Structures and bonding of some higher boranes and boron polyhedra

Part of the Studies in Modern Chemistry book series (SMC)


We saw in Chapter 2 how the bridge bonding in diborane could be described simply in terms of two banana-shaped three-centre electron-pair bonds, although an understanding of the overall distribution of the valence electrons of diborane required a molecular orbital treatment which took into account the symmetry of the whole molecule. The concept of three-centre electron-pair bonds can profitably be applied to a wide variety of other electron deficient compounds. W. N. Lipscomb,1 for example, has shown how its use allows a relatively simple bonding interpretation to be made of the seemingly complicated structures of most of the higher hydrides of boron, as outlined below. Not all electron deficient compounds of boron have structures that are readily interpreted in terms of simple three-centre bonded schemes, however, and the second half of this chapter is concerned with some cage structures that figure in the hydride, halide, and alloy chemistry of boron as well as in the element itself, structures in which boron atoms are located at the corners of the equilateral triangular faces of polyhedra containing no bridging hydrogens. Bonding schemes for such structures are best arrived at by more or less full molecular orbital treatments.


Boron Atom Bonding Scheme Boron Hydride Terminal Hydrogen High Borane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipscomb, W. N., Adv. Inorg. Chem. Radiochem., 1959, 1, 117;CrossRefGoogle Scholar
  2. Lipscomb, W. N., Boron Hydrides, W. A. Benjamin, New York, 1963. Specific references to earlier work will be found in these sources.Google Scholar
  3. 2.
    Rules for naming boron compounds are set out in Inorg. Chem., 1968, 7, 1945.Google Scholar
  4. 3.
    Fawley, G. S., Acta Cryst., 1966, 20, 631.CrossRefGoogle Scholar
  5. 4.
    Hopkins, R. C., J. D. Baldeschwieler, R. Schaeffer, F. N. Tebbe, and A. Norman, J. Chem. Phys., 1965, 43, 975.CrossRefGoogle Scholar
  6. 5.
    Williams, R. E., F. J. Gerhart, and E. Pier, Inorg. Chem., 1965, 4, 1239;CrossRefGoogle Scholar
  7. Rietz, R. R., R. Schaeffer, and L. G. Sneddon, J. Amer. Chem. Soc., 1970, 92, 3514.CrossRefGoogle Scholar
  8. 6.
    Kasper, J. S., C. M. Lucht, and D. Harker, Acta Cryst., 1950, 3, 436.CrossRefGoogle Scholar
  9. 7.
    Tippe, A., and W. C. Hamilton, Inorg. Chem., 1969, 8, 464.CrossRefGoogle Scholar
  10. 8.
    Brill, R., H. Dietrich, and H. Dierks, Angew. Chem. Internat. Edn., 1970, 9, 524.CrossRefGoogle Scholar
  11. 9.
    Williams, R. L., N. N. Greenwood, and J. H. Morris, Spectrochim. Acta, 1965, 21, 1579;CrossRefGoogle Scholar
  12. MacLean, D. B., J. D. Odom, and R. Schaeffer, Inorg. Chem., 1968, 7, 408.CrossRefGoogle Scholar
  13. 10.
    Switkes, E., I. R. Epstein, J. A. Tossell, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 1970, 92, 3837;CrossRefGoogle Scholar
  14. Switkes, E., W. N. Lipscomb, and M. D. Newton, ibid., p. 3847.Google Scholar
  15. 11.
    Peters, C. R., and C. E. Nordman, J. Amer. Chem. Soc., 1960, 82, 5758.CrossRefGoogle Scholar
  16. 12.
    Hrostowski, H. J., and R. J. Myers, J. Chem. Phys., 1954, 22, 262;CrossRefGoogle Scholar
  17. see also Cohen, E. A., and R. A. Beaudet, ibid., 1968, 48, 1220.Google Scholar
  18. 13.
    Muetterties, E. L., and W. H. Knoth, Polyhedral Boranes, Marcel Dekker, New York, 1968.Google Scholar
  19. 14.
    Atoji, M., and W. N. Lipscomb, Acta Cryst., 1953, 6, 547;CrossRefGoogle Scholar
  20. Atoji, M., and W. N. Lipscomb, J. Chem. Phys., 1953, 21, 172.CrossRefGoogle Scholar
  21. 15.
    Longuet-Higgins, H. C., Quart. Rev., 1957, 11, 121.CrossRefGoogle Scholar
  22. 16.
    Schaeffer, R., Q. Johnson, and G. S. Smith, Inorg. Chem., 1965, 4, 917.CrossRefGoogle Scholar
  23. 17.
    Guggenberger, L. J., Inorg. Chem., 1969, 8, 2771.Google Scholar
  24. 18.
    Dobrott, R. D., and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 1779.CrossRefGoogle Scholar
  25. 19.
    Wunderlich, J. A., and W. N. Lipscomb, J. Amer. Chem. Soc., 1960, 82, 4427.CrossRefGoogle Scholar
  26. 20.
    Longuet-Higgins, H. C., and M. de V. Roberts, Proc. Roy. Soc. (London), 1955, A230, 110:CrossRefGoogle Scholar
  27. 21.
    Waddington, T. C., Trans. Faraday Soc., 1967, 63, 1313.CrossRefGoogle Scholar
  28. 22.
    Williams, R. E., Inorg. Chem., 1971, 10, 210.CrossRefGoogle Scholar
  29. 23.
    Wade, K., Chem. Comm., 1971, 792.Google Scholar

General references

  1. Adams, R. M. (ed.), Boron, Metalloboron Compounds and Boranes, John Wiley (Interscience), New York, 1964.Google Scholar
  2. Hawthorne, M. F., Endeavour, 1966, 25, 146.CrossRefGoogle Scholar
  3. Muetterties, E. L. (ed.), The Chemistry of Boron and its Compounds, John Wiley, New York, 1967.Google Scholar
  4. Eaton, G. R., and W. N. Lipscomb, N.M.R. Studies of Boron Hydrides and Related Compounds, W. A. Benjamin, New York, 1969.Google Scholar
  5. Brotherton, R. J., and H. Steinberg (eds.), Progress in Boron Chemistry. Vol. II, Pergamon Press, Oxford, 1970.Google Scholar

Copyright information

© K. Wade 1971

Authors and Affiliations

  • K. Wade
    • 1
  1. 1.University of DurhamUSA

Personalised recommendations