Advertisement

Biological Assays for the Molecular Coding of Acquired Information

  • Georges Ungar

Abstract

There have been three main experimental approaches to the problem of molecular mechanisms in the processing of acquired information. The first approach, initiated by Hydén (1959), is the attempt to demonstrate, by means of chemical and physical methods, that acquisition and fixation of information are accompanied by chemical changes in the brain (see reviews by Booth, 1967, 1970). The second approach has shown that interference with the synthesis of RNA and protein can impair the fixation of acquired information (as reviewed by Cohen, 1970). The results of the two methods converge toward the conclusion that information processing is associated with an increased turnover of RNA and proteins in the brain and that this increase is an essential condition of the fixation of information. Some of the results suggest also the possibility of qualitative RNA and protein changes but the precise nature of these changes would be practically impossible to specify with the techniques available at present. However, recent attempts by immunological methods (Janković et al., 1968) and by DNA-RNA hybridization techniques (Machlus and Gaito, 1969) may offer promising leads. Up to now, the only evidence for actual molecular coding of information in the nervous system has been produced by the third approach, which is the object of this chapter. This method consists of detecting the chemical correlates of information processing by biological assay rather than by chemical or physical means or physical means.

Keywords

Conditioned Stimulus Unconditioned Stimulus Startle Response Biological Assay Brain Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G., and Faiszt, J. (1967). Nature (London), 216: 198.CrossRefGoogle Scholar
  2. Albert, D. J. (1966). Neuropsychologia, 4: 49.CrossRefGoogle Scholar
  3. Babich, F. R., Jacobson, A. L., and Bubash, S. (1965). Proc. Nat. Acad. Sci. U.S.A., 54: 1229.Google Scholar
  4. Bennett, E. L., and Calvin, M. (1964). Neurosci. Res. Prog. Bull., July-August.Google Scholar
  5. Best, R. M. (1968). Psychol. Rep., 22: 107.CrossRefGoogle Scholar
  6. Block, R. A., and McConnell, J. V. (1967). Nature (London), 215: 1465.CrossRefGoogle Scholar
  7. Booth, D. A. (1967). Psychol. Bull., 68: 149.CrossRefGoogle Scholar
  8. Booth, D. A. (1970). In: Molecular Mechanisms in Memory and Learning, Ungar, G., ed. New York: Plenum Press.Google Scholar
  9. Bozhko, G. Kh. (1968). Pavlov J. Higher Nervous Activity, 18: 1085.Google Scholar
  10. Byrne, W. L., and Hughes, A. (1967). Fed. Proc., 26: 676.Google Scholar
  11. Byrne, W. L., and Hughes, A. and Samuel, D. (1966). Science, 154:418.Google Scholar
  12. Samuel, D., Bennett, E. L., Rosenzweig, M. R., Wasserman, E., Wagner, A. R., Gardner, R., Galambos, R., Berger, B. D., Margules, D. L., Fenichel, R. L., Stein, L., Corson, Biological Assays for the Molecular Coding of Acquired Information/97 J. A., Enesco, H. E., Chorover, S. L., Holt, C. E., III, Schiller, P. H., Chiapetta, L., Jarvik, M. E., Leaf, R. C., Dutcher, J. D., Horowitz, Z. P., and Carlson, P. L. (1966). Science, 153: 658.Google Scholar
  13. Chapouthier, G., and Ungerer, A. (1968). C. R. Acad. Sci. ( D) (Paris ), 267: 769.Google Scholar
  14. Chapouthier, G., and Ungerer, A. (1969). Rev. Comportement Animal, 3: 64.Google Scholar
  15. Cohen, H. D. (1970). In Molecular Mechanisms in Memory and Learning, Ungar, G., ed. New York: Plenum Press.Google Scholar
  16. Corson, J. A., and Enesco, H. E. (1968). J. Biol. Psychol., 10: 10.Google Scholar
  17. Daliers, J., and Rigaux-Motquin, M. L. (1968). Arch. Int. Pharmacodyn., 176: 461.Google Scholar
  18. Dyal, J. A., and Golub, A. M. (1968). Psychon. Sci., 11: 13.Google Scholar
  19. Golub, A. M., and Marrone, R. L. (1967). Nature (London), 214: 720.CrossRefGoogle Scholar
  20. Essman, W. B., and Lehrer, G. M. (1967). Fed. Proc., 26: 263.Google Scholar
  21. Faiszt, J., and Adam, G. (1968). Nature (London), 220: 367.CrossRefGoogle Scholar
  22. Fjerdingstad, E. J. (1969). Scand. J. Psychol., 10: 220.CrossRefGoogle Scholar
  23. Fjerdingstad, E. J. (1970). In: Chemical Transfer of Learned Information, Fjerdingstad, E. J., ed. North Holland Publishing Company (in preparation).Google Scholar
  24. Fjerdingstad, E. J. Nissen, Th., and Roigaard-Peterson, H. H. (1965). Scand. J. Psychol., 6: 1.CrossRefGoogle Scholar
  25. Gay, R., and Raphelson, A. (1967). Psychon. Sci,. 8: 369.Google Scholar
  26. Gibby, R. G., and Crough, D. G. (1967). Psychon. Sci., 9: 413.Google Scholar
  27. Crough, D. G., and Thios, S. J. (1968). Psychon. Sci., 12: 295.Google Scholar
  28. Giurgea, C., Daliers, J., and Mouravieff, F. (1969). Abstracts, 4th Internat. Cong. Pharmacol. (Basel, Switzerland, July 14–18, 1969 ). Basel: Schwabe & Co.Google Scholar
  29. Golub., A. M., and McConnell, J. V. (1968): Psychon. Sci., 11: 1.Google Scholar
  30. Epstein, L., and Mc-Connell, J. V. (1969). J. Biol. Psychol., 11: 44.Google Scholar
  31. Gordon, M. W., Deanin, G. G., Leonhardt, H. L., and Gwynn, R. H. (1966). Amer. J. Psychiat., 122: 1174.Google Scholar
  32. Gross, C. G., and Carey, F. M. (1965). Science, 150: 1749.CrossRefGoogle Scholar
  33. Gurowitz, E. M. (1969). The Molecular Basis of Memory. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  34. Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley. Hoffman, R. F., Steward, C. N., and Bhogavan, H. N. (1967). Psychon. Sci., 9: 151.Google Scholar
  35. Hydén, H. (1959). 4th Internat. Cong. Biochem. (Vienna). New York: Pergamon Press.Google Scholar
  36. Jacobson, A. L., Babich, F. R., Bubash, S., and Goren, C. (1966a). Psychon.Google Scholar
  37. Sci., 4:3. Fried, C., and Horowitz, S. D. (1966b). Nature (London), 209:599.Google Scholar
  38. Fried, C., and Horowitz, S. D. (1966c). Nature (London), 209: 601.CrossRefGoogle Scholar
  39. Fried, C., and Horowitz, S. D. (1967). J. Comp. Physiol. Psychol., 64: 73.Google Scholar
  40. Jankovié, B., Rakic, L., Veskov, R., and Horvat, J. (1968). Nature (London), 218: 270.CrossRefGoogle Scholar
  41. Jensen, D. (1965). Animal Behay., 13: 9.Google Scholar
  42. John, E. R. (1964). In: Brain Function, Brazier, M. A., ed., Vol. 2. Berkeley, California: Univ. of California Press.Google Scholar
  43. Kabat, L. (1964). Worm Runner’s Digest, 6: 23.Google Scholar
  44. Kimble, R. J., and Kimble, D. P. (1966). Worm Runner’s Digest, 8: 32.Google Scholar
  45. Kleban, M. H., Altschuler, H., Lawton, M. P., Parris, J. L., and Lorde, C. A. (1968). Psychol. Rep., 23: 51.CrossRefGoogle Scholar
  46. Krylov. O. A., Kalyuzhnaya, P. I., and Tongur, V. S. (1969). Pavlov J. Higher Nervous Activity, 19: 286.Google Scholar
  47. Lagerspetz, K. M. J., Raitis, P., Tini, R., and Lagerspetz, K. Y. H. (1968). Scand. J. Psychol., 9: 225.CrossRefGoogle Scholar
  48. Lambert, R., and Saurat, M. (1967). Bull. C.E.R.P., 16: 435.Google Scholar
  49. Luttges, M., Johnson, T., Buck, C., Holland, J., and McCaugh, J. (1966). Science, 151: 834.CrossRefGoogle Scholar
  50. Machlus, B., and Gaito, J. (1969). Nature (London), 222: 573.CrossRefGoogle Scholar
  51. McConnell, J. V. (1962). J. Neuropsychiat., 3 (Suppl. 1): s42. (1965).Google Scholar
  52. Worm Runner’s Digest, 7:3. and Shelby, J. M. (1970). In: Molecular Mechanisms in Memory and Learning, Ungar, G., ed. New York: Plenum Press. Shigehisa, T., and Salive, H. (1968). J. Biol. Psychol., 10:32.Google Scholar
  53. Moscona, M. H., and Moscona, A. A. (1963). Science, 142: 1070.CrossRefGoogle Scholar
  54. Moos, W. S., Le Van, H., Mason, B. T., Mason, C. S., and Hebron, D. L. (1969). Experientia, 25: 1215.CrossRefGoogle Scholar
  55. Nissen, Th., R¢igaard-Petersen, H. H., and Fjerdingstad, E. J. (1965). Scand. J. Psychol., 6: 265.CrossRefGoogle Scholar
  56. Reinis, S. (1965). Activ. Nerv. Super., 7:167. (1966). Worm RunGoogle Scholar
  57. Reinis, S. Digest, 8:7. (1968). Nature (London), 220:177.Google Scholar
  58. Revusky, S. H., and DeVenuto, F. (1967). J. Biol. Psychol., 9:18. R¢igaard-Petersen, H. H., Nissen, Th., and Fjerdingstad, E. J. (1968). Scand. J. Psychol., 9: 1.Google Scholar
  59. Rosenblatt, F. (1967). In: Computer and Information Sciences, Vol. II, Tou, J., ed. Washington, D.C.: Spartan Books. (1970). In: Molecular Mechanisms in Memory and Learning, Ungar, G., ed. New York: Plenum Press. Farrow, J. T., and Herblin, W. F. (1966). Nature (London), 209: 46.Google Scholar
  60. Rosenthal, E., and Sparber, S. B. (1968). Pharmacologist, 10: 168.Google Scholar
  61. Sperry, R. W. (1963). Proc. Nat. Acad. Sci. U.S.A., 50: 703.Google Scholar
  62. Szilard, L. (1964). Proc. Nat. Acad. Sci. U.S.A., 51: 1092.Google Scholar
  63. Ungar, G. (1967a). In: Proc. 5th Internat. Cong. C.I.N.P. (Washington, March, 1966). Amsterdam: Excerpta Medica. (1967b). J. Biol.Google Scholar
  64. Ungar, G. Psychol., 9: 12. (1968).Google Scholar
  65. Ungar, G. Perspectives Biol. Med., 11:217. (1971a). In: Methods in Pharmacology, Schwartz, A. ed. New York: Appleton-Century-Crofts.Google Scholar
  66. Ungar, G. (1970b). In: Symposium on Protein Metabolism in the Nervous System, Lajtha, A., ed. New York: Plenum Press.Google Scholar
  67. Ungar, G. (1970c). In: Handbook of Neurochemistry, Lajtha, A., ed.Google Scholar
  68. Ungar, G. (1970c). In: Handbook of Neurochemistry, Lajtha, A., ed.Google Scholar
  69. Ungar, G. (1970e). Int. Rev. Neurobiol., 13: 223.Google Scholar
  70. Ungar, G. and Fjerdingstad, E. J. (1970). In: Symposium on Biology of Memory ( Tihany, HungaryGoogle Scholar
  71. Ungar, G. and Fjerdingstad, E. J. (1970). In: Symposium on Biology of Memory ( Tihany, HungaryGoogle Scholar
  72. Ungar, G. (1967). Nature (London), 214: 453.CrossRefGoogle Scholar
  73. Ungar, G. and Oceguera-Navarro, C. (1965). Nature (London), 207: 301.CrossRefGoogle Scholar
  74. Ungar, G. Galvan, L., and Clark, R. H. (1968). Nature (London), 217: 1259.CrossRefGoogle Scholar
  75. Westerman, R. A. (1963). Science, 140: 676.CrossRefGoogle Scholar
  76. Wolthuis, O. (1969). Arch. Int. Pharmacodyn. 182: 439.Google Scholar
  77. Anthoni, J., Stevens, W. (1969). Acta Physiol. Pharmacol., 15: 93.Google Scholar
  78. Zelman, A., Kabat, L., Jacobson, R., and McConnell, J. V. (1963). Worm Runner’s Digest, 5: 14.Google Scholar
  79. Zippel, H. P., and Domagk, G. F. (1969). Experentia, 25: 938.CrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Georges Ungar
    • 1
  1. 1.Baylor College of MedicineHoustonUSA

Personalised recommendations