Skip to main content

1H-NMR Spectroscopy of the Intracellular Water of Resting and Rigor Frog Skeletal Muscle

  • Chapter
Book cover Mechanisms of Work Production and Work Absorption in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 453))

Abstract

The intracellular water of intact/relaxed and skinned/rigor fibers of frog skeletal muscle was studied at slack and stretched lengths by use of 1H-nuclear magnetic resonance (NMR) technique. The angular dependent changes of the NMR spectra of the water proton indicated that part of the intracellular water is aligned along the muscle fiber axis. The longitudinal and transverse proton-spin relaxation processes of the intracellular water were composed of a single- and multi-exponential processes respectively and the rate of both relaxations became slow as the water content of muscle fiber was increased. The longitudinal relaxation process was almost the same at slack and at stretched lengths for both intact/relaxed and skinned/rigor fibers. On the other hand, the transverse relaxation process was slightly but significantly faster at stretched than that at slack length for skinned/rigor fibers while it was almost the same at slack and at stretched lengths for intact/relaxed fibers. These results may be explained as the intracellular water located in the overlap region between actin and myosin filaments is less structured in rigor state than that in relaxed state, or that the rigor formation disrupts the structured water bound to myofilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mathur-De Vre, R. Prog. Biophys. Molec. Biol. 35, 103–134 (1979).

    Article  CAS  Google Scholar 

  2. Hazlewood, C.F., Nichols, B.L. & Chamberlain, N.F. Nature 222, 747–750 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. Belton, P.S., Jackson, R.R. & Packer, K.J. Biochim. Biophys. Acta 286, 16–25 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. Hazlewood, C.F., Chang, D.C., Nichols, B.L. & Woessner, D.E. Biophys. J. 14, 583–606 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. Bratton, C.B., Hopkins, A.L. & Weinberg, J.W. Science 147, 738–739 (1965).

    Article  PubMed  CAS  Google Scholar 

  6. Ogata, M. J. Muscle Res. Cell Motil. 13, 479–480 (1992).

    Google Scholar 

  7. Ogata, M. Proc. Jap. Acad. B72, 137–141 (1996).

    Article  Google Scholar 

  8. Yamada, T., Kikuchi, K. & Sugi, H.J. Muscle Res. Cell Motil. 11, p365 (1990).

    Google Scholar 

  9. Yamada, T. Biochim. Biophys. Acta 1379, p. 224–232 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. Hellam, D.C & Podolsky, R.J. J. Physiol. 200, 807–819 (1969).

    PubMed  CAS  Google Scholar 

  11. Becker, E.D. in High Resolution NMR, Theory and Chemical Applications (Academic Press, New York, 1980).

    Google Scholar 

  12. Fung, B.M. Science 190, 800–802 (1975).

    Article  PubMed  CAS  Google Scholar 

  13. Berendsen, H.J.C J. Chem. Phys. 36, 3297–3305 (1962).

    Article  CAS  Google Scholar 

  14. Berendsen, H.J.C & Migchelsen, C Ann. N. Y. Acad. Sci. 125, 365–379 (1965).

    Article  CAS  Google Scholar 

  15. Matsubara, I. & Elliott, G. F. J. Mol. Biol. 72, 657–669 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. Rome, E. J. Mol. Biol. 27, 591–602 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. Matsubara, I., Goldman, Y.E. & Simmons, R.M. J. Mol. Biol. 173, 15–33 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. Homsher, E., Mommaerts, W.F.H.M., Ricchiuti, N.V. & Wallner, A. J. Physiol. 220, 601–625 (1972).

    PubMed  CAS  Google Scholar 

  19. Ferenczi, M.A., Homsher, E. & Trentham, D.R. J. Physiol. 352, 575–599 (1984).

    PubMed  CAS  Google Scholar 

  20. Woldge, R.C in Application of Calorimetry in Life Sciences (eds., Lamprecht, I. and R. Saarschmidtpp, R.) 183–197 (de Gruyter, Berlin, 1976).

    Google Scholar 

  21. Ikkai, T. & Ooi, T. Biochemistry 8, 2615–2622 (1969).

    Article  PubMed  CAS  Google Scholar 

  22. Highsmith, S., Duignan, K., Cooke, R. & Cohen, J. Biophys. J. 70, 2830–2837 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki, M., Shigematsu, J., Fukunishi, Y., Harada, Y., Yanagida, T. & Kodama, T. Biophys. J. 72, 18–23 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. Ueno, H. & Harrington, W.F. Proc. Natl. Acad. Sci. 78, 6101–6105 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. Weber, M. & Murray, J.M. Physiol. Rev. 53, 612–673 (1973).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Yamada, T. (1998). 1H-NMR Spectroscopy of the Intracellular Water of Resting and Rigor Frog Skeletal Muscle. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics