Autoradiographic Examination of Behaviorally Induced Changes in the Protein and Nucleic Acid Metabolism of the Brain

  • Joseph Altman


When a peripheral nerve or central nervous tract is cut, the cell bodies of the severed axons undergo a complex of pathological changes referred to as retrograde degeneration. Among other things, retrograde degeneration is characterized by the dispersion or dissolution of the chromatin material in the soma of nerve cells, called chromatolysis. Chromatolytic changes in neurons are most easily demonstrated histologically with Nissl stains. Soon after the introduction toward the end of the last century of various Nissl stains as an aid for the microscopic investigation of normal, pathological, and experimental brain tissue, it was also discovered that, under certain conditions, chromatolytic changes would occur in nerve cells that were not directly traumatized. Thus, following sectioning of a fiber tract, chromatolytic changes may be observed in those nerve cells which have synaptic relationships with, or receive their signal input from, the severed fiber tract. This is the phenomenon of transneuronal degeneration, which is most easily obtained in cells of the lateral geniculate nucleus some time after removal of the eye or cutting of the optic nerve.


Granule Cell Olfactory Bulb Dentate Gyrus Lateral Ventricle Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J. (1962a). Exp. Neurol., 5:302.CrossRefGoogle Scholar
  2. Altman, J. (1962a). Exp. Neurol., 5:302. Altman, J. (1962b). Science, 135: 1127.CrossRefGoogle Scholar
  3. Altman, J. (1963a). J. Histochem. Cytochem., 6: 741.CrossRefGoogle Scholar
  4. Altman, J. (1963b). Nature (London), 199: 777.CrossRefGoogle Scholar
  5. Altman, J. (1963c). Anat. Rec., 145: 573.CrossRefGoogle Scholar
  6. Altman, J. (1966a). Organic Foundations of Animal Behavior. New York: Rinehart Winston.Google Scholar
  7. Altman, J. (1966b). J. Comp. Neurol., 128: 431.CrossRefGoogle Scholar
  8. Altman, J. (1969a). J. Comp. Neurol., 136: 269.CrossRefGoogle Scholar
  9. Altman, J. (1969b). J. Comp. Neurol., 137: 433.CrossRefGoogle Scholar
  10. Altman, J., and Altman, E. (1962). Exp. Neurol., 6: 142.CrossRefGoogle Scholar
  11. Altman, J., and Das, G. D. (1964a). Anat. Rec., 148: 535.CrossRefGoogle Scholar
  12. Altman, J., and Das, G. D. (1964b). Nature (London), 204: 1161.CrossRefGoogle Scholar
  13. Altman, J., and Das, G. D. (1965a). J. Comp. Neurol., 124: 319.CrossRefGoogle Scholar
  14. Altman, J., and Das, G. D. (1965b). Nature (London), 207: 953.CrossRefGoogle Scholar
  15. Altman, J., and Das, G. D. (1966a). Physiol. Behay., 1: 105.CrossRefGoogle Scholar
  16. Altman, J., and Das, G. D. (1966b). J. Comp. Neurol., 126: 337.CrossRefGoogle Scholar
  17. Altman, J. Das, G. D., and Anderson, W. J. (1968). Develop. Psychobiol., 1: 10.Google Scholar
  18. Altman, J. Das, G. D., and Chang, J. (1966). Physiol. Behay., 1: 111.Google Scholar
  19. Ariëns, Kappers, C. U., Huber, G. C., and Crosby, E. C. (1936). The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Macmillan.Google Scholar
  20. Bach, L. (1895). Acta Ophthal., 41: 62.Google Scholar
  21. Bech, K. (1957). Acta Ophthal., Suppl. 7: 1.Google Scholar
  22. Bélanger, L. F., and Leblond, C. P. (1946). Endocrinology, 39: 8.CrossRefGoogle Scholar
  23. Bennett, E. L., Diamond, M. C., Krech, D., and Rosenzweig, M. R. (1964). Science, 146: 610.CrossRefGoogle Scholar
  24. Birch-Hirschfield, A. (1900). Arch. Ophthal., 50: 166.CrossRefGoogle Scholar
  25. Carlson, A. J. (1902). Amer. J. Anat., 2: 341.CrossRefGoogle Scholar
  26. Das, G. D., and Altman, J. (1966). Physiol. Behay., 1: 109.CrossRefGoogle Scholar
  27. Denenberg, V. (1962). In: The Behavior of Domestic Animals, Hafez, E. S. E., ed. Baltimore: Williams & Wilkins.Google Scholar
  28. Diamond, M. C., Krech, D., and Rosenzweig, M. R. (1964). J. Comp. Neurol., 123: 111.CrossRefGoogle Scholar
  29. Hughes, W. L., Bond, V. P., Brecher, G., Cronkite, E. P., Painter, R. B., Quastler, H., and Sherman, F. G. (1958). Proc. Nat. Acad. Sci. U.S.A., 44: 476.CrossRefGoogle Scholar
  30. Hydén, H. (1962). In: Neurochemistry, 2 ed., Elliott, K. A. C., et al., eds. Springfield: Thomas.Google Scholar
  31. Kershman, J. (1938). Arch. Neurol. Psychiat., 40: 937.Google Scholar
  32. Kopriwa, B. M., and Leblond, C. P. (1962). J. Histochem. Cytochem., 10: 269.CrossRefGoogle Scholar
  33. Leblond, C. P., Messier, B., and Kopriwa, B. M. (1959). Lab. Invest., 8: 296.Google Scholar
  34. Levine, S. (1962). In: Experimental Foundations of Clinical Psychology, Bachrach, A. J., ed. New York: Basic Books.Google Scholar
  35. Mann, G. J. (1895). J. Anat. Physiol., 29: 100.Google Scholar
  36. Scheibel, M. E., and Scheibel, A. B. (1963). EEG Clin. Neurophysiol., Suppl. 24: 235.Google Scholar
  37. Smart, I. (1961). J. Comp. Neurol., 116: 325.CrossRefGoogle Scholar
  38. Taylor, J. H., Woods, P. S., and Hughes, W. L. (1957). Proc. Nat Acad. Sci. U.S.A., 43: 122.CrossRefGoogle Scholar
  39. van’t Hoog, E. G. (1920). J. Nerv. Ment. Dis., 51: 313.CrossRefGoogle Scholar
  40. Wilzbach, K. E. (1957). J. Amer. Chem. Soc., 79: 1013.CrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Joseph Altman
    • 1
  1. 1.Purdue UniversityLafayetteUSA

Personalised recommendations