Advertisement

Organizing the Xenopus Organizer

  • John Gerhart
  • Tabitha Doniach
  • Ronald Stewart
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)

Abstract

In chordates in general and in Xenopus in particular, the animal’s body axis is organized largely as a dorsal collinear array of notochord, nerve cord, and somites, divided antero-posteriorly into head, trunk, and tail. Ventral aspects of the body axis are less obvious than dorsal, but include an antero-posterior ordering of branchial and gut regions, and heart and blood islands. This organization arises at the gastrula stage of development, through the action of a small population of cells collectively called the “gastrula organizer” which we wish to discuss in terms of its formation and function.

Keywords

Body Axis Gastrula Stage Neural Induction Early Gastrula Convergent Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, F. and J.B. Lloyd. 1966. The teratogenic effect of azo dyes. Adv. Teratol 1:133–191.Google Scholar
  2. Boterenbrood, E.C. and P.D. Nieuwkoop. 1973. The formation of the mesoderm in urodelian amphibians. V. Its regional induction by the endoderm. Wilhelm Roux’s Arch. Dev. Bio. 173:319–334.CrossRefGoogle Scholar
  3. Coffey, R.J., E.B. Leof, G.D. Shipley, and H.L. Moses. 1987. Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cells. J. Cell. Physiol. 132:143–148.PubMedCrossRefGoogle Scholar
  4. Cooke, J. 1991. The Arrangement of Early Inductive Signals in Relation to Gastrulation; Results from Frog and Chick, p. 79–100. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.Google Scholar
  5. Dale, L. and J.M.W. Slack. 1987a. Fate map of the 32 cell stage of Xenopus laevis. Development 99:527–551.Google Scholar
  6. Dale, L. and J.M.W. Slack. 1987b. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100:279–295.Google Scholar
  7. Danilchik, M., T. Doniach, and J.C. Gerhart. 1991. Patterning of the embryonic body axis during Xenopus gastrulation: Experimentally reduced morphogenesis leads to anteriorally truncated embryos. In preparation. Dixon, J.C. and C.R. Kintner. 1989. Cellular contacts required for neural induction in Xenopus embryos: Evidence for two signals. Development 106:749–757.Google Scholar
  8. Doniach, T., M. Danilchik, and J.C. Gerhart. 1991. Patterning of the embryonic body axis during Xenopus gastrulation: The progressive anteriorization of cell fates. In preparation.Google Scholar
  9. Elinson, R.P. and P. Pasceri. 1989. Two UV-sensitive targets in dorsoanterior specification in frog embryos. Development 106:511–518.PubMedGoogle Scholar
  10. Elinson, R.P. and B. Rowning. 1988. A transient array of parallel microtubules in frog eggs: Potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128:185–197.PubMedCrossRefGoogle Scholar
  11. Gerhart, J., M. Danilchik, T. Doniach, S. Roberts, B. Rowning, and R. Stewart. 1989. Cortical rotation of the Xenopus egg: Consequences for the anteropoasterior pattern of embryonic dorsal development. Development 107 (Suppl.):37–51.PubMedGoogle Scholar
  12. Gerhart, J.C. and R.E. Keller. 1986. Region-specific cell activities in amphibian gastrulation. Annu. Rev. Cell Biol. 2:201–229.PubMedCrossRefGoogle Scholar
  13. Gimlich, R.L. 1986. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115:340–352.PubMedCrossRefGoogle Scholar
  14. Gimlich, R.L. and J.C. Gerhart. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104:117–130.CrossRefGoogle Scholar
  15. Grant, P. and J.F. Wacaster. 1972. The amphibian grey crescent-a site of developmental information? Dev. Biol. 28:454–471.PubMedCrossRefGoogle Scholar
  16. Hamburger, V. 1988. The Heritage of Experimental Embryology, Hans Spemann and the Organizer. Oxford University Press, Oxford.Google Scholar
  17. Hemmati-Brivanlou, A, R.M. Stewart, and R.M. Harland. 1990. Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus. Science 250:800–802.CrossRefGoogle Scholar
  18. Holtfreter, J. and V. Hamburger. 1955. Embryogenesis: Progressive differentiation. Amphibians, p. 230–296. In: Analysis of Development. B.H. Willier, PA. Weiss, and V. Hamburger (Eds.). Hafner Publishing Co., New York.Google Scholar
  19. Kageura, H. 1990. Spatial distribution of the capacity to initiate a secondary embryo in the 32-cell embryo of Xenopus laevis. Dev. Biol. 142:432–438.PubMedCrossRefGoogle Scholar
  20. Kaneda, T. 1981. Studies of the formation and state of determination of the trunk organizer in the newt, Cynops pyrrhogaster. III. Tangential induction in the dorsal marginal zone. Dev. Growth & Differ. 23:553–564.CrossRefGoogle Scholar
  21. Kaneda, T. and A.S. Suzuki. 1983. Studies on the formation and state of determination of the trunk organizer in the newt, Cynops pyrrhogaster. IV. The association of neural inducing activity with the mesodermization of the trunk organizer. Wilhelm Roux’s Arch. Dev. Biol. 192:8–12.CrossRefGoogle Scholar
  22. Kao, K.R. and R.P. Elinson. 1988. The entire mesodermal mantle behaves as a Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127:64–77.PubMedCrossRefGoogle Scholar
  23. Keller, R.E. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–210.Google Scholar
  24. Keller, R.E., J. Shih, and P. Wilson. 1991. Cell Motility, Control and Function of Convergence and Extension During Gastrulation in Xenopus. p. 101–120. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.Google Scholar
  25. London, C, R. Akers, and C.R. Phillips. 1988. Expression of epi 1, an epidermal specific marker, in Xenopus laevis embryos is specified prior to gastrulation. Dev. Biol. 129:380–389.Google Scholar
  26. Malacinski, G.M., A.J. Brothers, and H.-M. Chung. 1977. Destruction of components of the neural induction system of the amphibian egg with ultraviolet irradiation. Dev. Biol. 56:24–39.PubMedCrossRefGoogle Scholar
  27. Mangold, O.1933. Über die Inductionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21:761–766.CrossRefGoogle Scholar
  28. Moody, S. 1987. Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev. Biol. 119:560–578.PubMedCrossRefGoogle Scholar
  29. Nakamura, O. 1978. Epigenetic formation of the organizer, p. 179–220 In: Organizer: A Milestone of a Half Century from Spemann. O. Nakamura and S. Toivonen (Eds.). Elsevier/North Holland, Amsterdam.Google Scholar
  30. Nieuwkoop, P.D. 1973. The “organization center” of the amphibian embryo: Its spatial organization and morphogenetic action. Adv. Morphogen. 10:1–39.Google Scholar
  31. Nieuwkoop, P.D. 1985. Inductive interactions in early amphibian development and their general nature. J. Embryol. Exp. Morphol. 89 (Suppl.):333–347.PubMedGoogle Scholar
  32. Nüsslein-Volhard, C, H.G. Frohnhöfer, and R. Lehmann. 1987. Determination of anteroposterior polarity in Drosophila. Science. 238:1675–1681.PubMedCrossRefGoogle Scholar
  33. Peacock, S.L., M.P. Bates, D.W. Russell, M.S. Brown, and J.L. Goldstein. 1988. Human low density lipoprotein receptor expressed in Xenopus oocytes. J. Biol. Chem. 263:7838–7845.PubMedGoogle Scholar
  34. Phillips, C.R. 1991. Effects of the dorsal blastopore lip and the involuted dorsal mesoderm on neural induction in Xenopus laevis.Symp. Soc. Dev. Biol. 49:93–107.Google Scholar
  35. Phillips, C.R. and Doniach, T. 1991. Effects of the dorsal blastopore lip and the involuted dorsal mesoderm on neural induction in Xenopus laevis. Submitted.Google Scholar
  36. Savage R. and C.R. Phillips. 1989. Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a non-epidermal pathway of differentiation in Xenopus laevis. Dev. Biol. 133:157–168.PubMedCrossRefGoogle Scholar
  37. Saxen, L. and S. Toivonen. 1961. The two-gradient hypothesis in primary induction. The combined effect of two types of inductors mixed in different ratios. J. Embryol. Exp. Morphol. 9:514–528.PubMedGoogle Scholar
  38. Scharf, S.R. and J.C. Gerhart. 1983. Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation. Dev. Biol. 99:75–87.PubMedCrossRefGoogle Scholar
  39. Scharf, S.R., B. Rowning, M. Wu, and J.C. Gerhart. 1989. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev. Biol. 134:175–188.PubMedCrossRefGoogle Scholar
  40. Slack, J.M.W., B.G. Darlington, L.L. Gillespie, S.F. Godsave, H.V. Isaacs, and G.D. Paterno. 1989. The role of fibroblast growth factor in early Xenopus development. Development 107 (Suppl.): 141–148.PubMedGoogle Scholar
  41. Smith, J.C. and J.M.W. Slack. 1983. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78:299–317.PubMedGoogle Scholar
  42. Spemann, H. 1931. Über den Anteil von Implantat und Wirtskeim an der Orientierung und Beschaffenheit der Induzierten Embryonalanlage. Wilhelm Roux’s Arch. Dev. Biol 123:390–517.Google Scholar
  43. Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New Haven, (reprinted by Hafher Publishing Co., New York, 1967).Google Scholar
  44. Stewart, R.M. 1990. The active inducing center of the embryonic body axis in Xenopus. 183 pp. Ph.D. Dissertation, University of California, Berkeley.Google Scholar
  45. Stewart, R.M. 1991. Dorsal mesoderm induction during normal Xenopus development and its relationship to anteroposterior patterning. Submitted.Google Scholar
  46. Stewart, R.M. and J.C. Gerhart. 1990. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula. Development 109:363–372.PubMedGoogle Scholar
  47. Toivonen, S. 1978. Regionalization of the embryo, p. 119–156. In: Organizer: A Milestone of a Half Century from Spemann. O. Nakamura and S. Toivonen (Eds.). Elsevier/North-Holland, Amsterdam.Google Scholar
  48. Suzuki, AS., Y. Mifune, and T. Kaneda. 1984. Germ layer interactions in pattern formation of amphibian mesoderm during primary induction. Dev. Growth & Differ. 26:81–94.CrossRefGoogle Scholar
  49. Vincent, J.-P. and J.C. Gerhart. 1987. Subcortical rotation in Xenopus eggs: An early step in embryonic axis specification. Dev. Biol. 123:526–539.PubMedCrossRefGoogle Scholar
  50. Vincent, J.-P., S.R. Scharf, and J.C. Gerhart. 1987. Subcortical rotation in Xenopus eggs: A preliminary study of its mechanochemical basis. Cell Motil. Cytoskeleton 8:143–154.PubMedCrossRefGoogle Scholar
  51. Waddington, C.H. and M.M. Perry. 1956. Teratogenic effects of trypan blue on amphibian embryos. J. Embryol. Exp. Morphol. 4:110–119.Google Scholar
  52. Winklbauer, R, A. Selchow, M. Nagel, C. Stoltz, and B. Angres. 1991. Mesoderm Cell Migration in the Xenopus Gastrula. p. 147–168. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffm (Eds.). Plenum Press, New York.Google Scholar
  53. Yamada, T. 1950. Dorsalization of the ventral marginal zone of the Triturus gastrula. I. Ammonia treatment of the medio-ventral marginal zone. Biol. Bull. 47:98–121.CrossRefGoogle Scholar
  54. Yamaguchi, Y. and A. Shinagawa. 1989. Marked alteration at the midblastula transition of the effect of lithium on the formation of the larval body pattern of Xenopus laevis. Dev. Growth & Differ. 31:531–541.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • John Gerhart
    • 1
  • Tabitha Doniach
    • 1
  • Ronald Stewart
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations