Advertisement

Gastrulation pp 289-304 | Cite as

Primary Mesenchyme cell Migration in the Sea Urchin Embryo

  • Charles A. Ettensohn
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)

Abstract

Coordinated migrations of embryonic cells are a hallmark of metazoan development. At no time during embryogenesis are such cell movements more dramatic than during gastrulation, when the simply structured blastula is reorganized to produce a complex, multilayered embryo. For over a century, the gastrulation movements of the sea urchin embryo have both fascinated and challenged developmental biologists. The external development and optical transparency of these embryos mean that the cellular rearrangements of gastrulation are directly accessible to the experimenter. In addition, methods for raising large numbers of synchronously developing embryos and for isolating specific cell types and extracellular matrices facilitate many cellular and molecular approaches with this experimental system.

Keywords

Basal Lamina Ring Pattern Latex Bead Vegetal Pole Ectoderm Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, S. 1990. Development of the basal lamina and its role in migration and pattern formation of primary mesenchyme cells in sea urchin embryos. Dev. Growth & Differ. 31:131–145.CrossRefGoogle Scholar
  2. Angerer, L.M., S.A. Chambers, Q. Yang, M. Venkatesan, R.C. Angerer, and R.T. Simpson. 1988. Expression of a collagen gene in mesenchyme lineages of the Strongylocentrotus embryo. Genes Dev. 2:239–246.PubMedCrossRefGoogle Scholar
  3. Anstrom, J.A., J.E. Chin, D.S. Leaf, A.L. Parks, and R.A. Raff. 1987. Localization and expression of msp 130, a primary mesenchyme lineage-specific cell surface protein of the sea urchin embryo. Development 101:255–265.PubMedGoogle Scholar
  4. Benson, S., L. Smith, F. Wilt, and R. Shaw. 1990. The synthesis and secretion of collagen by cultured sea urchin micromeres. Exp. Cell Res. 188:141–146.PubMedCrossRefGoogle Scholar
  5. Benson, S.C., H.M. Sucov, L. Stephens, E.H. Davidson, and F.H. Wilt. 1987. A lineage specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev. Biol. 120:499–506.PubMedCrossRefGoogle Scholar
  6. Blankenship, J. and S. Benson. 1984. Collagen metabolism and spicule formation in sea urchin micromeres. Exp. Cell Res. 152:98–104.PubMedCrossRefGoogle Scholar
  7. Bonhoeffer, F. and J. Huf. 1980. Recognition of cell types by axonal growth cones in vitro. Nature 288:162–164.PubMedCrossRefGoogle Scholar
  8. Cameron, R.A., B.R. Hough-Evans, R.J. Britten, and E.H. Davidson. 1987. Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes Dev. 1:75–84.PubMedCrossRefGoogle Scholar
  9. Carson, D.D., M.C. Farach, D.S. Earles, G.L. Decker, and W.J. Lennarz. 1985. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin. Cell 41:639–648.PubMedCrossRefGoogle Scholar
  10. D’Alessio, M., F. Ramirez, H.R. Suzuki, M. Solursh, and R. Gambino. 1989. Structure and developmental expression of a sea urchin fibrillar collagen gene. Proc. Natl. Acad. Sci. USA 86:9303–9307.PubMedCrossRefGoogle Scholar
  11. Davidson, E.H. 1986. Gene Activity in Early Development, 3rd ed. p. 213–246, Academic Press, Orlando.Google Scholar
  12. Davidson, E.H. 1986. Gene Activity in Early Development, 3rd ed. p. 493–504. Academic Press, Orlando.Google Scholar
  13. Decker G.L. and W.J. Lennarz. 1988. Skeletogenesis in the sea urchin embryo. Development 103:231–247.PubMedGoogle Scholar
  14. DeSimone, D.W. and M. Spiegel. 1986a. Concanavalin A and wheat germ agglutinin binding to sea urchin embryo basal laminae. Wilhelm Roux’s Arch. Dev. Biol. 195:433–444.CrossRefGoogle Scholar
  15. DeSimone, D.W. and M. Spiegel. 1986b. Wheat germ agglutinin binding to the micromeres and primary mesenchyme cells of sea urchin embryos. Dev. Biol. 114:336–346.CrossRefGoogle Scholar
  16. Ett.
    Ettensohn, C.A. 1990a. Cell interactions in the sea urchin embryo studied by fluorescence photoablation. Science 248:1115–1118.CrossRefGoogle Scholar
  17. Ettensohn, C.A. 1990b. The regulation of primary mesenchyme cell patterning. Dev. Biol. 140:261–271.CrossRefGoogle Scholar
  18. Ettensohn, C.A. 1991. Mesenchyme cell interactions in the sea urchin embryo. In: Cell Interactions in Early Development. J. Gerhart, (Ed.). 49th Symp. Soc. Dev. Biol. Alan R. Liss, New York.Google Scholar
  19. Ettensohn, C.A. and E.P. Ingersoll. 1991. Morphogenesis of the sea urchin embryo. In: Morphogenesis: Analysis of the Development of Biological Structures. E.F. Rossomando and S. Alexander (Eds.). Marcel Dekker, New York.Google Scholar
  20. Ettensohn, C.A. and D.R. McClay. 1986. The regulation of primary mesenchyme cell migration in the sea urchin embryo: Transplantations of cells and latex beads. Dev. Biol. 117:380–391.PubMedCrossRefGoogle Scholar
  21. Ettensohn, C.A. and D.R. McClay. 1988. Cell lineage conversion in the sea urchin embryo. Dev. Biol. 125:396–409.PubMedCrossRefGoogle Scholar
  22. Fink, R.D. and D.R. McClay. 1985. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev. Biol. 107:66–74.PubMedCrossRefGoogle Scholar
  23. Fuhrman, M.H., A. Knecht, and C.A. Ettensohn. 1991. A family of cell surface glycoproteins specifically expressed by primary mesenchyme cells of the sea urchin embryo. Dev. Biol. In press.Google Scholar
  24. Galileo, D.S. and J.B. Morrill. 1985. Patterns of cells and extracellular matrix material of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea) embryo, from hatched blastula to late gastrula. J. Morphol. 185:387–402.CrossRefGoogle Scholar
  25. George, N.C., C.E. Killian, and F.H. Wilt. 1990. Differential regulation of two sea urchin spicule matrix genes. J. Cell Biol. 111:484a.Google Scholar
  26. Gibson, A.W. and R.D. Burke. 1985. The origin of pigment cells in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 107:414–419.PubMedCrossRefGoogle Scholar
  27. Gustafson, T. and M. Kinnander. 1956. Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations of gastrulation. Exp. Cell Res. 11:36–51.PubMedCrossRefGoogle Scholar
  28. Gustafson, T. and L. Wolpert. 1961. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme calls in normal and vegetalized larvae. Exp. Cell Res. 24:64–79.PubMedCrossRefGoogle Scholar
  29. Gustafson, T. and L. Wolpert. 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. Camb. Philos. Soc. 42:441–498.Google Scholar
  30. Harkey, M.A. 1983. Determination and differentiation of micromeres in the sea urchin embryo, p. 131–155. In: Time, Space, and Pattern in Embryonic Development. W.R. Jeffery and R.A. Raff (Eds.). Alan R. Liss, New York.Google Scholar
  31. Harkey M.A. and A.H. Whiteley. 1980. Isolation, culture, and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux’s Arch. Dev. Biol. 189:111–122.CrossRefGoogle Scholar
  32. Izzard, C.S. 1974. Contractile filopodia and in vivo cell movements in the tunic of the ascidian Botryllus schlosseri. J. Cell Sci. 15:513–535.PubMedGoogle Scholar
  33. Karp, G.C. and M. Solursh. 1985a. Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro. Dev. Biol. 112:276–283.CrossRefGoogle Scholar
  34. Karp, G.C. and M. Solursh. 1985b. In vitro fusion and separation of sea urchin primary mesenchyme cells. Exp. Cell Res. 158:554–557.CrossRefGoogle Scholar
  35. Katow, H. and M. Solursh. 1979. Ultrastructure of blastocoel material in blastulae and gastrulae of the sea urchin, Lytechinus pictus. J. Exp. Zool. 210:561–567.CrossRefGoogle Scholar
  36. Katow, H. and M. Solursh. 1981. Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate deprived sea urchin embryos. Exp. Cell Res. 136:233–245.PubMedCrossRefGoogle Scholar
  37. Katow, H. and M. Solursh. 1982. In situ distribution of Con A binding sites in mesenchyme blastulae and gastrulae of the sea urchin Lytechinus pictus. Exp. Cell Res. 139:171–180PubMedCrossRefGoogle Scholar
  38. Killian, C.E. and F.H. Wilt. 1989. The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development. Dev. Biol. 133:148–156.PubMedCrossRefGoogle Scholar
  39. Kinnander, H. and T. Gustafson. 1960. Further studies on the cellular basis of gastrulation in the sea urchin larva. Exp. Cell Res. 19:278–290.PubMedCrossRefGoogle Scholar
  40. Leaf, D.S., J.A. Anstrom, J.E. Chin, M.A. Harkey, R.M. Showman, and R.A. Raff. 1987. Antibodies to a fusion protein identify a cDNA clone encoding msp 130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev. Biol. 121:29–40.PubMedCrossRefGoogle Scholar
  41. Letourneau, P.C. 1985. Axonal growth and guidance, p. 269–293. In: Molecular Bases of Neural Development. G.M. Edelman, W.E. Gall, and W.M. Cowan (Eds.). John Wiley, New York.Google Scholar
  42. McClay, D.R., G.W. Cannon, G.M. Wessel, R.D. Fink, and R.B. Marchase. 1983. Patterns of antigenic expression in early sea urchin development, p. 157–169. In: Time, Space, and Pattern in Embryonic Development. W.R. Jeffery and R.A. Raff (Eds.). Alan R. Liss, New York.Google Scholar
  43. McClay, D.R. and C.A. Ettensohn. 1987. Cell recognition during sea urchin gastrulation. p 111–128. In: Genetic Regulation of Development. W. Loomis (Ed.). 45th Symp. Soc. Dev. Biol. Alan R. Liss, New York.Google Scholar
  44. Okazaki, K. 1975a. Normal development to metamorphosis, p. 177–232. In: The Sea Urchin Embryo: Biochemistry and Morphogenesis. G. Czihak (Ed.). Springer-Verlag, New York.CrossRefGoogle Scholar
  45. Okazaki, K. 1975b. Spicule formation by isolated micromeres of the sea urchin embryo. Am. Zool. 15:567–581.Google Scholar
  46. Okazaki, K., T. Fukushi, and K. Dan. 1962. Cyto-embryological studies of sea urchins. IV. Correlation between the shape of the ectodermal cells and the arrangement of the primary mesenchyme cells in sea urchin larvae. Acta Embryol. Morphol. Exp. 5:17–31.Google Scholar
  47. Parr, B.A., A.L. Parks, and R.A. Raff. 1990. Promoter structure and protein sequence of mspl30, a lipid-anchored sea urchin glycoprotein. J. Biol. Chem. 265:1408–1413.PubMedGoogle Scholar
  48. Raff, R.A. 1987. Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev. Biol. 119:6–19.PubMedCrossRefGoogle Scholar
  49. Solursh, M. 1986. Migration of sea urchin primary mesenchyme cells, p. 391–431. In: Developmental Biology: A Comprehensive Synthesis, vol. 2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.Google Scholar
  50. Solursh, M. and M.C. Lane. 1988. Extracellular matrix triggers a directed cell migratory response in sea urchin primary mesenchyme cells. Dev. Biol. 130:397–401.PubMedCrossRefGoogle Scholar
  51. Tilney, L.G. and J.R. Gibbins. 1969. Microtubules and filaments in the filopodia of the secondary mesenchyme cells of Arbacia punctulata and Echinarachnius parma. J. CellSci. 5:195–210.Google Scholar
  52. Trinkaus, J.P. 1984. Cells Into Organs. 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  53. von Obisch, L. 1939. Keimblattchimarenforschung an Seeigellarven. Biol. Rev. Camb. Philos. Soc. 14:88–103.CrossRefGoogle Scholar
  54. Wessell, G.M. and D.R. McClay. 1985. Sequential expression of germ layer specific molecules in the sea urchin embryo. Dev. Biol. 111:451–463.CrossRefGoogle Scholar
  55. Wilt, F.H. and S.C. Benson. 1988. Development of the endoskeletal spicule of the sea urchin embryo, p. 203–227. In: Self-Assembling Architecture. J.E. Varner (Ed.). Alan R. Liss, New YorkGoogle Scholar
  56. Wolpert, L. and T. Gustafson. 1961. Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. Exp. Cell Res. 25:311–325.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Charles A. Ettensohn
    • 1
  1. 1.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations