Gastrulation pp 281-288 | Cite as

Sea Urchin Micromeres, Mesenchyme, and Morphogenesis

  • Fred H. Wilt
  • Nikolaos C. George
  • Oded Khaner
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)


The sea urchin embryo has been a favorite material for the study of gastrulation and morphogenesis. Among the first attempts to understand morphogenesis in terms of cell behavior is found in the pioneering work of Gustafson and Wolpert (1967), which served as a powerful stimulus for more recent studies of morphogenesis. We wish to present here some ideas on what we do not know about sea urchin gastrulation, and to indicate different approaches being used in our laboratory to address these questions about the cellular and molecular basis of morphogenesis in sea urchin embryos.


Vegetal Pole Spicule Formation Animal Hemisphere Primary Mesenchyme Cell Gastrulation Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson, S., H. Sucov, L. Stephens, E. Davidson, and F. Wilt. 1987. Lineage specific gene encoding a major matrix protein of the sea urchin embryo spicule. Dev. Biol. 120:499–506.PubMedCrossRefGoogle Scholar
  2. Bernacki, S.H. and D.R. McClay. 1989. Embryonic cellular organization: Differential restriction of fates as revealed by cell aggregates and lineage markers. J. Exp. Zool. 251:203–216.PubMedCrossRefGoogle Scholar
  3. Blankenship, J. and S. Benson. 1984. Collagen metabolism and spicule formation in sea urchin micromeres. Exp. Cell Res. 152:98–104.PubMedCrossRefGoogle Scholar
  4. Butler, E., J. Hardin, and S. Benson. 1987. The role of lysyl oxidase and collagen crosslinking during sea urchin development. Exp. Cell Res. 173:174–182.PubMedCrossRefGoogle Scholar
  5. Cameron, R.A., B.R. Hough-Evans, R.J. Britten, and E.H. Davidson. 1987. Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes Dev. 1:75–84.PubMedCrossRefGoogle Scholar
  6. Driesch, H. 1894. Analytische Theorie der Organischen Entwicklung. W. Engelmann, Leipzig.CrossRefGoogle Scholar
  7. Ettensohn, C.A. 1984. Primary invagination of the vegetal plate during sea urchin gastrulation. Am. Zool. 24:571–588.Google Scholar
  8. Ettensohn, C.A. and D.R. McClay. 1988. Cell lineage conversion in the sea urchin embryo. Dev. Biol. 125:396–409.PubMedCrossRefGoogle Scholar
  9. Fukushi, T. 1962. The fates of isolated blastoderm cells of sea urchin blastulae and gastrulae inserted into the blastocoel. Bull. Mar. Biol. Stn. Asamushi 11:21–30.Google Scholar
  10. George, N.C., C.E. Killiam, and F.H. Wilt. 1991. Characterization and expression of a gene encoding a 30.6 KD Strongylocentrotuspurpuratus spicule matrix protein. Dev. Biol., In press.Google Scholar
  11. Giudice, G. 1973. Developmental Biology of the Sea Urchin. Academic Press, New York.Google Scholar
  12. Gustafson, T. and L. Wolpert. 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 42:442–498.PubMedCrossRefGoogle Scholar
  13. Harkey, M.A. and A.H. Whiteley. 1980. Isolation, culture, and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux’s Arch. Dev. Biol. 189:111–122.CrossRefGoogle Scholar
  14. Henry, J.J., S. Amemyia, G.A. Wray, and R.A. Raff. 1989. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos. Dev. Biol. 136:140–153.PubMedCrossRefGoogle Scholar
  15. Horstadius, S. 1973. Experimental Embryology of Echinoderms. Clarendon Press, Oxford.Google Scholar
  16. Kabakoff, B. and W.J. Lennarz. 1990. Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo. J. Cell Biol. 111:391–400.PubMedCrossRefGoogle Scholar
  17. Khaner, O. and F.H. Wilt. 1990. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres. Development 109:625–634.PubMedGoogle Scholar
  18. Khaner, O. and F.H. Wilt. 1991. Interaction of different vegetal cells with mesomers during early stages of sea urchin development. Development, In press.Google Scholar
  19. Langelan, R.E. and A.H. Whiteley. 1985. Unequal cleavage and the differentiation of echinoid primary mesenchyme. Dev. Biol. 109:464–475.PubMedCrossRefGoogle Scholar
  20. Livingston, B.T. and F.H. Wilt. 1990. Range and stability of cell fate determination in isolated sea urchin blastomeres. Development 108:403–410.PubMedGoogle Scholar
  21. McClay, D.R. and C.A. Ettensohn. 1987. Cell recognition during sea urchin gastrulation. p. 111–128. In: Genetic Regulation of Development. W.F. Loomis (Ed.). Alan R. Liss, New York.Google Scholar
  22. Moore, R.R. and AS. Burt. 1939. On the locus and nature of the forces causing gastrulation in the embryos of Dendraster excentricus. J. Exp. Zool. 82:159–171.CrossRefGoogle Scholar
  23. Okazaki, K. 1975. Spicule formation by isolated micromeres of the sea urchin embryo. Am. Zool. 15:567–427.Google Scholar
  24. Pehrson, J.R. and L.H. Cohen. 1986. The fate of the small micromeres in sea urchin development. Dev. Biol. 113:522–526.PubMedCrossRefGoogle Scholar
  25. Solursh, M. 1986. Migration of sea urchin primary mesenchyme cells, p. 391–431. In: Developmental Biology: A Comprehensive Synthesis, Vol. 2, The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.Google Scholar
  26. Spiegel, M. and E.S. Spiegel. 1975. The reaggregation of dissociated sea urchin cells. Am. Zool 15:583–606.Google Scholar
  27. Stephens, L., T. Kitajima, and F.H. Wilt. 1989. Autonomous expression tissue specific genes in dissociated sea urchin embryos. Development 107:299–307.PubMedGoogle Scholar
  28. Tanaka, Y. and K. Dan. 1990. Study of the lineage and cell cycle of small micromeres in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev. Growth & Differ. 32:145–156.CrossRefGoogle Scholar
  29. von Ubisch, L. 1929. Uber die Determination der larvalen Organe under der Imaginalanlage bei Seeigelen. Wilhelm Rouxf Arch. Entwicklungsmech. Org. 117:81–122.Google Scholar
  30. von Ubisch, L. 1939. Kleimblattchimarenforschung an Seeigellarven. Biol. Rev. Comb. Philos. Soc. 14:88–103.CrossRefGoogle Scholar
  31. Wessel, G.M. and D.R. McClay. 1987. Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Dev. Biol. 121:149–165.PubMedCrossRefGoogle Scholar
  32. Wilt, F.H. 1987. Determination and morphogenesis in the sea urchin embryo. Development 100:559–575.PubMedGoogle Scholar
  33. Wilt, F.H. and S.C. Benson. 1988. Development of the endoskeletal spicule of the sea urchin embryo, p. 203–228. In: Self Assembling Architecture. J.E. Varner (Ed.). Alan R. Liss, New York.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Fred H. Wilt
    • 1
  • Nikolaos C. George
    • 1
  • Oded Khaner
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity CaliforniaBerkeley, BerkeleyUSA

Personalised recommendations