CompoundsGoogle Scholar
  622. 69S26 SN-119.
    H Sano and M Kanno, Chem Commun 1969, 601 (1969), Mossbauer Spectroscopic Studies on IT(IC) Decay of SN119M in K6SN2 (C204)7, 4H20Google Scholar
  623. 69S40 SN-119.
    N S Snyder, Phys Rev 178, 537 (1969), Mossbauer-Effect Measurements of the Thermal Shift of Sn119 in Beta-Sn Below 90KGoogle Scholar
  624. 69T04 SN-119.
    A D Tsyganov and N M Lyalina, Vysokomol Soedin, Ser B 11, 749 (1969), Role of A Tin Chloride Crystal Hydrate in the Vulcanization of Nitrile Rubbers (In Russian)Google Scholar
  625. 69V13 SN-119.
    V N Veits, V Grigalis, Yu D Lisin, Yu V Rud, and I M Taksar, Latv Psr Zinat Akad Vest Is, Fiz Teh Zinat Ser No 3, 54 (1969), Mossbauer Effect in Inas-Znsnas2 Crystal Systems (In Russian)Google Scholar
  626. 69V15 SN-119.
    B N Veits, V Grigalis, Yu D Lisin, E O Osmanov, Yu V Rud, and I M Taksar, Latv Psr Zinat Akad Vestis, Fiz Teh Zinat Ser No 2, 60 (1969), Mossbauer Effect in Some A(II)B(Iv) C (V)2 Semiconductor Compounds (In Russian)Google Scholar
  627. 69V20 SN-119.
    V N Veits, V Grigalis, Yu D Lisin, G V Loshakova, E O Osmanov, and Yu V Rud, Latv Psr Zinat Akad Vestis, Fiz Teh Zinat Ser No 5, 26 (1969), Mossbauer Effect on Glassy and Crystalline Samples of Cdge (X) Sn (1-X) As2 System (In Russian)Google Scholar
  628. 69V23 SN-119.
    B N Veits, V Grigalis, Yu D Lisin, and Z Konstants, Latv Psr Zinat Akad Vestis, Kim Ser 1969, 744 (1969), Mossbauer Effect in Tin-Containing Chalcogenide Glasses (In Russian)Google Scholar
  629. 69W09 SN-119.
    J M Williams, Proc Phys Soc, London (Solid State Phys), Ser 2 2, 2037 (1969), the Sign of the Internal Field at Sn119 Nuclei in CO2 MnsnGoogle Scholar
  630. 69W16 SN-119.
    B Window, Proc Phys Soc, London (Solid State Phys), Ser 2 2, 2380 (1969), Mossbauer Studies of Ccpper Manganese Alloys with Dilute Sn119Google Scholar
  631. 69Y04 SN-119.
    H Yoshida and R H Herber, Radiochim Acta 12, 14 (1969), Mossbauer Spectroscopic Study of the Chemical State of Tin After (N,Gamma) Reaction in Tin OxidesGoogle Scholar
  632. 69Z02 SN-119.
    V M Zapgrozhets, V M Ratnikov, V K Ryabkin, I A Timofeeva, Yu V Fedyumn, and G N Tsigel’Nitskii, Razved Okhr Neor 35, No 5, 47 (1969), Testing for Tin Ores in Natural Occurrences by A Mcssbauer Effect Method (In Russian)Google Scholar
  633. 69Y01 SN-119.
    P A Yeats, B F E Furo, J R Sams, Anu F Aubkf, Chem Commun 1969, 791 (1969), Synthesis and Mossbauer Spectra of Dimeth-Yltin Derivatives of Monobasic Sulphonic AcidsGoogle Scholar
  634. (1).
    H. Blumberg, R. S. Hager, and E. C. Seltzer, Nucl. Phys. a136, 624 (1969).Google Scholar
  635. (2).
    Asilomar, P. 1078.Google Scholar
  636. (3).
    Ibid, P. 1005.Google Scholar
  637. (4).
    C. Sauer, E. Matthias, and R. L. Mössbauer, Phys. Rev. Letters 21, 961 (1968).Google Scholar
  638. (5).
  639. 69K34 TA-181.
    Yu M Kagan, A M Afanas’Ev, and V K Voitovetskii, Pis’Ma Zh Eksp Teor Fiz 9, 155 (1969)/Soviet Phys-Jetp Lett 9, 91 (1969), Interference of Conversion and Photoeffect Processes Upon Absorption of Mossbauer RadiationGoogle Scholar
  640. 69S15 TA-181.
    P Steiner, E Gerdau, W Hautsch, and C Steenken, Z Phys 221, 281 (1969), Determination of the Mean Life of Some Excited Nuclear States by Mossbauer ExperimentsGoogle Scholar
  641. 69S32 TA-181.
    C Sauer, Z Phys 222, 439 (1969), Messung Der Ruckstoesfreien Resonanz-Absorption am 6, 2 Kev-Niveau in Ta131Google Scholar
  642. 69T08 TA-181.
    G T Trammell and J P Hannon, Phys Rev 180, 337 (1969), Interference of Electronic and Nuclear Resonance Absorption for Mossbaler El Gamma RaysGoogle Scholar
  643. (1).
    C. W. E. Van Eijk, B. Van Nooijen, F. Schutte, S. M. Brahmavar, J. H. Hamilton, and J. J. Pinajian, Nucl. Phys. a121, 440 (1968).Google Scholar
  644. (2).
    W. B. Cook, L. Schellenberg, and M. W. Johns, Nucl. Phys. a139, 277 (1969).Google Scholar
  645. (3).
    Asilomar, P. 993.Google Scholar
  646. (4).
    Ibid, P. 151.Google Scholar
  647. 69S15 TC-99.
    P Steiner, E Gerdau, W Hautsch, and D Steenken, Z Phys 221, 281 (1969), Determination of the Mean Life of Some Excited Nuclear States by Mossbauer ExperimentsGoogle Scholar
  648. (1).
    Average of Values Given in Asilomar, P. 1066.Google Scholar
  649. (2).
    Asilomar, P. 996.Google Scholar
  650. (3).
    R. B. Frankel, J. J. Huntzicker, D. A. Shirley, and N. J. Stone, Phys. Letters 26A, 452 (1968).Google Scholar
  651. 69B51 TF-125.
    I V Berpan, N B Brandt, R N Kuz’Min, A A Opalenko, and S S Slobouchikov, Pis’Ma 7H Eksp Teor Fiz 10 J Inorg Nucl Chem, 373 (1969)/Je Tp Letters 10, 237 (1969), Mcssrauer Effect in Tellurium at Pressure Up to 100 KbarGoogle Scholar
  652. 69103 TN-125.
    B Z Iofa, M Ridvan, and V A Bryukhanov, Vestn Mosk Univ, Khim 24, No 6, 47 (1969)/Moscow Univ Chem Bull, State of Tel-Lurium (Iv) in Solutions of Hydrohalic AcidsGoogle Scholar
  653. 69K10 TN-125.
    R N Kuz’Min, A A Opalenko, V S Shpinel, and I A Avenarius, Zh Eksp Teor Fiz 56, 167 (1969)/Soviet Phys-Jetp 29, 94 (1969), Anisotropy of the Mossbauer Effect in Tellurium Single CrystalsGoogle Scholar
  654. 69L07 TN-125.
    V A Lebedev, R A Lebedev, A M Babeshkin, and A N Nesmeya-Nov, Vestn Mosk Univ, Khim 24, No 3, 128 (1969)/Moscow Univ Chem Bull, Beta-Te03, A Mossbauer SourceGoogle Scholar
  655. 69L16 TN-125.
    V A Lebedev, A M Babeshkin, A N Nesmeyanov, and E V Lamykin, Vestn Mosk Univ, Khim 24, No 5, 45 (1969)/Moscow Univ Chem Bull, “Charge” States in the Mossbauer Effect and the Chemistry of “Hot” Atoms in SolidsGoogle Scholar
  656. 69P01 TN-125.
    M Pasternak and A L Spukervet, Phys Rev 181, 574 (1969), Te125 Mossbauer Effect in Paramagnetic and Ant I Ferromagnetic Mnte2Google Scholar
  657. 69R18 TN-125.
    S L Ruby and G K Shenoy, Phys Rev 186, 326 (1969), Change in Nuclear Radius Upon Excitation for Snu9, Sb121, Te125, I127, 129, and Xe129 from Moss3Auer Isomer ShiftsGoogle Scholar
  658. 69U01 TN-125.
    J F Ullrich and D H Vincent, J Phys Chem Solids 30, 1189 (1969), Te125 Mossbauer Effect Study of Neutron Capture Effects in Pbte, Te and Teo2Google Scholar
  659. (1).
    Asilomar, P. 1075.Google Scholar
  660. (2).
    Average of Values Given in Asilomar, P. 1003.Google Scholar
  661. (3).
    Asilomar, P. 1003.Google Scholar
  662. 69C33 TM-169.
    M J Clauser and R L Mossbauer, Phys Rev 178, 559 (1969), Pseudquadrupole Shift and Asymmetric Line Broadening of Recqilless Nuclear Resonance SpectraGoogle Scholar
  663. 69W10 TM-169.
    C I Wynter, J J Spijkerman, H H Stadelmaier, and C H Cheek, Nature 223, 1055 (1969), New Tm169 Mossbauer SourceGoogle Scholar
  664. (1).
    Asilomar, P. 1087.Google Scholar
  665. 69R15 U-238.
    S L Ruby, G M Kalviust B D Dunlapf G K Shenoy, D Cohen, M B Brodsky, and D J Lam, Phys Rev 184, 374 (1969), Nuclear Gamma-Ray Resonance Study of Hyperfine Interactions in U238Google Scholar
  666. (1).
    D. H. White, R. E. Birkett, and T. Thomson, Nucl. Instr. Methods 77 261 (1970).Google Scholar
  667. (2).
    Asilomar, P. 1079.Google Scholar
  668. 69C28 W-182.
    Y W Chow, E S Greenbaum, R H Howes, F H H Hsu, P H Swerd-Low, and C S Wu, Phys Lett 30B, 171 (1969), Mossbauer Effect Following Coulomb Excitation Measurements of Electric Qua-Drupole Moment Ratios in the First Excited 2+ States of W182, 4, 6Google Scholar
  669. 69F15 W-182.
    R B Frankel, Y Chow, L Groozins, and J Wulff, Phys Rev 186, 381 (1969), Nuclear Zeeman Effect in W182 in IronGoogle Scholar
  670. 69R05 W-182.
    D Raj and S P Puri, Phys Lett 29A, 510 (1969), Recoilless Fraction and Thermal Shift of W182 and W183Google Scholar
  671. (1).
    Asilomar, P. 1079.Google Scholar
  672. (2).
    Ibid, P. 1006.Google Scholar
  673. 69R05 W-183.
    D Raj and S P Puri, Phys Lett 29A, 510 (1969)F Recoillfss Fraction and Thermal Shift of W182 and W183Google Scholar
  674. (1).
    A. H. Kükoc, B. Singh, J. D. King, and H. W. Taylor, Nucl. Phys. A 143, 545 (1970).Google Scholar
  675. (2).
    Asilomar, P. 1079.Google Scholar
  676. (3).
    Ibid, P. 1006.Google Scholar
  677. (4).
    B. Persson, H. Blumberg, and D. Agresti, Phys. Rev. 170, 1066 (1968).Google Scholar
  678. 69C28 W-184.
    Y Chow, E S Greenbaum, R H Howls, F H H Hsu, P H Swerolow, and C S Wu, Phys Lett 30b, 171 (1969), Mussbauer Effect Following Coulomb Excitation Measurements of Electric Quadrupole Moment Ratios in The First Excited 2+ States of W182,4,6Google Scholar
  679. (1).
    E. Monnand, J. Blachot, and A. Moussa, Nuci. Phys. A134, 321 (1969).Google Scholar
  680. (2).
    Asilomar, p. 1080.Google Scholar
  681. (3).
    Ibid, p. 1006.Google Scholar
  682. 69C28 W-184.
    Y Chow, E S Greenbaum, R H Howls, F H H Hsu, P H Swerolow, and C S Wu, Phys Lett 30b, 171 (1969), Mussbauer Effect Following Coulomb Excitation Measurements of Electric Quadrupole Moment Ratios in The First Excited 2+ States of W182,4,6Google Scholar
  683. (1).
    Asilomar, p. 1067.Google Scholar
  684. (2).
    Average of values given in Asilomar, p. 997.Google Scholar
  685. 69R18 XE-129.
    S L Ruby and G K Shenoy, Phys Rev 186, 326 (1969), Change in Nuclear Radius upon Excitation for SN119, SE3121, TE125, 1127, 129, and XE129 from Mossbauer Isomer ShiftsGoogle Scholar
  686. (1).
    V. A. Balalaev, B. S. Dzhelepov, A. I. Medvedev, V. E. Ter-Nersesyants, I. F. Uchevatkins, and S. A. Shestopalova, Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 730 (1968).Google Scholar
  687. (2).
    Average of values given in Asilomar, p. 1076.Google Scholar
  688. (3).
    E. Mnck, Z. Physik 208, 184 (1968).Google Scholar
  689. 6S22 YH-17.
    C I Shidlcvsky and I Mayer, J Phys Chem Solids 30, 1207 (1969), Mossbauer Spectra of Rare Earth Suicides and GermanidesGoogle Scholar

Copyright information

© IFI/Plenum Data Corporation 1970

Authors and Affiliations

  • John G. Stevens
    • 1
    • 2
  • Virginia E. Stevens
    • 1
    • 2
  1. 1.Argonne National LaboratoryUSA
  2. 2.University of North Carolina at AshevilleUSA

Personalised recommendations