Other examples of electron deficient bonding

Part of the Studies in Modern Chemistry book series (SMC)


The criterion of electron deficiency that has been used in this book is that a molecule or ion possesses too few bonding electrons to allow a pair to be allocated to every pair of atoms close enough to be regarded as covalently bonded. The types of compound covered by this definition have included at one extreme substances like diborane, in which the electron deficiency is effectively localized in one section of the molecule, a section which accordingly serves as a point of attack by electron-rich species. At the other extreme are substances like borane anions BnHn 2- and carboranes C2BnHn+2, in which the electron deficiency is spread over the whole of the molecular skeleton, which therefore presents no localized reactive site for attack by nucleophiles.


Borane Anion Xenon Difluoride Cluster Bonding Ethyl Cation Transition Metal Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Field, F. H., and M. S. B. Munson, J. Amer. Chem. Soc., 1965, 87, 3289.CrossRefGoogle Scholar
  2. 2.
    Olah, G. A., G. Klopman, and R. H. SchlosbergJ. Amer. Chem. Soc. 1969, 91 3261.Google Scholar
  3. 3.
    Worstall, R. A., J. Amer. Chem. Soc., 1899, 21, 245.CrossRefGoogle Scholar
  4. 4.
    Clark, D. T., and D. M. J. Lilley, Chem. Comm., 1970, 549.Google Scholar
  5. 5.
    Clark, D. T., and D. M. J. Lilley, Chem. Comm., 1970, 1042.Google Scholar
  6. 6.
    Davis, B., D. H. Williams, and A. N. Y. Yeo, J. Chem. Soc. (B), 1970, 81.Google Scholar
  7. 7.
    Olah, G. A., and J. Lukas, J. Amer. Chem. Soc., 1967, 89, 4739.CrossRefGoogle Scholar
  8. 8.
    Olah, G. A., and J. M. Bollinger, J. Amer. Chem. Soc., 1967, 89, 4744.CrossRefGoogle Scholar
  9. 9.
    Bethell, D., and V. Gold, The structure of carbonium ions, Quart. Rev., 1958, 12, 173–203.CrossRefGoogle Scholar
  10. 10.
    See for example, Sargent, G. D., Bridged, non-classical carbonium ionsQuart. Rev. 1966, 20 301–371 for early work.Google Scholar
  11. 11.
    Olah, G. A., A. M. White, J. R. DeMember, A. Commeyras, and C. Y. Lui, J. Amer. Chem. Soc., 1970, 92, 4627.CrossRefGoogle Scholar
  12. 12.
    Cotton, F. A., Transition metal compounds containing clusters of metal atoms, Quart. Rev. (London), 1966, 20, 389–401.CrossRefGoogle Scholar
  13. 13.
    Penfold, B. R., Stereochemistry of metal cluster compounds, Perspectives in Struct. Chem., 1968, 2, 71–149;Google Scholar
  14. Chini, P., The closed metal carbonyl clusters, Inorg. Chim. Acta Rev., 1968, 2, 31–51.CrossRefGoogle Scholar
  15. 14.
    Baird, M. C., Metal—metal bonds in transition metal compounds, Progress in Inorg. Chem., 1968, 9, 1–159;CrossRefGoogle Scholar
  16. Abel, E. W., and F. G. A. Stone, The chemistry of transition-metal carbonyls; structural considerations, Quart. Rev. (London), 1969, 23, 325–371.CrossRefGoogle Scholar
  17. 15.
    Cotton, F. A., and T. E. Haas, Inorg. Chem., 1964, 3, 10.CrossRefGoogle Scholar
  18. 16.
    Kettle, S. F. A., Theoretica Chim. Acta, 1965, 3, 211.CrossRefGoogle Scholar
  19. 17.
    Green, M. L. H., The transition elements, Vol. II of Organometallic Compounds by G. E. Coates, M. L. H. Green, and K. Wade, 3rd Edn., Methuen, London, 1968;Google Scholar
  20. Coates, G. E., M. L. H. Green, P. Powell, and K. Wade, Principles of Organometallic Chemistry, Methuen, London, 1968.CrossRefGoogle Scholar
  21. 18.
    Wade, K., Chem. Comm., 1971, 792.Google Scholar

Copyright information

© K. Wade 1971

Authors and Affiliations

  • K. Wade
    • 1
  1. 1.University of DurhamUSA

Personalised recommendations