Advertisement

Evanescent Excitation Microscopy

Its Application to the Study of Single Molecular Process Kinetics of Actomyosin Motor
  • Hidetake Miyata
  • Shigeru Chaen
  • Seiryo Sugiura
  • Haruo Sugi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)

Abstract

Evanescent field was generated on the stage of an inverted microscope upon an incidence of 532 nm Nd-YAG laser beam on interface between aqueous solution and fused silica glass. Thick filaments isolated from Mytilus edulis were adsorbed to the glass surface and nanomolar concentration of adenosine triphosphate (ATP) labeled with rhodamine was allowed to interact with thick filaments. The fluorescence from the surface was observed by triple-view microscopy at video rate. There were many fluorescent spots at the interface, which we identified as individual fluorescent ATP molecules. We found that the fluorescence from those spots was polarized. Fluorescence intensity of individual spots fluctuated considerably. We interpret the latter observation as a result of change in the orientation of emission dipole of the fluorescent ATP analog.

Keywords

Mytilus Edulis Flow Chamber Polarize Beam Splitter Thick Filament Evanescent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sowerby, A.J., Seehra, C.K., Lee, M. & Bagshaw, C.R. J. Mol. Biol. 234, 114–123 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    Conibear, P.B., Jeffreys, D.S., Seehra, C.K., Eaton, R.J. & Bagshaw, C.R. Biochemistry 35, 2299–2308 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    Conibear, P.B. & Bagshaw, C.R. FEBS Lett. 380, 13–16, (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    Sase, I., Miyata, H., Corrie, J.E.T., Craik, J.S. & Kinosita, K., Jr. Biophys. J. 69, 323–328 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    Chaen, S., Shirakawa, I., Bagshaw, C.R. & Sugi, H. Biophys. J. 73, 2033–2042 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Nature 374, 555–559 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    Tokunaga, M., Kitamura, K., Saito, K., Hikikoshi Iwane, A., & Yanagida, T. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    Yamada, A., Ishii, N., Shimmen, T. & Takahashi, K. J. Muscle Res. Cell Motil. 10, 124–134 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    Corrie, J.E.T. & Craik, J.S. J. Chem. Soc. Perkin Trans. 1, 1994, 2967–2993.CrossRefGoogle Scholar
  10. 10.
    Kinosita, K., Jr., Itoh, H., Ishiwata, S., Hirano, K., Nishizaka, T. & Hayakawa, T. J. Cell Biol. 115, 67–73 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    Arimoto, R. & Murray, J.M. Biophys. J. 70, 2969–2980 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    Sase, I., Miyata, H., Ishiwata, S. & Kinosita, K., Jr. Proc. Natl. Acad. Sci.(USA) 94, 5646–5650 (1997).CrossRefGoogle Scholar
  13. 13.
    Kinosita K. J., Ishiwata, S., Yoshimura, H., Asai, H. & Ikegami, A. Biochemistry 23, 5963–5975 (1984).CrossRefGoogle Scholar
  14. 14.
    Bout, D.A., Yip, W.-T., Hu, D., Fu, D.-K., Swager, T.M. & Barbara, P.F. Science 277, 1074–1077 (1997).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Hidetake Miyata
    • 1
  • Shigeru Chaen
    • 2
  • Seiryo Sugiura
    • 3
  • Haruo Sugi
    • 2
  1. 1.Department of Physics Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan
  2. 2.Department of Physiology School of MedicineTeikyo UniversityItabashi-ku, Tokyo 173Japan
  3. 3.Second Department of Internal Medicine School of MedicineTokyo UniversityBunkyo-ku, Tokyo 113Japan

Personalised recommendations