Macromolecules—Functional and Biochemical Correlates

  • G. P. Talwar
  • Zafar Iqbal


The role of small molecules, in particular the monovalent and divalent cations and neurohumors, has been well recognized in the central nervous system. The former contribute to the development of resting potentials across the membranes. They also impart, along with structural components, the properties of excitability to these cells. Their dynamics are inherently associated with the generation of action potentials. Neuro-humors as a class have an important function in transmission of messages, excitatory or inhibitory, from one cell to the other. Several such molecules have been identified and chemically characterized. The fact that many compounds with pronounced psychoactive effects have structures closely resembling the neurotransmitters points to the great relevance of these “micro” molecules to the brain function. Some of these issues have recently been discussed elsewhere (Talwar and Singh, 1970) and would not come under the purview of this chapter.


Visual Cortex Electrical Activity Occipital Cortex Tritiated Water Flicker Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., Brody, J., and Ramahi, H. (1967). J. Neurochem., 14: 1133.Google Scholar
  2. Agranoff, B. W. (1967). Sci. Amer., 216: 115Google Scholar
  3. Davis, R. E., and Brink, J. J. (1965). Proc, Nat. Acad. Sci. U.S.A., 54: 788.Google Scholar
  4. Albert, D. J. (1966). Neuroscychologica, 4: 79.Google Scholar
  5. Appel, S. H. (1967). Nature, 213: 1253.Google Scholar
  6. Davis, W., and Scotts (1967). Science, 157: 836.Google Scholar
  7. Austin, L., and Morgan, I. G. (1967). J. Neurochem., 14: 377.Google Scholar
  8. Babich, F. R., Jacobson, A. L., Bubash, S., and Jacobson, A. (1965). Science, 149: 656.Google Scholar
  9. Balazs, R., and Cocks, W. A. (1967). J. Neurochem., 14: 1035.Google Scholar
  10. Barbato, I. W. M., and Barbato, L. (1965). J. Neurochem., 12: 60.Google Scholar
  11. Barr, M. L., and Bertram, E. G. (1949). Nature (London), 163: 676.Google Scholar
  12. Benda, P. (1968a). Rev. Neurol (Paris), 118:364. (1968b). Rev.Google Scholar
  13. Neurol (Paris), 118:368. Lightbody, J., Sato, G., Levine, L., andGoogle Scholar
  14. Sweet, W. (1968). Science, 161: 370.Google Scholar
  15. Bennett, E. L., and Calvin, M. (1964). Neurosciences Res. Progr. Bull., 2 (No. 4): 3.Google Scholar
  16. Bernsohn, J., Barron, K. D., and Hess, A. R. (1964). Progr. Brain Res., 9: 161.Google Scholar
  17. Bodian, D. (1965). Proc. Nat. Acad. Sci. U.S.A., 53: 418.Google Scholar
  18. Bondy, S. C. (1966). J. Neurochem., 13: 955.Google Scholar
  19. Brattgârd, S. O. (1951). Exp. Cell. Res., 2: 693.Google Scholar
  20. Breyer, U. (1965). J. Neurochem., 12: 131.Google Scholar
  21. Brinley, F. J. (1963). In: Pfeiffer, C. C., and Smythies, J. R., eds., Interna-tional Review of Neurobiology, Vol. 5. New York: Academic Press.Google Scholar
  22. Burgess, R. R. Travers, A. A., Dun, J. J., and Bautz, E. K. F. (1969). Nature (London), 221: 43.Google Scholar
  23. Burt, A. M. (1968). J. Exp. Zool., 169: 107.Google Scholar
  24. Byrne, W. L., Samuel, D., Bennet, E. L., Rosenzweig, M. R., Wasserman, E., Wagner, A. R., Gardner, F., Galambos, R., Berger, B. D., Margules, D. L., Fenichel, R. L., Stein, L., Carson, J. A., Enesco, H. E., Chorover, S. L., Holt, C E., Schiller, P. H., Chiappetta, L., Jarvik, M. E., Leaf, R. C., Dutcher, J. D., Horovitz, Z. P., and Carlson, P. L. (1966). Science, 153: 658.Google Scholar
  25. Campbell, T. L. (1966). Science, 152: 232.Google Scholar
  26. Cantoni, G. L. (1960). In: Florkin, M., and Mason, H. S., eds., Comparative Biochemistry, Vol. 1. New York: Academic Press.Google Scholar
  27. Chamberlain, T. J., Rothschild, G. H., and Gerard, R. W. (1963). Proc. Nat. Acad. Sci. U.S.A., 49: 918.Google Scholar
  28. Chentsov, Iu. S., Boroviagni, V. L., Brodskii, V. Ia. (1961). Biofizika, 6: 590.Google Scholar
  29. Chitre, V. S., and Talwar, G. P. (1963). Ind. J. Med. Res., 51: 60.Google Scholar
  30. Chopra, S. P., and Talwar, G. P. (1964). J. Neurochem., 11: 439.Google Scholar
  31. Cohen, H. D., and Barondes, S. H. (1966). J. Neurochem., 13: 207.Google Scholar
  32. Corning, W. C., and John, E. R. (1961). Science, 134: 1363.Google Scholar
  33. Côte, L. (1964). Life Sci., 3: 899.Google Scholar
  34. Crain, S. M. (1952). Proc. Soc. Exp. Biol. Med., 81: 49.Google Scholar
  35. Daneholt, B., and Brattgârd, S. O. (1966). J. Neurochem., 13: 913.Google Scholar
  36. Dawson, D. M. (1967). J. Neurochem., 14: 939.Google Scholar
  37. De Robertis, E. (1967). Science, 150: 907.Google Scholar
  38. Dingman, W., and Sporn, M. B. (1961). J. Psychiat. Res., 1:1. and Sporn, M. B. (1964). Science, 144: 26.Google Scholar
  39. Diperri, R., Himwich, W. A., and Peterson, J. (1964). Progr. Brain Res., 9: 89.Google Scholar
  40. Dixon, M., and Webb, E. J. (1958). In: Enzymes. New York: Academic Press. Edström, J. E., and Pigon, A. (1958). J. Neurochem., 3:95.Google Scholar
  41. Eigen, M. (1966). In: Schmitt, F. O., and Melnechuk, T., eds., Neuroscience Research Symposium Summaries. Cambridge, Mass.: M.I.T. Press.Google Scholar
  42. Einarson, L., and Krogh, E. (1955). J. Neurol. Neurosurg. Psychiat., 18. 1Google Scholar
  43. Epstein, M. H., and O’Conner, J. S. (1966). J. Neurochem., 13: 907.Google Scholar
  44. Fahn, S. (1968). Experientia, 24: 544.Google Scholar
  45. Fjerdingstad, E. J., Nissen, T., and Roigaard-Petersen, H. H. (1965). Scand. J. Psychol., 6: 1.Google Scholar
  46. Flexner, L. B., and Flexner, J. B. (1949). J. Cell. Comp. Physiol., 34: 115.Google Scholar
  47. Dela Haba, G., and Roberts, R. B. (1965). J. Neurochem., 12: 535.Google Scholar
  48. Roberts, R. B. (1967). Science, 155: 1377.Google Scholar
  49. Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957). In: Richter, D., ed., Metabolism of the Nervous System. London: Pergamon Press.Google Scholar
  50. Fox, M. W., Inman, O. R., and Himwich, W. A. (1966). J. Comp. Neurol., 127: 199.Google Scholar
  51. Frey, P. W., and Polidora, V. J. (1967). Science, 155: 1281.Google Scholar
  52. Gaito, J. (1966). In: Gaito, J., ed., Macromolecules and Behavior, 1st ed. New York: Appleton-Century-Crofts.Google Scholar
  53. Garcia-Anstt, Jr., E. (1954). Proc. Soc. Exp. Biol. Med., 86: 348.Google Scholar
  54. Geiger, A., and Yamaski, S. (1956). J. Neurochem., 1: 93.Google Scholar
  55. Yamaski, S., and Lyons, R. (1956). Amer. J. Physiol., 184: 239.Google Scholar
  56. Glasky, A. J., and Simon, L. N. (1966). Science, 151: 702.Google Scholar
  57. Glow, P. H., and Rose, S. (1964). Nature (London), 202: 422.Google Scholar
  58. Gombos, G., Vincendon, G., Tardy, J., and Mandel, P. (1966). CR Acad. Sci. ( D) (Paris ), 263: 15–33.Google Scholar
  59. Gomirato, G. (1954). J. Neuropath. Exp. Neurol., 13: 359.Google Scholar
  60. Gyllensten, L., and Lindberg, J. (1964). J. Comp. Neurol., 122: 79.Google Scholar
  61. Hamberger, C. A., Hydén, H., and Nilsson, G. (1949). Acta Otolaryngol. Suppl., 75: 124.Google Scholar
  62. Harris, H. (1970). In: Wolstenholme, G. E. W., and Knight, J., eds., Control Processes in Multicellular Organisms-A Ciba Foundation Symposium. London: J. and A. Churchill.Google Scholar
  63. Hayden, R. O., Garoutte, B., Wagner, J., and Aird, R. B. (1961). Proc. Soc. Exp. Biol. Med., 107: 754.Google Scholar
  64. Himwich, W. A., and Peterson, J. C. (1959). Biol. Psychiat., 1: 2.Google Scholar
  65. Hydén, H. (1943). Acta Physiol. Scand., 6: Suppl. 17. (1958). In: Proceedings of International Congress of Biochem. 4th Congress Symposium III, Brucke, F., ed. London: Pergamon Press. (1960). In: Brachet, J., and Mirsky, H. E., eds., The Cell, Vol. IV. New York: Academic Press.Google Scholar
  66. Hydén, H. and McEwen, B. S. (1966). Proc. Nat. Acad. Sci. U.S.A., 55: 354.Google Scholar
  67. Hydén, H. and Egyhazi, E. (1962). Proc. Nat. Acad. Sci. U.S.A., 48: 1366.Google Scholar
  68. Hydén, H. and Egyhazi, E. (1963), Proc. Nat. Acad. Sci. U.S.A., 49: 618.Google Scholar
  69. Egyhazi, E. (1964). Proc. Nat. Acad. Sci. U.S.A., 52: 1030.Google Scholar
  70. Iqbal, Z., Sharma, S. K., and Talwar, G. P. Unpublished data. Jacob, M., Stevenin, J., Jund, R., Judes, C., and Mandel, P. (1966). J. Neurochem., 13: 619.Google Scholar
  71. Jaffery, N. F., and Talwar, G. P. Unpublished data.Google Scholar
  72. Jarnefelt, J. (1961). Biochem. Biophys. Acta., 48: 104.Google Scholar
  73. Johnson, T. C. (1967). J. Neurochem., 14: 1075.Google Scholar
  74. Jung, R. (1958). Exp. Cell Res. Suppl., 5: 262.Google Scholar
  75. Katzman, R., and Wilson, C. E. (1961). J. Neurochem., 7: 113.Google Scholar
  76. Kessler, D., Levine, L., and Fasman, G. (1968). Biochemistry (Wash.), 7: 758.Google Scholar
  77. Kahn, A. A., and Wilson, J. E. (1965). J. Neurochem., 12: 81.Google Scholar
  78. Kilboum, B. T., Dunitz, J. D., Pioda, L. A. R., and Simon, W. (1967). J. Molec. Biol., 30: 559.Google Scholar
  79. Kobayashi, T., Inman, O. R., Buno, W., and Himwich, H. E. (1964). Progr. Brain Res., 9: 87.Google Scholar
  80. Koriyama, K., Sisken, B., Ito, J., Simonsen, D. G., Haber, B., and Eugene, R. (1968). Brain Res., 11: 412.Google Scholar
  81. Leslie, I. (1955). In: Chargaff, E., and Davidson, J. N., eds., The Nucleic Acids., Vol. I I. New York: Academic Press.Google Scholar
  82. Lubin, M. (1964). In: Hoffman, H. F., ed., The Cellular Functions of Membrane Transport. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  83. Lukasherich, T. P. (1964). Akad. Nauk u SSSR, 156: 1436.Google Scholar
  84. Mahler, H. R., Moore, W. J., and Thomson, R. J. (1966). J. Biol. Chem. 241: 1283.Google Scholar
  85. Maynard, E. A. (1964). J. Exp. Zool., 157: 251.Google Scholar
  86. McCaman, R. E., and Aprison, M. H. (1964). Progr. Brain Res., 9: 220.Google Scholar
  87. Mcconnell, J. V., Jacobson, A. L., and Kimble, D. P. (1959). J. Comp. Physiol. Psychol., 52: 1.Google Scholar
  88. Mcewen, B. S., and Hydén, H. (1966). J. Neurochem., 13: 823.Google Scholar
  89. Metzager, H. P., Cuenod, M., Grynbaum, A., and Waelch, H. (1966). Life Sci., 5:1115. Cuenod, M., Grynbaum, A., and Waelch, H. (1967). J. Neurochem., 14: 183.Google Scholar
  90. Mizuno, S., Tano, S., and Shirahata, S. (1969). J. Biochem. ( Tokyo ), 66: 119.Google Scholar
  91. D’Monte, B., and Talwar, G. P. (1967). J. Neurochem., 14: 743.Google Scholar
  92. Moore, B. W. (1965). Biochem. Biophys. Res. Commun., 19: 739.Google Scholar
  93. Perez, V. J., and Gehring, M. (1968). J. Neurochem., 15: 265.Google Scholar
  94. Noach, E. L., Bunk, J. J., and Wijling, A. (1962). Acta Physiol. Pharmacol. Neerl., 11: 54.Google Scholar
  95. Orrego, F. (1967). J. Neurochem., 14:851. and Lipmann, F. (1967).Google Scholar
  96. J. Biol. Chem., 242: 665.Google Scholar
  97. Perez, V. J., and Moore, B. W. (1968). J. Neurochem., 15: 971.Google Scholar
  98. Peters, J., Vonderahe, A., and Schmid, D. (1965). J. Exp. Zool., 160: 255.Google Scholar
  99. Pevzner, L. Z. (1966). In: Gaito, J., ed., Macromolecules and Behavior, 1st ed. New York: Appleton-Century-Crofts.Google Scholar
  100. Plotnikoff, N. (1966). Science, 151: 703.Google Scholar
  101. Pressman, B. C. (1965). Proc. Nat. Acad. Sci. U.S.A., 53: 1076.Google Scholar
  102. Rappaport, D. A., and Daginawala, H. F. (1968). J. Neurochem., 15: 991.Google Scholar
  103. Richter, D. (1966). In: Aspects of Learning and Memory. London: Heinemann.Google Scholar
  104. Rose, S. P. R. (1967). Nature (London), 215: 253.Google Scholar
  105. Rosenblatt, F., Farrow, J. T., and Herblin, W. F. (1966). Nature (London), 209: 46.Google Scholar
  106. Rosenzweig, M. R., Bennett, E. L., Diamond, M. C and Saffrane, E. (1969). Brain Res., 14: 427.Google Scholar
  107. Rubin, A. L., and Stenzel, K. H. (1965). Proc. Nat. Schwartz, A., Bachelard, H. S., and Mcllwain, H.Google Scholar
  108. Sharma, K. N., Dua, B., Singh, B., and Anand, B. K. (1964). Electroenceph. Clin. Neurophysiol., 16: 503.Google Scholar
  109. Sharma, N. C., and Talwar, G. P. Unpublished data. Singh, U. B.Google Scholar
  110. Talwar, G. P. (1967). J. Neurochem., 14. 675.Google Scholar
  111. Talwar, G. P. (1969). J. Neurochem., 16: 951.Google Scholar
  112. Skou, J. C. (1957). Biochem. Biophys. Acta, 23: 394.Google Scholar
  113. Skou, J. C. (1960). Bio-chem. Biophys. Acta, 42: 6.Google Scholar
  114. Skou, J. C. (1965). Physiol. Rev., 45: 596.Google Scholar
  115. Smith, R. G. (1967). Science, 155: 603.Google Scholar
  116. Talwar, G. P. (1969). In: Bittar, E. E., ed., The Biological Basis of Medicine. New York: Academic Press. Chopra, S. P., and Goel, B. K. (1964). VI Int. Congr. Biochem. New York, 5:419. Chopra, S. P., GoelGoogle Scholar
  117. B. K., and D’Monte, B. (1966a). J. Neurochem., 13:109. GoelGoogle Scholar
  118. B. K., Chopra, S. P., and D’Monte, B. (1966b). In: Gaito, J., ed., Macromolecules and Behavior, 1st ed. New York: Appleton-Century-Crofts.Google Scholar
  119. Sadasivudu, B., and Chitre, V. S. (1961). Nature (London), 191: 1007.Google Scholar
  120. Singh, U. B. (1970). In: Lajtha, A., ed., Handbook of Neurochemistry. New York: Plenum Press.Google Scholar
  121. Tardy, J., Gombos, G., Vincedon, G., and Mandel, P. (1968). C.R. Acad. Sci. Paris, 267: 669.Google Scholar
  122. Thudichum (1884). The Chemical Constitution of the Brain. London: Baillière, Tindall and Cox.Google Scholar
  123. Toschi, G., Dore, E., Angeletti, P. U., Levi-Montalcini, R., and De Haen, Ch. (1966). J. Neurochem., 13: 539.Google Scholar
  124. Ungar, G., and Cohen, M. (1966), Int. J. Neuropharmacol., 5: 183.Google Scholar
  125. Uyemura, K., Tardy, J., Vincendon, G., Mandel, P., and Gombos, G. (1967). C.R. Soc. Biol. Paris, 161: 1396.Google Scholar
  126. Vesco, C., and Giuditta, A. (1967). Biochem. Biophys. Acta, 142: 385.Google Scholar
  127. Virmani, V., Sherma, K. N., Talwar, G. P., Anand, B. K., and Singh, B. (1963). Indian J Med. Res., 51: 75.Google Scholar
  128. Vraa-Jensen, G. (1957). In: Richter, D., ed., Metabolism of the Nervous System. London: Pergamon Press.Google Scholar
  129. Vrba, R., and Folbergrova, J. (1959). J. Neurochem., 4: 338.Google Scholar
  130. Wooley, U., and Campbell, N. K. (1962). Biochem. Biophys. Acta, 57: 384.Google Scholar
  131. Zaheer, N., Iqbal, Z., and Talwar, G. P. (1968). J. Neurochem., 15: 1217.Google Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • G. P. Talwar
    • 1
  • Zafar Iqbal
    • 1
  1. 1.All-India Institute of Medical ScienceNew DelhiIndia

Personalised recommendations