Advertisement

Calcium Dependence of the Apparent Rate of Force Generation in Single Striated Muscle Myofibrils Activated by Rapid Solution Changes

  • F. Colomo
  • S. Nencini
  • N. Piroddi
  • C. Poggesi
  • C. Tesi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)

Abstract

Single myofibrils or small groups of myofibrils were isolated from different types of striated muscle: rabbit psoas, frog tibialis anterior, frog atrial and ventricular muscle. The Ca2+ concentration of the solution perfusing the myofibrils was changed within few milliseconds by translating the interface between two flowing streams of solution across the preparations. In all types of myofibrils tested, the time course of force rise in response to maximal activation (pCa 4.75) was approximately monoexponential and nearly superimposable on that observed after a release-restretch protocol applied to the myofibril at the plateau of maximal contractions. This suggests that the kinetics of force development following rapid myofibril activation essentially reflects the kinetics of interaction between contractile proteins. The half time of force rise in response to maximal activation varied among different myofibril types; it was shortest in frog tibialis anterior myofibrils and longest in frog ventricular myofibrils. In all types of myofibril preparations tested the half time of force rise increased with decreasing Ca2+ levels in the activating solution. The finding provides support for a kinetic mechanism of force regulation by Ca2+ in all types of striated muscle. The extent of this Ca2+ effect, however, varied among the different myofibril preparations tested; at 15°C for instance, it was smaller in frog tibialis anterior myofibrils than in the other preparations.

Keywords

Force Generation Force Development Sarcomere Length Solution Change Force Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, A. & Walker, J.W. Am. J. Physiol. 267, H1643–H1653 (1994).PubMedGoogle Scholar
  2. 2.
    Ashley, C.C., Mulligan, I.P. & Lea, T.J. Q. Rev. Biophys. 24, 1–73 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Leman, T.D., StClaire Allen, T., Barsotti, R.J., Ellis-Davies, G.C.R., Kaplan, J.H., Franzini-Armstrong, C. & Goldman, Y.E. in Mechanism of Myofilament Sliding in Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 475–486 (Plenum Press, New York, 1993).Google Scholar
  4. 4.
    Wahr, P.A. & Rall, J.A. Am. J. Physiol. 272, C1664–C1671 (1997).PubMedGoogle Scholar
  5. 5.
    Bartoo, M.L., Popov, V.I., Fearn, L.A. & Pollack, G.H. J. Muscle Res. Cell Motility 14, 498–510 (1993).CrossRefGoogle Scholar
  6. 6.
    Colomo, F., Piroddi, N., Poggesi, C., teKronnie, G. & Tesi, C. J. Physiol. 500.2, 535–548 (1997).Google Scholar
  7. 7.
    Friedman, A.L. & Goldman, Y.E. Biophys. J. 71, 2774–2785 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Okamura, N. & Ishiwata, S. J. Muscle Res. Cell Motility 9, 111–119 (1988).CrossRefGoogle Scholar
  9. 9.
    Colquhoun, D., Jonas, P. & Sakmann, B. J. Physiol. 458, 261–287 (1992).PubMedGoogle Scholar
  10. 10.
    Matthews, H.R. J. Physiol. 480P, 3P (1994).Google Scholar
  11. 11.
    Colomo, F., Piroddi, N., Poggesi, C. & Tesi, C. Biophys. J. 68, 344s (1995).Google Scholar
  12. 12.
    Brenner, B. Proc. Natl. Acad. Sci. USA 85, 3265–3269 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    Brandt, P.W., Colomo, F., Piroddi, N., Poggesi, C. & Tesi, C. J. Muscle Res. Cell Motility 17, 155 (1996).Google Scholar
  14. 14.
    Brandt, P.W., Colomo, F., Piroddi, N., Poggesi, C. & Tesi, C. (submitted for publication).Google Scholar
  15. 15.
    He, Z.-H., Chillingworth, R.K., Brune, M., Corrie, J.E.T., Trentham, D.R., Webb, M.R. & Ferenczi, M.A. J. Physiol. 501.1, 125–148 (1997).CrossRefGoogle Scholar
  16. 16.
    Barman, T., Brune, M., Lionne, C., Piroddi, N., Poggesi, C., Stehle, R., Tesi, C., Travers, F. & Webb, M.R. (submitted for publication).Google Scholar
  17. 17.
    Metzger, J.M. & Moss, R.L. Science 247, 1088–1090 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    Bottinelli, R., Canepari, M., Cappelli, V. & Reggiani, C. Am. J. Physiol. 269, C785–C790 (1995).PubMedGoogle Scholar
  19. 19.
    Chase, P.B., Martyn, D.A. & Hannon, J.D. Biophys. J. 67, 1994–2001 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    Wolff, M.R., Mc Donald, K.S. & Moss, R.L. Circ. Res. 76, 154–160 (1995).PubMedGoogle Scholar
  21. 21.
    Hancock, W.O., Martyn, D.A., Huntsman, L.L. & Gordon, A.M. Biophys. J. 70, 2819–2829 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    Julian, F.J. Biophys. J. 9, 547–569 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    Campbell, K. Biophys. J. 72, 254–262 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    Landesberg, A. & Sideman, S. Am. J. Physiol. 266, H1260–H1271 (1994).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • F. Colomo
    • 1
  • S. Nencini
    • 1
  • N. Piroddi
    • 1
  • C. Poggesi
    • 1
  • C. Tesi
    • 1
  1. 1.Dipartimento di Scienze FisiologicheUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations