Some Dimensions of Remembering: Steps Toward a Neuropsychological Model of Memory

  • Karl H. Pribram


Interest in the relation of macromolecules to behavior centers on the memory process. It is memory that allows an organism to act on the basis of occurrences removed in time—past and future. It is memory also that allows an organism to act appropriately to present circumstances, for without memory these events constitute nothing more than William James’ “buzzing, blooming confusion.” The guiding assumption is that this “memory” is effected by macromolecular change in protoplasm, especially in brain tissue. A good part of the search has been for the memory macromolecule; the contents of the present volume attest to the success attained by this approach.


Interference Pattern Nerve Impulse Arrival Pattern Memory Mechanism Temporal Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, F. C. (1961). Remembering: A Study in Experimental and Social Psychology. Cambridge: The University Press.Google Scholar
  2. Chow, K. L. (1964). Neurosychologia, 2: 175.CrossRefGoogle Scholar
  3. Chow, K. L., and Dewson, J. H., III (1964). Neuropsychologia, 2: 153.CrossRefGoogle Scholar
  4. Dewson, J. H., III, Chow, K. L., and Engel, J., Jr. (1964). Neuropsychologia, 2: 167.CrossRefGoogle Scholar
  5. Foerster, S. von (1948). Das Gedächtnis. Vienna: Franz Deuticke.Google Scholar
  6. Foerster, O. (1936). In: Handbuch der Neurologie, Bumke, O., and Foerster, O., eds. Berlin: Springer.Google Scholar
  7. Fritsch, G., and Hitzig, E. (1969). In: Brain and Behavior, vol. 2, Perception and Action, Pribram, K. H., ed. London: Pengu in Books.Google Scholar
  8. Fuxe, E. Hamberger, B., and Hokfelt, T. (1968). Brain Res., 8: 125.Google Scholar
  9. Gabor, D. (1948). Nature, 161: 177.CrossRefGoogle Scholar
  10. Gabor, D. (1949). Proc. Roy. Soc. ( London ), A197: 454.CrossRefGoogle Scholar
  11. Gabor, D. (1951). Proc. Phys. Soc. ( London ), B64: 449.Google Scholar
  12. Gebhard, J. W. (1961). Amer. J. Clin. Hypn., 3: 139.Google Scholar
  13. Haber, R. N., ed. (1969). Information Processing Approaches to Visual Perception. New York: Holt, Rinehart and Winston.Google Scholar
  14. Haber, R. N., and Haber, E. G. (1964). Percept. & Motor Skills, 19: 131.CrossRefGoogle Scholar
  15. Halstead, W. C. (1948). Res. Publ. Ass. Nerv. Ment. Dis., 27: 59.Google Scholar
  16. Hamburger, V., and Levi-Montalcini, R. (1950). In: Genetic Neurology: Problems of the Development, Growth and Regeneration of the Nervous System and of its Functions, Weiss, P., ed. Chicago: Univ. of Chicago Press.Google Scholar
  17. Hart, J. T. (1965). Recall, Recognition, and the Memory-Monitoring Process. Ph.D. Dissertation. Stanford University.Google Scholar
  18. Hartline, H. K., Wagner, H. G., and Ratliff, F. (1956). J. Gen. Physiol., 39: 651.CrossRefGoogle Scholar
  19. Heerden, P. J. van (1968). The Foundation of Empirical Knowledge. The Netherlands: N.V. Uitgeverij Wistik-Wassenaar.Google Scholar
  20. Henry, C. E., and Pribram, K. H. (1954). Electroenceph. Clin. Neurophysiol., 6: 693.Google Scholar
  21. Hubel, D. H., and Wiesel, T. N. (1968). J. Physiol., 195: 215.Google Scholar
  22. Hydén, H. (1961). In: Man and Civilization, Farber, S. M., and Wilson, R. H. L., eds. New York: McGraw-Hill.Google Scholar
  23. John, E. R., and Killam, K. F. (1959). J. Pharmacol. Exp. Ther., 125: 252.Google Scholar
  24. Kainiya, J. (1968). Psychology Today, 1: 56.Google Scholar
  25. Kety, S. S. (1970). An hypothesis of learning based upon an action of biogenic amines on synaptic protein synthesis. Personal communication.Google Scholar
  26. Kraft, M. S., Obrist, W. D., and Pribram, K. H. (1960). J. Comp. Physiol. Psychol., 53: 17.CrossRefGoogle Scholar
  27. Krech, D., Rosenzweig, M., and Bennett, E. L. (1960). J. Comp. Physiol. Psychol., 53: 509.CrossRefGoogle Scholar
  28. Landauer, T. (1964). Psychol. Rev., 71: 167.CrossRefGoogle Scholar
  29. Leith, E. N., and Upatnieks, J. (1965). Sci. Amer., 212: 34.CrossRefGoogle Scholar
  30. Libet, B. (1966). In: Brain and Conscious Experience, Eccles, J. C., ed. New York: Springer.Google Scholar
  31. Luria, A. R. (1968). The Mind of a Mnemonist. New York: Basic Books.Google Scholar
  32. Mahl, G., Rothenberg, A., Delgado, J., and Hamlin, H. (1962). Psychological responses in the human to intracerebral electrical stimulation. Presented at Annual Meeting of the American Psychosomatic Society, 1962.Google Scholar
  33. Mihailovie, L. J., and Jankovié, D. B. (1961). Nature (London), 192: 665.CrossRefGoogle Scholar
  34. Miller, G. A., Galanter, E. H., and Pribram, K. H. (1960). Plans and the Structure of Behavior. New York: Holt, Rinehart & Winston.Google Scholar
  35. Morrell, F. (1960). Epilepsia, 1: 538.CrossRefGoogle Scholar
  36. Morrell, F. (1961). In: Symposium on BrainGoogle Scholar
  37. Mechanisms and Learning, Delafresnaye, J. F., Fessard, A., and Konorski, J., eds. Oxford: Blackwell.Google Scholar
  38. Mountcastle, V. B., Poggio, G. F., and Werner, G. (1963). J. Neurophysiol., 26: 807.Google Scholar
  39. Niu, M. C. (1959). In: Evolution of Nervous Control from Primitive Organisms to Man. Washington: Amer. Assoc. Adv. Sci., Publ. No. 52.Google Scholar
  40. Poggio, G. F., and Mountcastle, V. B. (1960). Bull. Johns Hopkins Hospital, 106: 283.Google Scholar
  41. Pribram, K. H. (1951). Surg. Forum, 36: 315.Google Scholar
  42. Pribram, K. H. (1969). Sci. Amer., 220: 73.CrossRefGoogle Scholar
  43. Pribram, K. H., Ahumada, A., Hartog, J., and Roos, L. (1964). In: The Frontal Granular Cortex and Behavior, Warren, J. M., and Akert, K., eds. New York: McGraw-Hill.Google Scholar
  44. Rose, J. E., Malis, L. I., and Baker, C. P. (1961). In: Sensory Communication, Rosenblith, W. A., ed. New York: Wiley.Google Scholar
  45. Rusinov, U.S. (1956). 20th Internat. Physiol. Cong. (Brussels), 785 (Abstr.).Google Scholar
  46. Scheibel, M. E., and Scheibel, A. B. (1967). Brain Res., 6: 60.CrossRefGoogle Scholar
  47. Sherrington, C. (1947). The Integrative Action of the Nervous System. New Haven: Yale University Press.Google Scholar
  48. Sjöstrand, F. S. (1969). In: The Future of the Brain Sciences, Bogoch, S., ed. New York: Plenum Press.Google Scholar
  49. Sokolov, E. N. (1960). In: The Central Nervous System and Behavior, Brazier, ed. New York: Josiah Macy, Jr. Foundation.Google Scholar
  50. Spinelli, D. N. (1970). In: The Biology of Memory, Pribram, K. H., and Broadbent, D. New York: Academic Press.Google Scholar
  51. Stamm, J. S. (1964). J. Neurophysiol., 24: 414.Google Scholar
  52. Stamm, J. S., and Knight, M. (1963). J. Comp. Physiol. Psychol., 56: 254.Google Scholar
  53. Stamm, J. S., and Pribram, K. H. (1960). J. Neurophysiol., 23: 552.Google Scholar
  54. Stamm, J. S., and Pribram, K. H. (1961). J. Comp. Physiol. Psychol., 54: 614.CrossRefGoogle Scholar
  55. Stamm, J. S., Pribram, K. H., and Obrist, W. (1958). Electroenceph. Clin. Neurophysiol., 10: 766.Google Scholar
  56. Stamm, J. S., and Warren, A. (1961). Epilepsia, 2: 229.CrossRefGoogle Scholar
  57. Stamm, J. S., and Warren, A. (1961). Epilepsia, 2: 229.CrossRefGoogle Scholar
  58. Trabasso, T., and Bower, G. H. (1968). Attention in Learning Theory and Research. New York: John Wiley.Google Scholar
  59. Ukhtomski, A. A. (1927). Psychol. Abstr., 2388.Google Scholar
  60. Walter, W. G. (1964). Arch. Psychiat. Nervenkr., 206: 309.CrossRefGoogle Scholar
  61. Werner, G. (1969). The Topology of the Body Representation in the Somatic Afferent Pathway Neurosciences, vol. II ). New York: Rockefeller Univ. Press.Google Scholar
  62. Whyte, L. L. (1954). Brain, 77: 158.CrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Karl H. Pribram
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations