Skip to main content

Myosin Crossbridge Configurations in Equilibrium States of Vertebrate Skeletal Muscle

Heads Swing Axially or Turn Upside-Down between Resting and Rigor

  • Chapter
Mechanisms of Work Production and Work Absorption in Muscle

Abstract

The positions and orientations of the myosin heads in relaxed, active, rigor and S1-labelled fish muscle are being determined by analysis both of electron micrographs and of low-angle X-ray diffraction patterns. The X-ray analysis of resting muscle makes use of the head shape defined from the study of S1 crystals, with variable head configurational parameters being used on each of the three different 3-fold symmetric 14.3 nm-spaced ‘crowns’ of myosin heads within the 42.9 nm axial repeat of the myosin filaments. Diffraction patterns were stripped using CCP13 fibre diffraction software. Searches and optimisation were carried out using simulated annealing and local refinement procedures to give a ‘best fit’ relaxed structure with a crystallographic R-factor of about 4%. It had heads oriented all the same way up (i.e. with similar rotations around their own long axes) on the myosin filament, but with a small range of axial tilts. Head configuration in rigor fish muscle is being determined by X-ray diffraction and electron microscopy of normal rigor muscle and of skinned muscle soaked with extrinsic myosin S1. Computed 3-D reconstructions of acto-S1 using X-ray amplitudes and phases from electron microscopy are informative and help to analyse the X-ray diffraction data that extend axially to about 1 nm resolution. An ambiguity is the axial direction of the observed resting myosin head array relative to the known polarity of the actin filaments. One polarity would give little axial displacement (2–3 nm) between opposite ends of the resting and rigor heads, and in this case the heads would need to rotate around their own long axes by about 115° to make a rigor attachment. The other (preferred) filament polarity would provide considerable axial swinging (14–15 nm) between the two states. We are attempting to define the absolute polarity of the resting muscle myosin head array using electron microscopy and image processing either of cryo-sections or of replicas from shadowed, freeze-fractured, rapidly frozen fish muscle fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rayment, I., Rypiewski, W., Schmidt-Base, K., Smith, R., Tomchick, D., Benning, M., Winkelmann, D., Wessenberg, G. & Holden, H. Science 261, 50–58 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Nature 347, 37–43 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. Schmitz, H., Lucaveche, C., Reedy, M.K. & Taylor, K.A. Biophys. J. 67, 1620–1633 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. Lenart, T.D., Murray, J.M., Franzini-Armstrong, C. & Goldman, Y.E. Biophys. J. 71: 2289–2306 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. Luther, P.K. J. Cell Biol. 113, 1043–1055 (1993).

    Article  Google Scholar 

  6. Huxley, H.E. In ‘Synchrotron radiation in the biosciences’ (Eds. B Chance et al.) 409–417 (Clarendon Press, 1994).

    Google Scholar 

  7. Wakabayashi, K. & Amemiya, Y. In ‘Handbook on Synchrotron Radiation’ 4 (Eds. S. Ebashi, M. Koch & E. Rubenstein) 597–678 (Elsevier Science Publishers B.V., Tokyo, 1991).

    Google Scholar 

  8. Harford, J.J. & Squire, J.M. Invited Review for ‘Reports on Progress in Physics’ (in press).

    Google Scholar 

  9. Harford, J.J. & Squire, J.M. Biophys. J. 63, 387–396 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Harford, J.J., Luther, P.K. & Squire, J.M. J. Mol. Biol. 239, 500–512 (1994).

    Article  CAS  Google Scholar 

  11. [11] Hudson, L., Harford, J.J., Denny, R.J. & Squire, J.M. J. Mol. Biol. (1997) (in press).

    Google Scholar 

  12. Luther, P.K., Squire, J.M. & Forey, P.L. J Morphology 229, 325–335 (1996).

    Article  CAS  Google Scholar 

  13. Luther, P.K. & Squire J.M. J Mol. Biol. 141, 409–439 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. Luther, P.K., Munro, P.M.G. & Squire, J.M.J. Mol. Biol. 151, 703–730 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. Luther, P.K., Munro, P.M.G. & Squire, J.M. Micron 26, 431–459 (1995).

    Article  Google Scholar 

  16. Harford, J.J. & Squire, J.M. Biophys. J. 50, 145–155 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. Squire, J.M. & Harford, J.J. In ‘Mechanism of Myofilament Sliding in Muscle Contraction’ [Vol. 332 of Advances in Experimental Medicine and Biology] (eds. Sugi, H. & Pollack, G.H.) 435–450 (Plenum Press, 1993).

    Google Scholar 

  18. Squire, J.M. Curr. Opin. Struct. Biol. 7, 247–257 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. http://www.dl.ac.uk/SRS/CCP13

    Google Scholar 

  20. Morris, E.R, Nneji, G. & Squire, J.M.J. Cell Biol. 111, 2961–2978 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. Huxley, H.E. & Brown, W. J Mol. Biol. 30, 383–434 (1967).

    PubMed  CAS  Google Scholar 

  22. Squire, J.M. J. Mol. Biol. 72, 125–138 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. Kensler, R.W. & Stewart, M.J. Cell Biol. 96, 1797–1802 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. Cantino, M. & Squire, J.M.J. Cell Biol. 102, 610–618 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. Squire, J.M., Harford, J.J., Edman, A.C. & Sjostrom, M. J. Mol. Biol. 155, 467–494 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. Squire, J.M. & Harford, J.J. J Mus. Res. Cell Motil. 9, 344–358 (1988).

    Article  CAS  Google Scholar 

  27. Squire, J.M. J. Muse. Res. Cell Motil. 13, 183–189 (1992).

    Article  CAS  Google Scholar 

  28. Bershitsky, S.Y., Tsaturyan, A.K., Bershitskaya, O.N., Mashanov, G.I., Brown, P., Burns, R. & Ferenczi, M.A. Nature 388, 186–190 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Whittaker, M., Wilson-Kubalek, E., Smith, J., Faust, L., Milligan, R. & Sweeney, H.L. Nature 378, 748–751 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. Mendelson, R. & Morris, E.R Proc. Natl. Acad. Sci. USA 94, 8533–8538 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Harford, J. et al. (1998). Myosin Crossbridge Configurations in Equilibrium States of Vertebrate Skeletal Muscle. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics