Advertisement

A Molecular Basis for Regional Differentiation of the Excitable Membrane

  • Edward Koenig

Abstract

Irrespective of the degree of complexity, the point of departure for an analysis of functional activity in the nervous system lies with the neuronal plasmalemma. This is a fundamental axiom of neurophysiology. It is based upon the fact that function is a bioelectrical phenomenon which derives its origin from intrinsic properties and activities of the excitable membrane. It follows, therefore, that any attempt to link a biochemical parameter to function must ultimately show an effect on membrane properties and/or biological activity. It is self-evident that such relationships can be established only after greater understanding has been achieved of the molecular biology of the excitable membrane. The classical paucimolecular model of membrane structure and organization, while having served its purpose well as a formative construct, must now be regarded as being anachronistic and too simplistic, especially in light of recent chemical and spectroscopic analyses of various membrane systems. However, in addition to the need to formulate new concepts regarding molecular organization and dynamics, another area concerning the membrane that must receive attention is the origin of membrane macromolecules (i.e., specification and synthesis of membrane proteins).

Keywords

Schwann Cell Satellite Cell Outer Segment Nerve Cell Nucleus Excitable Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, L., and Morgan, I. G. (1967). J. Neurochem., 14: 377.CrossRefGoogle Scholar
  2. Autilio, L. A., Appel, S. H., Pettis, P., and Gambetti, P. L. (1968). Biochemistry, 7: 2615.CrossRefGoogle Scholar
  3. Beattie, D. S., Basford, R. E., and Koritz, S. B. (1967). J. Biol. Chem., 242: 4584.Google Scholar
  4. Blasie, J. K., Dewey, M. M., Blaurock, A. E., and Worthington, C. R. (1965). J. Mol. Biol., 14: 143.CrossRefGoogle Scholar
  5. Burdman, J. A., and Journey, L. J. (1969). J. Neurochem., 16: 493.CrossRefGoogle Scholar
  6. Clouet, D., and Waelsch, H. (1961). J. Neurochem., 8: 201.CrossRefGoogle Scholar
  7. de Lorenzo, A. J. D., Dettbarn, W. D., and Brzin, M. (1969). J. Ultrastruct. Res., 28: 27.CrossRefGoogle Scholar
  8. Droz, B. (1967). J. Microscopie, 6: 201.Google Scholar
  9. Eccles, J. C. (1964). The Physiology of Synapses. New York: Academic Press.Google Scholar
  10. Eccles, J. C. (1967). J. Neurochem., 14: 239.CrossRefGoogle Scholar
  11. Eccles, J. C. (1967). J. Neurochem., 14: 239.CrossRefGoogle Scholar
  12. Edström, J.-E., and Hökfelt, T. (1969). J. Neurochem., 16: 53.CrossRefGoogle Scholar
  13. Edström, J.-E., and Sjöstrand, J. (1969). J. Neurochem., 16: 67.CrossRefGoogle Scholar
  14. Edström, J.-E., and Sjöstrand, J. (1964). In: Methods of Cell Phys-iology, Prescott, D., ed. New York: Academic Press.Google Scholar
  15. Eichner, D., and Edström, J.-E. (1962). Biochim. Biophys. Acta, 61: 178.Google Scholar
  16. Fischer, S., and Litvak, S. (1967). J. Cell Physiol., 70: 69.CrossRefGoogle Scholar
  17. Grampp, W., and Edström, J.-E. (1963). J. Neurochem., 10: 725.CrossRefGoogle Scholar
  18. Guiditta, A., Dettbarn, W. D., and Brzin, M. (1968). Proc. Nat. Acad. Sci., U.S.A., 59: 1284.CrossRefGoogle Scholar
  19. Hodgkin, A. L. (1958). Proc. Roy. Soc., Ser. B., 148: 1.CrossRefGoogle Scholar
  20. Huxley, A. F., and Katz, B. (1952). J. Physiol., 116: 424.Google Scholar
  21. Howarth, J., Keynes, R., and Ritchie, J. (1968). J. Physiol., 194: 745.Google Scholar
  22. Koenig, E. (1965a). J. Neurochem., 12: 343.CrossRefGoogle Scholar
  23. Koenig, E. (1965b). J. Neurochem., 12: 357.CrossRefGoogle Scholar
  24. Koenig, E. (1967a). J. Neurochem., 14: 429.CrossRefGoogle Scholar
  25. Koenig, E. (1967b). J. Neurochem., 14: 437.CrossRefGoogle Scholar
  26. Koenig, E. (1967c). J. Cell Biol., 34: 265.CrossRefGoogle Scholar
  27. Koenig, E. (1968a). J. Cell Biol., 38: 562.CrossRefGoogle Scholar
  28. Koenig, E. (1968b). In: Macromolecules and the Function of the Neuron, Lodin, Z., and Rose, S. P. R., eds. Amsterdam Excerpta Medica.Google Scholar
  29. Koenig, E. (1969). In: Handbook of Neurochemistry, Vol. 2, Lajtha, A., ed. New York: Plenum PressGoogle Scholar
  30. Koenig, E. (1970). In: Biochemistry of Simple Neuronal Models, Costa, E., and Giacobini, E., eds. New York: Raven Press.Google Scholar
  31. Koenig, E. (1970a). In: Protein Metabolism of the Nervous System, Lajtha, A., ed., New York: Plenum Press.Google Scholar
  32. Koenig, E. and Koelle, G. B. (1961). J. Neurochem., 8: 169.CrossRefGoogle Scholar
  33. Kroon, M. (1965). Biochim. Biophys. Acta, 108: 275.Google Scholar
  34. Lamb, A. J., Clark-Walker, G. D., and Linnane, A. W. (1968). Biochim. Biophys. Acta, 161: 415.Google Scholar
  35. Lasek, R. J. (1970). J. Neurochem., 17: 103.CrossRefGoogle Scholar
  36. Morgan, I. R., and Austin, L. (1968). J. Neurochem., 15: 41.CrossRefGoogle Scholar
  37. Narahashi, T., Anderson, N. C., and Moore, J. W. (1967). J. Gen. Physiol., 50: 1413.CrossRefGoogle Scholar
  38. Nass, M. M. K. (1969). Science, 165: 25.CrossRefGoogle Scholar
  39. Nilsson, S. E. G. (1964). J. Ultrastruct. Res., 11: 581.CrossRefGoogle Scholar
  40. Palay, S. L., and Palade, G. E. (1955). J. Biophys. Biochem. Cytol., 1: 69.CrossRefGoogle Scholar
  41. Pearse, A. G. E. (1961). In: The Structure of the Eye, Smelser, K., ed. New York: Academic Press.Google Scholar
  42. Purpura, D. P. (1967). In: The Neurosciences, Quarton, G. C., Melnechuk, T., and Schmitt, F. O., eds. New York: Rockefeller Univ. Press.Google Scholar
  43. Reed, L. J. (1967). In: The Neurosciences, Quarton, G. C., Melnechuk, T., and Schmitt, F. O., eds. New York: Rockefeller Univ. Press.Google Scholar
  44. Reich, E. (1964). Science, 143: 684.CrossRefGoogle Scholar
  45. Reid, B. R., and Cole, R. D. (1964). Proc. Nat. Acad. Sci. U.S.A., 51: 1044.CrossRefGoogle Scholar
  46. Schaffer, K. (1893). Neurol. Centralbl. ( Leipzig ), 12: 849.Google Scholar
  47. Siegel, M. R., and Sisler, H. D. (1965). Biochim. Biophys. Acta, 103: 558.Google Scholar
  48. Singer, M., and Bryant, S. V. (1969). Nature (London), 221: 1148.CrossRefGoogle Scholar
  49. Singer, M., and Green, M. R. (1968). J. Morph., 124: 321.CrossRefGoogle Scholar
  50. Tasaki, I., Carnay, L., Sandlin, R., and VVatnabe, A. (1969). Science, 163: 683.CrossRefGoogle Scholar
  51. Tompkins, G. M., Gelehrter, T. D., Martin, D. G. D., Samuels, H. H., and Thompson, E. B. (1969). Science, 1474.Google Scholar
  52. Wolkin, J. J. (1966). Vision. Springfield, Ill: Thomas.Google Scholar
  53. Young, R. W. (1967). J. Cell. Biol. 33: 61.CrossRefGoogle Scholar
  54. Young, R. W., and Droz, B. (1968). J. Cell Biol., 39: 169.CrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Edward Koenig
    • 1
  1. 1.State University of New York (Buffalo)BuffaloUSA

Personalised recommendations