Linear and Rotary Molecular Motors

  • Kazuhiko KinositaJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)


A single molecule of F1-ATPase has been shown to be the smallest rotary motor ever found, with a central rotor of radius ∼ 1 nm turning in a stator barrel of radius ∼5 nm. Continuous rotation of the central γ subunit was revealed under an optical microscope by attaching to γ a huge marker, an actin filament. In a separate study, rotation of a sliding actin filament around its axis has been revealed by attaching a small probe, a single fluorescent dye molecule, to the actin filament and detecting the orientation of the fluorophore, and thus of the actin filament, through polarization imaging. The axial rotation was slow compared to the linear sliding, indicating that myosin does not ‘walk’ along the helical array of actin protomers but ‘runs,’ skipping many protomers. The two motors above, one rotary and the other linear, represent two extreme cases of the mode of motor operation: in the F1-ATPase the two partners, the rotor and stator, never detach from each other whereas myosin touches actin only occasionally. In considering the mechanisms of these and other molecular motors, distinction between bending and binding is important. The use of huge and small probes as described above should be useful in studies of protein machines in general, as a means of detecting conformational changes in a single protein molecule during function.


Actin Filament Molecular Motor Myosin Head Power Stroke Myosin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 256, 721–727 (1993).CrossRefGoogle Scholar
  2. 2.
    Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368, 113–119 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    Miyata, H., Hakozaki, H., Yoshikawa, H., Suzuki, N., Kinosita Jr, K., Nishizaka, T., & Ishiwata, S. Stepwise motion of an actin filament over a small number of heavy meromyosin in in vitro motility assay. J. Biochem. 115, 644–647 (1994).PubMedGoogle Scholar
  4. 4.
    Ishijima, A., Harada, Y., Kojima, H., Funatsu, T., Higuchi, H. & Yanagida, T. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1995).CrossRefGoogle Scholar
  5. 5.
    Miyata, H., Yoshikawa, H., Hakozaki, H., Suzuki, N., Furuno, T., Ikegami, A., Kinosita Jr, K., Nishizaka, T. & Ishiwata, S. Mechanical measurements of single actomyosin motor force. Biophys. J. 68, 286s–290s (1995).PubMedGoogle Scholar
  6. 6.
    Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki, N., Miyata, H., Ishiwata, S. & Kinosita Jr, K. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J. 70, 401–408 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    Huxley, H. E. Mechanism of muscular contraction. Science 164, 1356–1366 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 232, 533–538 (1971).CrossRefGoogle Scholar
  10. 10.
    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    Sase, I., Miyata, H., Corrie, J. E. T., Craik, J. S. & Kinosita Jr, K. Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J. 69, 323–328 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    Sase, I., Miyata, H., Ishiwata, S. & Kinosita Jr, K. Axial rotation of sliding actin filaments revealed by sin-gle-fluorophore imaging. Proc. Natl. Acad. Sci. USA 94, 5646–5650 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    Harada, Y., Funatsu, T., Tokunaga, M., Saito, K., Higuchi, H., Ishii, Y & Yanagida, T. Single molecule imaging and nanomanipulation of biomolecules. Methods Cell Biol. 55, 117–128 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    Irving, M., Allen, T. St. C, Sabido-David, C, Craik, J. S., Brandmeier, B., Kendrick-Jones, J., Corrie, J. E. T., Trentham, D. R. & Goldman, Y E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 688–691 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    Nishizaka, T., Yagi, T., Tanaka, Y & Ishiwata, S. Right-handed rotation of an actin filament in an in vitro motile system. Nature 361, 269–271 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    Kinosita Jr, K., Itoh, H., Ishiwata, S., Hirano, K., Nishizaka, T. & Hayakawa, T. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J. Cell. Biol. 115, 67–73 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    Huxley, H. E. Sliding filaments and molecular motile systems. J. Biol. Chem. 265, 8347–8350 (1990).PubMedGoogle Scholar
  18. 18.
    Brenner, B. Mechanical and structural approaches to correlation of cross-bridge action in muscle with actomyosin ATPase in solution. Annu. Rev. Physiol. 49, 655–672 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    Noji, H., Yasuda, R., Yoshida, M. & Kinosita Jr, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    Boyer, P. D. The binding change mechanism for ATP synthase — some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).PubMedCrossRefGoogle Scholar
  22. 22.
    Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).PubMedCrossRefGoogle Scholar
  23. 23.
    Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).PubMedCrossRefGoogle Scholar
  24. 24.
    Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M. & Gelles, J. Transcription against an applied force. Science 270, 1653–1657 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    Smith, C. A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602 (1996).PubMedCrossRefGoogle Scholar
  26. 26.
    Vale, R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    Noji, H., Amano, T. & Yoshida, M. Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes. J. Bioenerg. Biomemb. 21, 451–457 (1996).CrossRefGoogle Scholar
  28. 28.
    Wakabayashi, K., Tokunaga, M., Kohno, I., Sugimoto, Y., Hamanaka, T., Takezawa, Y., Wakabayashi, T. & Amemiya. Y Small-angle synchrotron X-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science 258, 443–447 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    Gulick, A. M. & Rayment, I. Structural studies of myosin II: communication between distant protein domains. Bioessays 19, 561–569 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    Holmes, K. C. Muscle proteins—their actions and interactions. Curr. Opin. Struct. Biol. 6, 781–789 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor, E. W. Mechanism of actomyosin ATPase and the problem of muscular contraction. CRC Crit. Rev. Biochem. 6, 103–164 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    Huxley, A. F. Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem. 7, 255–318 (1957).Google Scholar
  33. 33.
    Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimcric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA. 93, 9539–9544 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    Arnal, I., Metoz, P., DeBonis, S. & Wade, R. H. Three-dimensional structure of functional motor proteins on microtubules. Cum Biol. 6, 1265–1270 (1996).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Kazuhiko KinositaJr.
    • 1
    • 2
  1. 1.Department of Physics Faculty of Science and TechnologyKeio UniversityHiyoshi, Kohoku-ku, YokohamaJapan
  2. 2.“Genetic Programming” Team 13CREST (Core Research for Evolutional Science and Technology)Japan

Personalised recommendations