Skip to main content

Myofilament Compliance and Sarcomere Tension-Stiffness Relation during the Tetanus Rise in Frog Muscle Fibres

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 453))

Abstract

The sarcomere stiffness was measured in single muscle fibres during the development of tetanic tension using a method insensitive to fibre inertia and viscosity. The stiffness was calculated as the ratio between tension changes and sarcomere length changes during a period of fast sarcomere elongation at constant velocity. The results show that, unlike previous measurements with step or sinusoidal length changes, the relation between relative force and relative stiffness on the tetanus rise is linear. Consequently, the development of stiffness upon stimulation is synchronous with the development of force. Since a substantial fraction of sarcomere compliance is localized in the myofilaments, this result can be accounted for by assuming that either myofilament compliance is highly non-linear or that crossbridges stiffness during the tetanus rise is not proportional to crossbridge tension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cecchi, G., Griffiths, P.J. & Taylor, S. Science (Wash. DC) 217, 70–72 (1982).

    Article  CAS  Google Scholar 

  2. Cecchi, G., Griffiths, P.J. & Taylor, S. Biophys. J. 49, 437–451 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 372, 595–609 (1986).

    CAS  Google Scholar 

  4. Bagni, M.A., Cecchi, G. & Schoenberg, M. Biophys. J. 54, 1105–1114 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. Bagni, M.A., Cecchi, G., Colomo, F. & Tesi, C. in Molecular Mechanism of Muscle Contraction (eds Sugi, H. & Pollack G.H.) 473–488 (Plenum Publishing Corp., New York, 1988).

    Google Scholar 

  6. Huxley H.E., Stewart, A., Sosa, H. & Irving, T. Biophys. J. 67, 2411–2421 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y. & Amemiya, Y. Biophys. J. 67, 2422–2435 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Higuchi, H., Yanagida, T. & Goldman, Y.E. Biophys. J. 69, 1000–1010 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Goldman, Y.E. & Huxley, A.F. Editorial. Biophys. J. 67, 2131–2133 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977).

    CAS  Google Scholar 

  11. Bagni, M.A., Cecchi, G. & Colomo, F. J. Physiol. (Lond.) 365, 68P (1985).

    Google Scholar 

  12. Ford, L.E., Huxley, A.F. & Simmons, R.M.J. Physiol. (Lond.) 311, 219–249 (1981).

    CAS  Google Scholar 

  13. Bagni, M.A., Cecchi, G., Cecchini, E., Colombini, B. & Colomo, F. J. Muscle Res. Cell Motil, (in the press).

    Google Scholar 

  14. Huxley, A.F., Lombardi, V. & Peachey, L.D. J. Physiol. (Lond.) 317, 12–13P (1981).

    Google Scholar 

  15. Martyn, D.A. & Chase, P.B. Biophys. J. 68, 235–242 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. Thorson, J.W. & White, D.C.S. Biophys. J. 9, 360–390 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. Forcinito, M., Epstein, M. & Herzog, W. Biophys. J. 72, 1278–1286 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Mijailovich, S.M., Fredberg, J.J. & Butler, J.P. Biophys. J. 71, 1475–1484 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. Kojima, H., Ishijima, A. & Yanagida, T. Proc. Natle. Acad. Sci. USA. 91, 12962–12966 (1994).

    Article  CAS  Google Scholar 

  20. Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Bagni, M.A., Cecchi, G., Colombini, B., Colomo, F. (1998). Myofilament Compliance and Sarcomere Tension-Stiffness Relation during the Tetanus Rise in Frog Muscle Fibres. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics