Advertisement

Efficiency of Skeletal and Cardiac Muscle

  • C. L. Gibbs
  • C. J. Barclay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)

Abstract

In the human physiology literature values for skeletal and cardiac mechanical efficiency are being reported that seem to be much higher than are found in isolated tissue studies. We consider some of the different efficiency definitions and explore some possible reasons for low isolated tissue values, these include the experimental protocols used, the time at which measurements are made, afterloaded versus sinusoidal contractions, the effects of varying activation levels and recovery heat uncertainty. We examine some of the mechanical and energetic differences between cardiac and skeletal muscle—the absence of shortening heat, the linear relationship between energy per beat and pressure-volume area, constant contractile efficiency, and a larger crossbridge (CB) working stroke. Some observations are made on muscle energetics and loose and tight coupling CB models.

Keywords

Skeletal Muscle Cardiac Muscle Mechanical Efficiency Heat Output Cardiac Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ingen Schenau, G.J. van, Bobbert, M.F. & Haan, A. de J. Appl. Biomech. (1997) (in press).Google Scholar
  2. 2.
    Gibbs, C.L. & Barclay, C.J. Cardiovasc. Res. 30, 627–634 (1995).PubMedGoogle Scholar
  3. 3.
    Woledge, R.C., Curtin, N.A. & Homsher, E. Energetic Aspects of Muscle Contraction. (Academic Press, London 1985)Google Scholar
  4. 4.
    Buschman, H.P., Van Der Laarse, W.J., Steinen, G.J.M. & Elzinga, G. J. Physiol. 496, 503–519 (1996)PubMedGoogle Scholar
  5. 5.
    Curtin, N.A. & Woledge, R.C. J. Exp. Biol. 185, 195–206 (1993a).Google Scholar
  6. 6.
    Barclay, C.J. J. Exp. Biol. 193, 65–78 (1994).PubMedGoogle Scholar
  7. 7.
    Buschman, H.P.J., Elzinga, G. & Woledge, R.C. Pflügers Archiv. 433, 153–159 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Potma, E.J., Steinen, G.J.M., Barends, J.P. & Elzinga, G. J. Physiol. 474, 303–317 (1994).PubMedGoogle Scholar
  9. 9.
    Wendt, I.R. & Gibbs, C.L. Am. J. Physiol. 230, 1637–1643 (1976).Google Scholar
  10. 10.
    Leijendekker, WJ. & Elzinga, G. Pflügers Archiv. 416, 22–27 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    Cavagna, G.A. & Keneko, M. J. Physiol. 268, 467–481 (1977).PubMedGoogle Scholar
  12. 12.
    Capelli, C., Rosa, G., Butti, F., Feretti, G., Veicsteinas, A. & de Prampero, P.E. Eur. J. Appl. Physiol. & Oc-cup. Physiol. 67, 144–149 (1993).CrossRefGoogle Scholar
  13. 13.
    Alexander, R.M. Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press.Google Scholar
  14. 14.
    Suga, H. Physiol Rev. 70, 247–277 (1990).PubMedGoogle Scholar
  15. 15.
    Gibbs, C.L. Bas. Res. Cardiol. 82, 61–68 (1987).Google Scholar
  16. 16.
    Gibbs, C.L. Clin. Exp. Physiol. & Pharmacol. 22, 1–9 (1995).CrossRefGoogle Scholar
  17. 17.
    Holroyd, S.M. & Gibbs, C.L. Am. J. Physiol. 262, H200–H208 (1992).PubMedGoogle Scholar
  18. 18.
    Rall, J.A. Am. J. Physiol. 235, C20–C26 (1978).PubMedGoogle Scholar
  19. 19.
    Holroyd, S.M., Gibbs, C.L. & Luff, A.R. Am. J. Physiol. 39, C293–C297 (1996).Google Scholar
  20. 20.
    Curtin, N.A. & Woledge, R.C. J. Exp. Biol. 158, 343–353 (1991).PubMedGoogle Scholar
  21. 21.
    Regianni, C., Potma, E.J., Bottinelli, R., Canepari, M., Pellegrino, M.A. & Steinen, G.J.M. J. Physiol. 502, 449–460 (1997).CrossRefGoogle Scholar
  22. 22.
    Winkel, M.E.M., Blangé, T. & Treijtel. Am. J. Physiol. 268, H987–H998 (1995).PubMedGoogle Scholar
  23. 23.
    Gibbs, C.L. & Chapman, J.B. Am. J. Physiol. 249, H199–H206 (1985).PubMedGoogle Scholar
  24. 24.
    Lombardi, V., Piazzesi, G. & Linari, M. Nature 355, 638–641 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor, T.W., Goto, Y. & Suga, H. Am. J. Physiol. 264, H994–H1004 (1993).PubMedGoogle Scholar
  26. 26.
    Piazzesi, G., Lombardi, V. Biophys. J. 68, 1966–1979 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    Gilbert, S.H.J. Mus. Res. Cell Motil. 7, 115–121 (1986).CrossRefGoogle Scholar
  28. 28.
    Hill, A.V. Proc. Roy. Soc. Lond. B. 127, 434–451 (1939).CrossRefGoogle Scholar
  29. 29.
    Woledge, R.C., Wilson, M.G.A., Howarth, J.V., Elzinga, G. & Kometani, K. Molecular mechanism of muscle contraction. (Plenum Publishing Corporation 1988).Google Scholar
  30. 30.
    Wendt, I.R. & Gibbs, C.L. Am. J. Physiol. 224, 1081–1086 (1973).PubMedGoogle Scholar
  31. 31.
    Barclay, C.J., Constable, J.K. & Gibbs, C.L. J. Physiol. 472, 61–80 (1993).PubMedGoogle Scholar
  32. 32.
    Woledge, R.C. J. Physiol. 197, 685–707 (1973).Google Scholar
  33. 33.
    Curtin, N.A. & Woledge, R.C. J. Exp. Biol. 183, 137–147 (1993b).Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • C. L. Gibbs
    • 1
  • C. J. Barclay
    • 1
  1. 1.Department of PhysiologyMonash UniversityClaytonAustralia

Personalised recommendations