Correlation of the S-100 Brain Protein with Behavior

  • Holger Hydén
  • Paul W. Lange


During the last few years we have investigated the acidic brain protein S-100 in hippocampal nerve cells during a behavioral test in rats. We wish to report that the amount of nerve cell S-100 protein increases in trained animals and that the S-100 protein is specifically correlated to learning. This linkage was demonstrated by the use of antiserum against the S-100 protein, which was injected intraventricularly during the course of the training and localized in the hippocampus by specific fluorescence. The presence of antiserum against the S-100 protein in the hippocampus prevents further learning during continued training.


Nerve Cell Performance Curve Specific Fluorescence Brain Protein Trained Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, G. S., and Edelman, G. M. (1968). J. Biol. Chem., 243: 6234.Google Scholar
  2. Bogoch, S. (1968). The Biochemistry of Memory. London: Oxford University Press.Google Scholar
  3. Dannies, P. S., and Levine, L. (1969). Biochem. Biophys. 37: 587.CrossRefGoogle Scholar
  4. Hydén, H. (1959). Nature, 184: 433.CrossRefGoogle Scholar
  5. Egyhazi,Nat. Acad. Sci. U.S.A., 52: 1030.Google Scholar
  6. Lange, P. W.mat., 35: 336.Google Scholar
  7. Lange, P. W. (1970). Proc.U.S.A., 65: 898.CrossRefGoogle Scholar
  8. McEwen, B. (1966). Proc.U.S.A., 55: 354.CrossRefGoogle Scholar
  9. Jankovié, B. D., Rakic, L., Veskov, R., and Horvat, J. 218: 270.Google Scholar
  10. Klatzo, I., Miguel, J., Ferris, P. J., Prokop, J. D., and Smith, D. E. (1964). J. Neuropath. Exp. Neurol., 23: 18.Google Scholar
  11. Kosinski, E., and Grabar, P. (1967). J. Neurochem., 14: 273.CrossRefGoogle Scholar
  12. MacPherson, C. F. C., and Liakopolou, A. (1965). Fed. Proc., 24:Part 1, Abstr. 272.Google Scholar
  13. McEwen, B. S., and Hydén, H. (1966). J. Neurochem., 13: 823.CrossRefGoogle Scholar
  14. Mihailovié, L., Divac, I., Mitrovic, K., Milosevic, D., and Jankovié, B. D. (1969). Exp. Neurol., 24: 325.CrossRefGoogle Scholar
  15. Hydén, H. (1969). Brain Res., 16: 243.CrossRefGoogle Scholar
  16. Moore, B. W., and McGregor, D. (1965). J. Biol. Chem., 240: 1647.Google Scholar
  17. Perez, V. J. (1968). Physiological and Biochemical Aspects of Nervous Integration, Carlson, F. ed. Englewood Cliffs, N.J.: Prentice-Hall.Steinwall, O., and Klatzo, I. (1964). Acta Neurol. Scand., 41:Suppl. 13.Google Scholar
  18. Walsh, R. N., Budtz-Olsen, O. E., Penny, J. E., and Cummins, R. A. (1969). J. Comp. Neurol., 137: 361.Google Scholar
  19. Wareck, A. K., and Bauer, H. (1967). J. Neurochem., 14: 783.CrossRefGoogle Scholar
  20. Wentworth, K. L. (1942). Genet. Psychol. Monogr., 26: 55.Google Scholar
  21. Zuckerman, J., Herschman, H., and Levine, L. (1970). J. Neurochem., 17: 247.CrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Holger Hydén
    • 1
  • Paul W. Lange
    • 1
  1. 1.Institute of Neurobiology, Faculty of MedicineUniversity of GöteborgGöteborgSweden

Personalised recommendations