Gastrulation pp 101-119 | Cite as

Cell Motility, Control and Function of Convergence and Extension during Gastrulation in Xenopus

  • Ray Keller
  • John Shih
  • Paul Wilson
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)


In this paper we will discuss some recent work on the cell motility underlying the convergence and extension movements during gastrulation and neurulation of Xenopus laevis. We will also discuss some of the tissue interactions controlling this motility, and we will refine our previous ideas on how convergence and extension functions in gastrulation of Xenopus.


Marginal Zone Xenopus Laevis Notochord Cell Deep Cell Convergent Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. 1965. Fine structure and morphogenetic movements in the gastrula of the tree frog, Hyla regilla. J. Cell Biol. 24:95–116.PubMedCrossRefGoogle Scholar
  2. Bolker, J. 1989. Gastrulation in the white sturgeon, Acipenser transmontanus. Am. Zool. 29:387.Google Scholar
  3. Ettensohn, C. 1985. Gastrulation in the sea urchin is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol. 112:383–390.PubMedCrossRefGoogle Scholar
  4. Gerhart, J. and R.E. Keller. 1986. Region-specific cell activities in amphibian gastrulation. Annu. Rev. Cell Biol. 2:201–229.PubMedCrossRefGoogle Scholar
  5. Gillespie, J.I. 1983. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos. J. Physiol. 344:359–377.PubMedGoogle Scholar
  6. Hardin, J. 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324.PubMedGoogle Scholar
  7. Hardin, J. 1989. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev. Biol. 136:430–445.PubMedCrossRefGoogle Scholar
  8. Hardin, J. and L.Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115:490–501.CrossRefGoogle Scholar
  9. Hardin, J. and R. Keller. 1988. The behavior and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230.PubMedGoogle Scholar
  10. Holtfreter, J. 1933. Die totale Exogastrulation eine Selbstablosung Ektoderm von Entomesoderm. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 129:669–793.CrossRefGoogle Scholar
  11. Holtfreter, J. 1939. Gewebeaffinität, ein Mittel der Embryonalen Formbildung. Arch. Exp. Zellforsch. Besonders Gewebezuecht 23:169–209.Google Scholar
  12. Holtfreter, J. 1943a. Properties and function of the surface coat in amphibian embryos. J. Exp. Zool. 93:251–323.CrossRefGoogle Scholar
  13. Holtfreter, J. 1943b. A study of the mechanics of gastrulation. Part I. J. Exp. Zool. 94:261–318.CrossRefGoogle Scholar
  14. Holtfreter, J. 1944. A study of the mechanics of gastrulation. Part II. J. Exp. Zool. 95:171–212.CrossRefGoogle Scholar
  15. Ikushima, N. and S. Maruyama. 1971. Structure and developmental tendency of the dorsal marginal zone in the early amphibian gastrula. J. Embryol. Exp. Morphol. 25:263–276.PubMedGoogle Scholar
  16. Jacobson, A. and R. Gordon. 1976. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically, and by computer simulation. J. Exp. Zool. 197:191–246.PubMedCrossRefGoogle Scholar
  17. Kageyama, T. 1982. Cellular basis of epiboly of the enveloping layer in the embryos of the Medaka, Oriyzias latipes. II. Evidence for cell rearrangement. J. Exp. Zool. 219:241–256.CrossRefGoogle Scholar
  18. Keller, R.E. 1978. Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morphol. 157:223–248.CrossRefGoogle Scholar
  19. Keller, R.E. 1980. The cellular basis of epiboly: An SEM study of deep cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60:201–234.PubMedGoogle Scholar
  20. Keller, R.E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216:81–101.PubMedCrossRefGoogle Scholar
  21. Keller, R.E. 1984. The cellular basis of gastrulation in Xenopus laevis: Active post-involution convergence and extension by medio-lateral interdigitation. Am. Zool. 24:589–603.Google Scholar
  22. Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–327 In: Developmental Biology: A Comprehensive Synthesis. Vol. 2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.Google Scholar
  23. Keller, R.E. 1987. Cell rearrangement in morphogenesis. Zool. Sci. 4:763–779.Google Scholar
  24. Keller, R.E. 1991. Gastrulation in Xenopus embryos without a blastocoel roof. In preparation.Google Scholar
  25. Keller, R., M.S. Cooper, M. Danilchik, P. Tibbetts, and P.A. Wilson. 1989a. Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251:134–154.PubMedCrossRefGoogle Scholar
  26. Keller, R.E. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–210.PubMedGoogle Scholar
  27. Keller, R.E., M. Danilchik, R. Gimlich, and J. Shih. 1985a. Convergent extension by cell intercalation during gastrulation of Xenopus laevis. p. 111–141. In: Molecular Determinants of Animal Form. G.M. Edelman (Ed.). Alan R. Liss, New York.Google Scholar
  28. Keller, R.E., M. Danilchik, R. Gimlich, and J. Shih. 1985b. The function of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89 (Suppl.): 185–209.PubMedGoogle Scholar
  29. Keller, R.E. and J. Hardin. 1987. Cell behavior during active cell rearrangement: Evidence and speculation. J. Cell Sci. Suppl. 8:369–393.PubMedGoogle Scholar
  30. Keller, R.E. and G. Schoenwolf. 1977. An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation in Xenopus laevis. Wilhelm Roux’s Arch. Dev. Biol. 182:165–182.CrossRefGoogle Scholar
  31. Keller, R.E., J. Shih, and P.A. Wilson. 1989b. Morphological polarity of intercalating deep mesodermal cells in the organizer of Xenopus laevis gastrulae. p. 840. In: Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America. San Francisco Press, San Francisco.Google Scholar
  32. Keller, R.E. and P. Tibbetts. 1989. Mediolateral cell intercalation is a property of the dorsal, axial mesoderm of Xenopus laevis. Dev. Biol. 131:539–549.PubMedCrossRefGoogle Scholar
  33. Keller, R. and J.P. Trinkaus. 1987. Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev. Biol. 120:12–24.PubMedCrossRefGoogle Scholar
  34. Kimmel, C, R. Warga, and T. Schilling. 1990. Origin and organization of the zebra fish fate map. Development 108:581–594.PubMedGoogle Scholar
  35. Kubota, H. and A. Durston. 1978. Cinematographical study of cell migration in the opened gastrula of Ambystoma mexicanum. J. Embryol. Exp. Morphol. 44:71–80.PubMedGoogle Scholar
  36. Nakatsuji, N. 1975. Studies on the gastrulation of amphibian embryos: Cell movement during gastrulation in Xenopus laevis embryos. Wilhelm Roux’s Arch. Dev. Biol. 78:1–14.CrossRefGoogle Scholar
  37. Miyamoto, D.M. and R. Crowther. 1985. Formation of the notochord in living ascidian embryos. J. Embryol. Exp. Morphol. 86:1–17.PubMedGoogle Scholar
  38. Phillips, H. and G. Davis. 1984. Liquid tissue mechanics in amphibian gastrulation: Germ-layer assembly in Rana pipiens. Am. Zool. 18:81–93.Google Scholar
  39. Schechtman, A.M. 1942. The mechanics of amphibian gastrulation. I. Gastrulation-producing interactions between various regions of an anuran egg (Hyla regilia). Univ. Calif Publ. Zool. 51:1–39.Google Scholar
  40. Schoenwolf, G.C. Cell Movements in the Epiblast During Gastrulation and Neurulation in Avian Embryos, p. 1–28. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.Google Scholar
  41. Schoenwolf, G.C. and I.S. Alvarez. 1989. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106:427–439.PubMedGoogle Scholar
  42. Shih, J. and R.E. Keller. 1991a. The epithelium of the dorsal marginal zone of Xenopus has organizer activity. Submitted.Google Scholar
  43. Shih, J. and R.E. Keller. 1991b. The mechanism of mediolateral intercalation during Xenopus gastrulation: Directed protrusive activity and cell alignment. In preparation.Google Scholar
  44. Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New York.Google Scholar
  45. Townes, P. and J. Holtfreter. 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128:53–120.CrossRefGoogle Scholar
  46. Vogt, W. 1929. Gestaltanalyse am Amphibienkeim mit Örtlicher Vitalfärbung. II. Teil. Gastrulation und Mesodermbildungbei Urodelen und Anuren. Wilhelm Roux’Arch. Entwicklungsmech. Org. 120:384–706.CrossRefGoogle Scholar
  47. Waddington, C.H. 1940. Organizers and Genes. Cambridge University Press, Cambridge.Google Scholar
  48. Warga, R. and C. Kimmel. 1990. Cell movements during epiboly and gastrulation in zebra fish. Development 108:569–580.PubMedGoogle Scholar
  49. Weiliky, M. and G. Oster. 1991. Dynamical Models for Cell Rearrangement During orphogenesis, p. 135–146. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.Google Scholar
  50. Wieschaus, E., D. Sweeton, and M. Costa. 1991. Convergence and Extension During Germband Elongation in Drosophila Embryos, p. 213–224. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.Google Scholar
  51. Wilson, P.A. 1990. The Development of the Axial Mesoderm in Xenopus laevis. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  52. Wilson, P.A. and R.E. Keller. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development. 105:155–166.Google Scholar
  53. Wilson, P.A., G. Oster, and R.E. Keller. 1989. Cell rearrangement and segmentation in Xenopus: Direct observation of cultured explants. Development 105:155–166.PubMedGoogle Scholar
  54. Winklbauer, R. and R. Keller. 1990. The role of extracellular matrix in amphibian gastrulation. Semin. Dev. Biol. 1:25–33.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ray Keller
    • 1
  • John Shih
    • 1
  • Paul Wilson
    • 2
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations