Advertisement

Axoplasmic Flow—the Fast Transport System in Mammalian Nerve Fibers

  • Sidney Ochs

Abstract

In the relatively short time since a review of axoplasmic flow appeared in the first edition of this book (Ochs, 1966), study of the subject has undergone several remarkable shifts in emphasis. Whereas it was previously believed necessary to present evidence in support of the concept that materials synthesized in the neuron somas are continuously transported down inside the axons, a number of studies have since then fully confirmed the phenomenon (e.g., Friede, 1966; Barondes, 1967; Ochs, 1969; Grafstein, 1969; Droz, 1969). Another change was the realization that slow and fast-moving components of axoplasmic flow are present in the fibers. Most of the previous evidence obtained with isotope-labeling techniques had supported a rate of axoplasmic flow of several millimeters per day, a value close to an earlier one arrived at from morphological evidence of damming proximal to a constriction of the nerve trunk (Weiss and Hiscoe, 1948). The increase in the volume of the fibers in the dammed portions above the constriction was interpreted as reflecting a growth of the axoplasmic contents down inside the fibers. However, evidence obtained by Dahlström and Häggendal (1966), Karlsson and Sjostrand (1968), Kerkut et al. (1967), Burdwood (1965), Lasek (1967, 1968), Livett et al. (1968), Ochs et al. (1967), Ochs and Johnson (1969), and Sjöstrand (1969) indicated the presence of a much faster moving component additional to the slow-moving component.

Keywords

Sciatic Nerve Ringer Solution Ventral Root Fast Transport Label Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, L., and Morgan, I. G. (1957). J. Neurochem., 14: 377.CrossRefGoogle Scholar
  2. Autilio, L. A., Appel, S. H., Pettis, B. Lambeth, P.-L. (1968). Biochemistry, 7: 2615.CrossRefGoogle Scholar
  3. Banks, P., Mangnall, D., and Mayor, D. J. (1969). Physiol., 200: 745.Google Scholar
  4. Barondes, S. (1966). J. Neurochem., 13: 721.CrossRefGoogle Scholar
  5. Barondes, S. and Samson, F., eds. Axoplasmic Transport. Neurosci. Res. Prog. Bull., 5.Google Scholar
  6. Berl, S., and Puszkin, S. (1969). Internat. Soc. Neurochem., 2nd Meeting, Milan. Proc., p. 87.Google Scholar
  7. Borisy, G. G., and Taylor, E. W. (1967). J. Cell. Biol., 34:525 and 535.Google Scholar
  8. Bray, J. J., and Austin, L. J. (1968). J. Neurochem., 15: 731.CrossRefGoogle Scholar
  9. Bray, J. J., and Austin, L. J. and Austin, L. J. (1969). Brain Res., 12: 230.CrossRefGoogle Scholar
  10. Burdwood, W. O. (1965). J. Cell. Biol., 27: 115A.Google Scholar
  11. Dahlström, A. (1968). Europ. J. Pharm., 5: 111.CrossRefGoogle Scholar
  12. Dahlström, A. and Haggendal, J. (1966). Acta Physiol. Scand., 67: 278.CrossRefGoogle Scholar
  13. Droz, B. (1969). Int. Rev. Cytol., 25: 363.CrossRefGoogle Scholar
  14. Droz, B. Barondes, S. H. (1969). Science, 165: 1131.CrossRefGoogle Scholar
  15. Edström, A., Edström, J.-E., and Hokfelt, T. (1969). J. Neurochem., 16: 53.CrossRefGoogle Scholar
  16. Friede, R. (1959). Exp. Neurol., 1: 441.CrossRefGoogle Scholar
  17. Friede, R. (1966). Topographic Brain Chemistry. New York: Academic Press.Google Scholar
  18. Gerard, R. W. (1932). Physiol. Rev., 12: 469.Google Scholar
  19. Grafstein, B. (1969). In: Adv. Biochem. Psychopharmacology, Costra, E., and Greengard, P., eds. 1: 11.Google Scholar
  20. Huxley, H. E. (1969). Science, 164: 1356.Google Scholar
  21. Iversen, L. L. (1967). The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: Cambridge University Press.Google Scholar
  22. Jahn, T. L., and Bovee, E. C. (1969). Physiol. Rev., 49: 793.Google Scholar
  23. Johnson, J. (1970). Brain Res., 18: 4270.Google Scholar
  24. Kapeller, K., and Mayor, D. (1969). Proc. Roy. Soc. B., 172: 39.CrossRefGoogle Scholar
  25. Karlsson, J.-O., and Sjöstrand, J. (1968). Brain Res., 11: 431.CrossRefGoogle Scholar
  26. Sjöstrand, J. (1969). Brain Res., 13: 617.CrossRefGoogle Scholar
  27. Kerkut, G. A., Shapira, A., and Walker, R. J. (1967). Comp. Biochem. Physiol., 23: 729.Google Scholar
  28. Kidwai, A. M., and Ochs, S. (1969). J. Neurochem., 16: 1105.CrossRefGoogle Scholar
  29. Koenig, E. (1967). J. Neurochem., 14: 437.CrossRefGoogle Scholar
  30. Kreutzberg, G. (1969). Proc. Nat. Acad. Sci. U.S.A., 62: 722.Google Scholar
  31. Lajtha, A. (1964). Int. Neurobiol., 6: 1.CrossRefGoogle Scholar
  32. Lasek, R. (1967). In: Axoplasmic transport, Barondes, S., ed. Neurosci. Res.Google Scholar
  33. Lasek, R. Prog. Bull., 5:314 (1967). In: Axoplasmic transport, Barondes, S.Google Scholar
  34. Lasek, R. Neurosci. Res. Prog. Bull., 5, No. 4. (1968). Brain Res., 7:360.Google Scholar
  35. Lehmann, J. E. (1937). Am. J. Physiol., 119: 111.Google Scholar
  36. Lehninger, A. L. (1965). The Mitochondrium. New York: W. A. Benjamin.Google Scholar
  37. Lipmann, F. (1969). Science, 164: 1024.CrossRefGoogle Scholar
  38. Livett, B. G., Geffen, L. B., and Austin, L. (1968). J. Neurochem., 15: 931.CrossRefGoogle Scholar
  39. Maruhashi, J., and Wright, E. B. (1967). J. Neurophysiol., 30: 434.Google Scholar
  40. McEwen, B. S., and Grafstein, B. (1968). J. Cell Biol., 38: 494.CrossRefGoogle Scholar
  41. Miani, N. (1963). J. Neurochem., 10:859. Di Girolamo, A., and DiGoogle Scholar
  42. Girolamo, M. (1966). J. Neurochem., 13: 755.CrossRefGoogle Scholar
  43. Miledi, R., and Slater, C. R. (1970). J. Physiol., 207: 507.Google Scholar
  44. Morgan, I. G., and Austin, L. (1969). J. Neurobiol., 1: 155.CrossRefGoogle Scholar
  45. Ochs, S. (1966). In: Macromolecules and Behavior, Gaito, J., ed. New York:Google Scholar
  46. Appleton-Century-Crofts. (1967). In: Axoplasmic transport, Bar-ondes, S., and Samson, F., eds. Neurosci. Res. Prog. Bull., 5. (1970). In: Protein Metabolism of the Nervous System, Lajtha, A., ed. New York: Plenum Press.Google Scholar
  47. Dalrymple, D. E., and Richards, G. (1962). Exp. Neurol., 5: 349–363.CrossRefGoogle Scholar
  48. Dalrymple, D. E., and Richards, G. and Johnson, J. (1969) fl. J. Neurochem., 16: 945.Google Scholar
  49. Johnson, J., and Ng, M.-H. (1967). J. Neurochem., 14: 317.CrossRefGoogle Scholar
  50. Johnson, J., and Ng, M.-H. and Ranish, N. (1970a). J. Neurobiol., 1: 247.Google Scholar
  51. Johnson, J., and Ng, M.-H. and Ranish, N. (1970b). Science, 167: 878.CrossRefGoogle Scholar
  52. Sabri, M. I.,and Johnson, J. (1969a). Science, 163: 686.CrossRefGoogle Scholar
  53. Sabri, M. I., and Ranish, N. (1969b). Biophys. J., 9: A15.Google Scholar
  54. Sabri, M. I., and Banish, N. (1970a). J. Neurobiol., 1: 329.Google Scholar
  55. Sabri, M. I., Hollingsworth, D., and Helmer, E. (1970). Am. Neurochem. Soc., 1:59Google Scholar
  56. Sabri, M. I., Hollingsworth, D., and Helmer, E. and Fed. Proc. (1970a), 29: 264.Google Scholar
  57. Porter, K. R. (1966). In: Principles of Biomolecular Organization (CIBA Foundation Sympos.), Wolstenholme, G. E. W., and O’Connor, M., eds. Boston: Little, Brown and Co.Google Scholar
  58. Singer, M., and Salpeter, M. M. (1968). J. Morphol., 120: 281.CrossRefGoogle Scholar
  59. Sjöstrand, J. (1969). Exp. Brain Res., 8: 105.CrossRefGoogle Scholar
  60. Sjöstrand, J. and Karlsson, J.-O. (1969). J. Neurochem., 16: 833.CrossRefGoogle Scholar
  61. Schmitt, F. O. (1968). Neurosci. Res. Prog. Bull., 6: 114.Google Scholar
  62. Weiss, P., and Hiscoe, H. B. (1948). J. Exp. Zool., 107: 315.Google Scholar
  63. Pillai, A. (1965). Proc. Nat. Acad. Sci. U.S.A., 54: 48.Google Scholar
  64. Wettstein, F. O., Noll, H., and Penman, S. (1964). Biochem. Biophys. Acta, 87: 525.Google Scholar
  65. Wright, E. (1946). Am. J. Physiol., 147: 78.Google Scholar
  66. Wright, E.: (1947). Am. J. Physiol., 148: 174.Google Scholar
  67. Yarmolinsky, M. B., and de la Haba, G. L. (1959). Proc. Nat. Acad. Sci. U.S.A., 45: 1721.Google Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Sidney Ochs
    • 1
  1. 1.Indiana University Medical CenterIndianapolisUSA

Personalised recommendations