Skip to main content

Three-Dimensional Image Analysis of Myosin Head in Function as Captured by Quick-Freeze Deep-Etch Replica Electron Microscopy

  • Chapter
Mechanisms of Work Production and Work Absorption in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 453))

Abstract

Quick-freeze deep-etch replica electron microscopy combined with mica-flake technique provides high contrast, high time- and spatial-resolution images of protein molecules in solution, whose three-dimensional structure is well preserved. Thus, it might be quite useful to obtain structural information of individual functioning molecules, such as myosin crossbridges under in vitro motility assay conditions. With that method, we could actually show that both heads of heavy meromyosin (HMM) crossbridges are mostly straight and bound to actin filaments with about 45 degree tilt-angle under rigor conditions, whereas they attached to actin through only one head with a wide variety of angles under in vitro sliding conditions. We also demonstrated that free HMM heads are strongly kinked in the presence of ATP or ADP/inorganic vanadate (Vi) in contrast to almost straight configuration in the absence of nucleotide.

To examine more detailed structure of individual crossbridges, we tried to reconstruct the three-dimensional architecture of intramolecular subdomains of single HMM molecule. We took a series of tilted images of single HMM-ADP/Vi particle and successfully obtained its 3-D image by filtered back-projection, even with restricted range of tiltangles. By comparison of the reconstruction with the atomic model of subfragment-1 (S1) without nucleotide, we found some great structural difference, which partly might be attributable to the conformational change by nucleotide binding.

It is likely that the key of our success in 3-D reconstruction of single molecule with such resolution might be the use of quick-freeze deep-etch replica specimens. We will discuss and demonstrate the simulation results to suggest such reasoning.

Vast development of the recent research on the mechanisms of motor proteins in cell motility and muscle contraction depends largely on the introduction of three powerful entities in methodology; 1) “single-molecular physiology”1-7 in which one not only can observe the behavior but manipulate individual molecules in solution under nearly physiological conditions, 2) “structural biology”8-10 to give the precise atomic coordinates of the protein components immobilized in crystals through X-ray diffraction and analyses, and 3) “protein engineering”11-13 to provide protein materials whose amino-acids are replaced according to almost any demands from the former entities. Though the data and the interpretation of the results obtained by two former methods are complementary to each other, there is a serious and unavoidable problem that the actual data in those approaches are obtained under entirely different environments for the proteins. It is necessary to find and employ the third method to conjugate the information between them; i.e. some means to observe the ultrastructure of individual molecules and its changes under nearly physiological conditions, with reasonably high time- and spatial-resolutions. Electron microscopy could be one of few candidates suitable for such purposes, especially when coupled with quick-freezing14,15 to initially fix the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kron, S.J. & Spudich, J.A. Proc. Natl. Acad. Sci. U.S.A. 83, 6212–6216 (1986)

    Article  Google Scholar 

  2. Harada, Y., Noguchi, A., Kishino, A. & Yanagida, T. Nature (London), 326, 805–808 (1987)

    Article  CAS  Google Scholar 

  3. Kishino, A. & Yanagida T. Nature, 334, 74–76 (1988)

    Article  PubMed  CAS  Google Scholar 

  4. Toyoshima, Y.-Y., Toyoshima, C. & Spudich, J.A. Nature 341, 154–156 (1989)

    Article  PubMed  CAS  Google Scholar 

  5. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. J. Mol. Biol. 216, 49–68 (1990)

    Article  PubMed  CAS  Google Scholar 

  6. Finer J.T., Simmons, R.M. & Spudich, J.A. Nature, 368, 113–119 (1994)

    Article  PubMed  CAS  Google Scholar 

  7. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Nature 374, 555–559 (1995)

    Article  PubMed  CAS  Google Scholar 

  8. Rayment, I., Rypniewski, W.R., Schmidt-B se, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G. & Holden H.M. Science 261, 50–58 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C. & Milligan R.A. Science 261, 58–65 (1993)

    Article  PubMed  CAS  Google Scholar 

  10. Fisher, A.J., Smith, C.A., Thoden, J., Smith, R., Sutoh, K., Holden, H.M. & Rayment, I. Biophys. J. 68, 19s–28s (1995)

    PubMed  CAS  Google Scholar 

  11. Itakura, S., Yamakawa, H., Toyoshima, Y.Y., Ishijima, A., Kojima, T., Harada, Y., Yanagida, T., Wak-abayashi, T. & Sutoh, K. Biochem. Biophys. Res. Commun. 196, 1504–1510 (1993)

    Article  PubMed  CAS  Google Scholar 

  12. Johara, M., Toyoshima, Y.Y., Ishijima, A., Kojima, T., Harada, Y., Yanagida, T. & Sutoh, K. Proc. Natl. Acad. Sci. U.S.A. 90, 2127–2131 (1993)

    Article  PubMed  CAS  Google Scholar 

  13. Uyeda, Q.P., Abramson, P.D. & Spudich, J.A. Proc. Natl. Acad. Sci. U.S.A. 93, 4459–4464 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. Heuser, J.E., Reese, T.S., Dennis, M.J., Jan, Y., Jan, L. & Evans, L. J. Cell Biol. 81, 275–300 (1979)

    Article  PubMed  CAS  Google Scholar 

  15. Katayama, E. in Current Methods in Muscle Physiology: Advantages, Problems and Limitations (ed. Sugi, H.) in press. (Oxford Univ. Press, Oxford)

    Google Scholar 

  16. Katayama, E. J. Biochem. 106, 751–770 (1989)

    PubMed  CAS  Google Scholar 

  17. Katayama, E. J. Muscle Res. Cell Motil. 12, 313 (1991)

    Google Scholar 

  18. Katayama, E. J. Muscle Res. Cell Motil. 14, 364 (1993)

    Google Scholar 

  19. Katayama, E. Adv. Exper. Med. Biol. 332, 47–55 (1993)

    Article  CAS  Google Scholar 

  20. Katayama, E., Shiraishi, T., Oosawa, K., Baba, N. & Aizawa, S.-I. J. Mol. Biol. 255, 458–475 (1996)

    Article  PubMed  CAS  Google Scholar 

  21. Katayama, E., Funahashi, H., Michikawa, T., Shiraishi, T. Ikemoto, T., Iino, M. & Mikoshiba, K. EMBO J. 15, 4844–4851 (1996)

    PubMed  CAS  Google Scholar 

  22. Katayama, E. submitted for publication.

    Google Scholar 

  23. Morris, E.P., Katayama, E. & Squire, J.M. J. of Struct. Biol. 113, 47–55 (1994)

    Article  CAS  Google Scholar 

  24. Kabsch, W., Mannherz, H.G., Suck, D., Pai E. & Holmes, K. Nature 347, 37–44 (1990)

    Article  PubMed  CAS  Google Scholar 

  25. Hirose, K., Lenart, T.D., Murray, J.M., Franzini-Armstrong, C. & Goldman, Y.E. Biophys. J. 65, 397–408 (1993a)

    Article  PubMed  CAS  Google Scholar 

  26. Hirose, K., Franzini-Armstrong, C., Goldman, Y.E. & Murray, J.M. J. Cell Biol. 127, 763–778 (1993b)

    Article  Google Scholar 

  27. Wakabayashi, K., Tokunaga, M., Kohno, I., Sugimoto, Y., Hamanaka, T., Takezawa, Y., Wakabayashi, T. & Amemiya, Y. Science (Wash. D.C.), 258, 443–447 (1992)

    Google Scholar 

  28. Frank, J., McEwen, B.F., Radermacher, M., Turner, J.N. & Rieder, C.N. J. Electron Microsc. Tech. 6, 193–205 (1987)

    Article  Google Scholar 

  29. Baba, N., Satoh, H. & Nakamura, S. Bioimages, 1, 105–113 (1993)

    Google Scholar 

  30. Radermacher, M. in Image Analysis in Biology (Hader, D.-P. ed.) 219–249 (CRC Press Inc., New York, 1992)

    Google Scholar 

  31. Carazo, J.M. in Electron Tomography (Frank, J. ed.) 117–164 (Plenum Press, New York, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Katayama, E., Ohmori, G., Baba, N. (1998). Three-Dimensional Image Analysis of Myosin Head in Function as Captured by Quick-Freeze Deep-Etch Replica Electron Microscopy. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics