Implications of Quantal Motor Action in Biological Systems

  • Gerald H. Pollack
  • Felix Blyakhman
  • Tatyana Shklyar
  • Anna Tourovskaya
  • Tsukasa Tameyasu
  • Paul Yang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)


We demonstrate in this paper that quantal behavior is a central feature of biological motile and contractile systems. Step-like behavior has been demonstrated in the interaction between single molecules and filaments both in the kinesin—microtubule system and in the myosin—actin filament system. We show here that the step-like molecular features appear also in the single intact sarcomere. We studied single sarcomeres of single bumblebee myofibrils, both in the unactivated and activated states. Myofibril-length changes induced by a motor-imposed ramp were accompanied by corresponding sarcomere-length changes. However, the sarcomere-length changes were stepwise. Computer analysis of the stepwise shortening patterns revealed a step-size distribution containing multiple peaks. In the activated state, the peaks were separated by 2.7 nm per half-sarcomere which is the linear actin-subunit spacing. Thus, translation steps are an integer multiple of the actin-subunit spacing. This result parallels the one observed in the kinesin-tubulin spacing, where step size is a multiple of the tubulin-subunit spacing. In the muscle system, however, the steps are preserved on a macroscopic scale, implying high synchrony. The quantal steps are easily explained by a model in which the actin filament propels itself over stationary cross-bridges: if actin binds to the cross-bridges between steps, then the observed quantal result is inevitable.

As probes of contractile phenomena approach the molecular level, the discrete unitary events underlying contraction begin to emerge. Thus, step-like behavior is observed as the single kinesin molecule translates along the microtubule1–4, as the single myosin molecule translates over the actin filament5, and as the single isolated titin molecule is stretched6,7.

What is surprising in all three systems is that the discrete behavior in evidence at the molecular level remains detectable at higher levels of organization. Thus, cilia bend in steps8,9 that are presumably related to stepwise movements along constituent microtubules. And intact sarcomeres shorten in steps10,11 arising either from titin-filament steps or single actomyosin-interaction steps, depending on whether the sarcomere is unactivated or activated. Whereas molecular-scale steps are all but inevitable, steps at higher levels of organization imply an unexpected degree of cooperativity.

In this paper the focus is primarily on steps in the muscle system. We review recent findings of molecular-scale steps. We then consider steps at the single myofibril level as well as older work that reports steps at still higher levels of organization. Why this counterintuitive result is obtained is an issue that will be discussed, and several mechanistic options to mediate the required synchrony will be considered. Finally, I will draw some conclusions about what all of these findings imply about the mechanism of contraction.


Actin Filament Thin Filament Integer Multiple Sarcomere Length Thick Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelles, J., Schnapp, B.J., and Sheetz, M.P. Nature 331, 450–453 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    Hua, W., Young, E.C., Fleming, M.L., and Gelles, J. Nature 388, 390–393 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    Schnitzer, M.J. and Block, S.M. Nature 388, 386–390 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    Kojima, H., Muto, E., Higuchi, H., and Yanagida, T. Biophys. J. 73, 2012–2022 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    Warshaw, D. News in Physiol. Sci. 11, 1–6 (1996).Google Scholar
  6. 6.
    Tskhovrebova, L., Trinick, J., Sleep, J.A., and Simmons, R.M. Nature 387, 308–312 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. Science 276, 1109–1112 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    Baba, S. A. Nature 282, 717–720 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    Baba, S. A., Mogami, Y., and Nonaka, K. in Biological Motion (eds. Alt, W. and Hoffman, G.) (Springer, 1990).Google Scholar
  10. 10.
    Yang, P., Tameyasu, T., and Pollack, G.H. (submitted).Google Scholar
  11. 11.
    Blyakhman, F., Shklyar, T., and Pollack, G.H. (submitted).Google Scholar
  12. 12.
    Saito, K., Aoki, T., Aoki, T. and Yanagida, T. Biophys J. 66, 769–777 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    Finer, J.T., Mehta, A.D., and Spudich, D. Biophys. J. 68, 291–297 (1995).CrossRefGoogle Scholar
  14. 14.
    Molloy, J.E., Burns, J.E., Kendrick-Jones, J., Tregear, R.T., White, D.C. Nature 378, 209–212 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    Pollack, G.H., Iwazumi, T., Ter Keurs, H.E.D.J. and Shibata, E.F. Nature 268, 757–759 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    Delay, M.J., Ishide, N., Jacobson, R.C., Pollack, G.H. and Tirosh, R. Science 213, 1523–1525 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    Jacobson, R.C., Tirosh, R., Delay, M.J. and Pollack, G.H. J Mus. Res. Cell Motility 4, 529–542 (1983).CrossRefGoogle Scholar
  18. 18.
    Granzier, H.L.M., Myers, J.A. and Pollack, G.H. J. Mus. Res. & Cell Motility 8, 242–251 (1987).CrossRefGoogle Scholar
  19. 19.
    Granzier, H.L.M., Mattiazzi, A. and Pollack, G.H. Am. J. Physiol. (Cell) 259, C266–781 (1990).Google Scholar
  20. 20.
    Fauver, M., Dunaway, D., Lilienfield, D., Craighead, H., and Pollack, G.H. IEEE Trans. Biomed. Eng. (in press).Google Scholar
  21. 21.
    Squire, J. The Structural Basis of Muscle Contraction (Plenum Press, New York, 1981).CrossRefGoogle Scholar
  22. 22.
    Trombitás, K., Baatsen, P.H.W.W., and Pollack, G.H. J. Utras. & Mol. Str. Res. 100, 13–30 (1988).CrossRefGoogle Scholar
  23. 23.
    Rüdel, R. and Zite-Frenczy, F. Nature 278, 573–575 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    Huxley, A. F. Nature 309(5970), 713–714 (1984).Google Scholar
  25. 25.
    Huxley, A. F. Circ. Res. 59, 9–14 (1986).PubMedGoogle Scholar
  26. 26.
    Altringham, J. D., Bottinelli, R. and Lacktis, J. W.L. Nature 307, 653–655 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    Goldman, Y E. and Simmons, R. M. J. Physiol. (London) 184, 497–518 (1984).Google Scholar
  28. 28.
    Burton, K. and Huxley, A. F. Biophys. J. 68(6), 2429–2443 (1995).PubMedCrossRefGoogle Scholar
  29. 29.
    Tameyasu, T., Toyoki, T. and Sugi, H. Biophys. J. 48, 461–65 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    Toride, M. and Sugi, H. Proc. Japan Acad. 65(B3), 49–52 (1989).CrossRefGoogle Scholar
  31. 31.
    Tameyasu, T. Japan. J. Physiol. 44, 295–318 (1994).CrossRefGoogle Scholar
  32. 32.
    Pollack, G.H. Muscles and Molecules: Uncovering the Principles of Biological Motion (Ebner & Sons, Seatttle, 1990).Google Scholar
  33. 33.
    Israelachvili, J., P. McGuiggan, M. Gee, A. Homola, M. Robbins, and P. Thompson. J. Phys. Condens. Matter 2, SA89–SA98 (1990).CrossRefGoogle Scholar
  34. 34.
    Yoshizawa, H. and J. Israelachvili. J. Phys. Chem. 97, 11300–11313 (1993).CrossRefGoogle Scholar
  35. 35.
    Bhushan, B., J. Israelachvili, and U. Landman. Nature 374, 607–616 (1995).CrossRefGoogle Scholar
  36. 36.
    Gee, M., P. McGuiggan, and J.N. Israelachvili. J. Chem. Phys. 93(3), 1895–1906 (1990).CrossRefGoogle Scholar
  37. 37.
    Thompson, P. and M. Robbins. Science 250, 792–794 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    Diestler, D., M. Schoen, and J. Cushman. Science 262, 545–547 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    Ling, G.N. A Revolution in the Physiology of the Living Cell (Krieger Publishing, Florida, 1992).Google Scholar
  40. 40.
    Pollack, G.H. Biophys. Chem. 59, 315–328 (1996).PubMedCrossRefGoogle Scholar
  41. 41.
    Oplatka, A. Critical Rev. Biochem. Mol. Biol. 32, 307–360 (1997).CrossRefGoogle Scholar
  42. 42.
    Yanagida, T and Ishijima, A. Biophys J. 68, 312s–320s (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    Schutt, C. E. and Lindberg, U. Proc. Nat’l Acad. Sci. 89, 319–323 (1992).CrossRefGoogle Scholar
  44. 44.
    DeBeer, E.L., Sontrop, A.M.A.T.A., Kellermayer, M.S.Z., and Pollack, G.H. Cell Motil. Cytoskel. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Gerald H. Pollack
    • 1
  • Felix Blyakhman
    • 1
  • Tatyana Shklyar
    • 1
  • Anna Tourovskaya
    • 1
  • Tsukasa Tameyasu
    • 1
  • Paul Yang
    • 1
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations