Gastrulation pp 251-280 | Cite as

Rapid Evolution of Early Development: Reorganization of Early Morphogenetic Processes in a Direct-Developing Sea Urchin

  • Rudolf A. Raff
  • Jonathan J. Henry
  • Gregory A. Wray
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)


A century ago Wilhelm Roux proposed that the underlying processes of development could be revealed by experimental interference with specific developmental events (Roux 1895). Most of our current understanding of developmental processes has been achieved by experimental studies along the lines propounded by Roux. Modern practice uses experimental manipulations at cellular, molecular, and genetic levels, with primary emphasis on gaining an understanding of mechanisms of development. Evolutionary questions are seldom asked, and have had little influence on the mainstream of modern developmental biology. Nevertheless, some 20th Century investigators have maintained an interest in the study of the role of developmental processes in evolution (see Bonner 1982; Garstang 1922; deBeer 1958; Gould 1977; Raff and Kaufman 1983). An appreciation of the role of evolution in developmental biology has begun to take hold during the past decade with a growing interest in the attempt to fuse these two very dissimilar disciplines in a workable manner.


Animal Pole Ciliated Band Dorsoventral Axis Indirect Development Fertilization Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P. 1982. Developmental constraints in evolutionary processes, p. 313–332. In: Evolution and Development. J.T. Bonner (Ed.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  2. Ambros, V. 1989. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57.PubMedCrossRefGoogle Scholar
  3. Ambros, V. and W. Fixsen. 1987. Cell lineage variation among nematodes, p. 139–159. In: Development as an Evolutionary Process. R.A. Raff and E.C. Raff (Eds.). Alan R. Liss, New York.Google Scholar
  4. Anderson, K.V. 1989. Drosophila: the maternal contribution, p. 1–37. In: Genes and Embryos. D.M. Glover and B.D. Hames (Eds.). IRL Press, Oxford.Google Scholar
  5. Arnolds, W.J.A., J.A.M. van den Biggelaar, and N.H. Verdonk. 1983. Spatial aspects of cell interactions involved in the determination of dorsoventral polarity in the equally-cleaving gastropods and regulative abilities of their embryos, as studied by micromere deletions in Lymnaea and Patella. Wilhelm Roux’s Arch. Dev. Biol.192:281–295.Google Scholar
  6. Arthur, W. 1988. A Theory of the Evolution of Development. John Wiley, Chichester.Google Scholar
  7. Bisgrove, B.W. and R.A. Raff. 1989. Evolutionary conservation of the larval serotonergic nervous system in a direct developing sea urchin. Dev. Growth & Differ.31:363–370.CrossRefGoogle Scholar
  8. Bonner, J.T. (Ed.). 1982. Evolution and Development. Springer-Verlag, Berlin.Google Scholar
  9. Boveri, T. 1901. Die Polarität von Oocyte, Ei, und Larve des Strongylocentrotus lividus. Zool. Jahrb. Abt. Anat. Ontog. Tiere14:630–653.Google Scholar
  10. Buss, L.W. 1987. The Evolution of Individuality.Princeton University Press, Princeton.Google Scholar
  11. Cameron, R.A., S.E. Fraser, R.J. Britten, and E.H. Davidson. 1989. The oral-aboral axis of a sea urchin embryo is specified by first cleavage. Development106:641–647.PubMedGoogle Scholar
  12. Cameron, R.A., S.E. Fraser, R.J. Britten, and E.H. Davidson. 1990. Segregation of oral from aboral ectoderm precursors is completed at 5th cleavage in the embryogenesis of Strongylocentrotus purpuratus. Dev. Biol. 137:77–85.PubMedCrossRefGoogle Scholar
  13. Cameron, R.A., B.R. Hough-Evans, R.J. Britten, and E.H. Davidson. 1987. Lineage and fate of each blastomere of the sea urchin embryo. Genes Dev.1:75–84.PubMedCrossRefGoogle Scholar
  14. Clement, A.C. 1952. Experimental studies on germinal localization in Ilyanassa. I. The role of the polar lobe in determination of the cleavage pattern and its influence on later development. J. Exp. Zool.121:563–626.CrossRefGoogle Scholar
  15. Cox, K.H., L.M. Angerer, J.J. Lee, E.H. Davidson, and R.C. Angerer. 1986. Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J. Mol. Biol.188:159–172.PubMedCrossRefGoogle Scholar
  16. Czihak, G. 1960. Untersuchungen uber die Coelomanlagen und die Metamorphose des Pluteus von Psammechinus miliaris (Gmelin). Zool. Jahrb. Abt. Anat. Ontog. Tiere.78:235–256.Google Scholar
  17. Czihak, G. 1965. Entwicklungsphysiologische Untersuchungen an Echiniden. Experimentelle Analyse der Coelomentwicklung. Wilhelm Roux’ Arch. Entwicklungsmech. Org.155:709–729.CrossRefGoogle Scholar
  18. Dan, K. 1979. Studies on unequal cleavage in sea urchins. I. Migration of the nuclei to the vegetal pole. Dev. Growth & Differ.21:527–535.CrossRefGoogle Scholar
  19. Darnell, J., H. Lodish, and D. Baltimore. 1990. Molecular Cell Biology. 2nd ed. Scientific American Books, New York.Google Scholar
  20. Davidson, E.H. 1989. Lineage-specific gene expression and the regulative capacities of the sea urchin embryo. Development105:421–445.PubMedGoogle Scholar
  21. deBeer, G.R. 1958. Embryos and Ancestors. 3rd edition. Clarendon Press, Oxford.Google Scholar
  22. Emlet, R.B., L.R. McEdward, and R.R. Strathmann. 1987. Echinoderm larval ecology viewed from the egg. p. 55–136. In: Echinoderm Studies, vol. 2. M. Jangoux and J.M. Lawrence (Eds.). A.A. Balkema, Rotterdam.Google Scholar
  23. Ettensohn, C.A. 1984. Primary invagination of the vegetal plate during sea urchin gastrulation. Am. Zool.24:571–588.Google Scholar
  24. Ettensohn, C.A. 1985. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol.112:383–390.PubMedCrossRefGoogle Scholar
  25. Ettensohn, C.A. and D.R. McClay. 1988. Cell lineage conversion in the sea urchin embryo. Dev. Biol.125:396–409.PubMedCrossRefGoogle Scholar
  26. Freeman, G. 1982. What does a comparative study of development tell us about evolution? p. 155–167. In: Evolution and Development. J.Y. Bonner (Ed.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  27. Garstang, W. 1922. The theory of recapitulation: A critical restatement of the biogenetic law. J. Linn. Soc. Lond. Zool.35:81–101.CrossRefGoogle Scholar
  28. Gemmill, J.F. 1912. The development of the starfish Solaster endeca Forbes. Trans. Zool. Soc. Lond.20:1–71.Google Scholar
  29. Gemmill, J.F. 1916. Notes on the development of starfishes Asterias glacialia O.F.M.; Cribrella oculata (Linck) Forbes; Solaster endeca (Retzius) Forbes; Stichasterroseus (O.F.M.) Sars. Proc. Zool. Soc. Lond.39:553–565.Google Scholar
  30. Gould, S.J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge.Google Scholar
  31. Hardin, J. 1989. Local shifts in position and polarized motility drive cell rearrangements during sea urchin gastrulation. Dev. Biol.136:430–445.PubMedCrossRefGoogle Scholar
  32. Hardin, J. and L.Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol.115:490–501.CrossRefGoogle Scholar
  33. Hardin, J. and D.R. McClay. 1990. Target recognition by the archenteron during sea urchin gastrulation. Dev. Biol.142:86–102.PubMedCrossRefGoogle Scholar
  34. Harkey, M.A. 1983. Determination and differentiation of micromeres in the sea urchin embryo, p. 131–155. In: Time, Space, and Pattern in Embryonic Development. W.R. Jeffery and R.A. Raff. (Eds.). Alan R. Liss, New York.Google Scholar
  35. Harvey, E.B. 1956. The American Arbacia and Other Sea Urchins. Princeton University Press, Princeton.Google Scholar
  36. Hayashi, R. 1972. On the relations between the breeding habits and larval forms in asteroids, with remarks on the wrinkled blastula. Proc. Jpn. Soc. Syst. Zool.8:42–48.Google Scholar
  37. Henry, J.J., S. Amemiya, G.A. Wray, and R.A. Raff. 1989. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos. Dev. Biol.136:140–153.PubMedCrossRefGoogle Scholar
  38. Henry, J.J. and R.A. Raff. 1990. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.Dev. Biol141:55–69.PubMedCrossRefGoogle Scholar
  39. Henry, J.J., G.A. Wray, and R.A. Raff. 1990. The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin, Heliocidaris erythrogramma. Development110:875–884.PubMedGoogle Scholar
  40. Henry, J.J., G.A. Wray, and R.A. Raff. 1991. Mechanism of an alternate type of echinoderm blastula formation: The wrinkled blastula of the sea urchin Heliocidaris erythrogramma. Dev. Growth & Differ. 33:317–328.CrossRefGoogle Scholar
  41. Hörstadius, S. 1939. Über die Entwicklung von Astropecten aranciacus L. Pubbl. Stne. Zool. Napoli.17:221–312.Google Scholar
  42. Hörstadius, S. 1973. Experimental Embryology of Echinoderms. Clarendon Press, Oxford.Google Scholar
  43. Hörstadius, S. and A. Wolskey. 1936. Studien über die Determination der Bilateralsymmetrie des jungen Seeigel Keimes. Wilhelm Roux’s Arch. Dev. Biol.135:69–113.CrossRefGoogle Scholar
  44. Inaba, D. 1968. Holothuria. p. 316–329. In: Invertebrate Embryology. M. Kúme and K. Dan (Eds.). Nolit, Belgrade.Google Scholar
  45. Jenkinson, J.W. 1911. On the origin of the polar and bilateral structure of the egg of the sea urchin. Wilhelm Roux’s Arch. Dev. Biol32:699–716.Google Scholar
  46. Kier, P.M. 1984. Echinoids from the Triassic (St. Cassian) of Italy, their lantern supports, and revised phylogeny of Triassic echinoids. Smithson. Contrib. Paleobiol56:1–41.Google Scholar
  47. Kominami, T. 1983. Establishment of embryonic axes in larvae of the starfish, Asterina pectinifera. J. Embryol Exp. Morphol. 75:87–100.PubMedGoogle Scholar
  48. Kominami, T. 1988. Determination of dorsoventral axis in early embryos of the sea urchin Hemicentrotus pulcherrimus. Dev. Biol.127:187–196.PubMedCrossRefGoogle Scholar
  49. Kubo, K. 1951. Some observations on the development of the sea-star Leptasterias ochotensis similspinis (Clark). J. Fac. Sci. Hokkaido Univ. Ser. VI Zool10:97–105.Google Scholar
  50. Laegdsgaard, P. 1989. The Reproduction of the Co-occurring Species of the Sea Urchin Heliocidaris in the Sydney Region. Honors Thesis, University of Sydney, Australia.Google Scholar
  51. Lillie, F.R. 1895. The embryology of the Unionidae. J. Morphol.10:1–100.CrossRefGoogle Scholar
  52. Lindahl, P.E. 1932. Zur experimentellen Analyse der Determination der Dorsoventralachse beim Seeigelkeim. I. Versuch mit gestreckten Eiern. Wilhelm Roux’s Arch. Dev. Biol127:300–322.CrossRefGoogle Scholar
  53. McMillan, W.O., R.A. Raff, and S.R. Palumbi. 1991. Population genetic consequences of reduced dispersal in a direct-developing sea urchin, Heliocidaris erythrogramma. Evolution, In press.Google Scholar
  54. Martindale, M.Q., C.Q. Doe, and J.B. Morrill. 1985. The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian, Lymnaea palustris. Wilhelm Roux’s Arch. Dev. Biol.194:281–295.CrossRefGoogle Scholar
  55. Maruyama, Y.K., Y. Nakaseko, and S. Yagi. 1985. Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized egg of the sea urchin Hemicentrotus pulcherrimus. J. Exp. Zool.236:155–163.CrossRefGoogle Scholar
  56. Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Laude, D. Raup, and L. Wolpert. 1985. Developmental constraints and evolution. Q. Rev. Biol.60:265–287.CrossRefGoogle Scholar
  57. Mladenov, P.V. 1979. Unusual lecithotrophic development of the Caribbean brittle star, Ophiothrix oerstedi. Mar. Biol.55:55–62.CrossRefGoogle Scholar
  58. Morgan, T.H. and G.B. Spooner. 1909. The polarity of the centrifuged egg. Wilhelm Roux’s Arch. Dev. Biol.28:104–117.Google Scholar
  59. Nitecki, M.H. (Ed.). 1990. Evolutionary Innovations. University of Chicago Press, Chicago.Google Scholar
  60. Okazaki, K. 1975. Normal development to metamorphosis, p. 177–232. In: The Sea Urchin Embryo. G. Czihak (Ed.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  61. Okazaki, K. and K. Dan. 1954. The metamorphosis of partial larvae of Peronella japonica Mortensen, a sand dollar. Biol. Bull.106:83–99.CrossRefGoogle Scholar
  62. Pace, N.R., D.K. Smith, G.J. Olse, and B.D. James. 1989. Phylogenetic comparative analysis and the secondary structure of ribonuclease P RNA—a review. Gene82:65–75.PubMedCrossRefGoogle Scholar
  63. Parks, A.L., B.W. Bisgrove, G.A. Wray, and R.A. Raff. 1989. Direct development in the sea urchin Phyllacanthus parvispinus (Cidaroidea): Phylogenetic history and functional modification. Biol. Bull.177:96–109.CrossRefGoogle Scholar
  64. Parks, A.L., B.A. Parr, J.-E. Chin, D.S. Leaf, and R.A. Raff. 1988. Molecular analysis of heterochromic changes in the evolution of direct developing sea urchins. J. Evol. Biol.1:27–44.CrossRefGoogle Scholar
  65. Parr, B.P., A.L. Parks, and R.A. Raff. 1990. Promoter structure and protein sequence of mspl30, a lipid-anchored sea urchin glycoprotein. J. Biol. Chem.265:1408–1413.PubMedGoogle Scholar
  66. Pehrson, J.R. and L.H. Cohen. 1986. The fate of the small micromeres in sea urchin development. Dev. Biol.113:522–526.PubMedCrossRefGoogle Scholar
  67. Philip, G.M. 1965. The Tertiary echinoids of South-Eastern Australia III Stirodonta, Aulodonta, and Camarodonta (1). Proc. R. Soc. Victoria78:181–196.Google Scholar
  68. Raff, R.A. 1987. Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev. Biol.119:6–19.PubMedCrossRefGoogle Scholar
  69. Raff, R.A. (Ed.). 1990. Heterochromic changes in development. Semin. Dev. Biol. 1:(4).Google Scholar
  70. Raff, R.A. and T.C. Kaufman. 1983. Embryos, Genes, and Evolution. MacMillan, New York.Google Scholar
  71. Raff, R.A. and G.A. Wray. 1989. Heterochrony: Developmental mechanisms and evolutionary results. J. Evol. Biol.2:409–434.CrossRefGoogle Scholar
  72. Raff, R.A., G.A. Wray, and J.J. Henry. 1991. Implications of radical evolutionary changes in early development for concepts of developmental constraint, p. 189–207. In: New Perspectives on Evolution. L. Warren and H. Kaprowski (Eds.). Alan R. Liss, New York.Google Scholar
  73. Roux, W. 1895. The problems, methods and scope of developmental mechanics. An introduction to the “Archiv für Entwicklungsmechanik der Organismen,” translated by W.M. Wheeler, p. 149–190. In: Biological Lectures of the Marine Biological Laboratory of Woods Hole, Mass. Ginn and Company, Boston.Google Scholar
  74. Runnström, J. 1917. Analytische Studien Über die Seeigelenwicklung. III. Wilhelm Roux’s Arch. Dev. Biol.43:223–328.Google Scholar
  75. Runnström, J. 1975. Integrating factors, p. 646–670. In: The Sea Urchin Embryo., G. Czihak (Ed.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  76. Scott, L.B., W.J. Lennarz, R.A. Raff, and G.A. Wray. 1990. The “lecithotrophic” sea urchin Heliocidaris erythrogramma lacks typical yolk platelets and yolk glycoproteins. Dev. Biol.138:188–193.PubMedCrossRefGoogle Scholar
  77. Schroeder, T.E. 1980. Expression of the preformation polar axis in sea urchin eggs. Dev. Biol.79:428–443.PubMedCrossRefGoogle Scholar
  78. Smith, A.B. 1988a. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 85–97. In: Echinoderm Phylogeny and Evolutionary Biology. C.R.C. Paul and A.B. Smith (Eds.). Clarendon Press, Oxford.Google Scholar
  79. Smith, A.B. 1988b. Phylogenetic relationship, divergence times, and rates of molecular evolution for camarodont sea urchins. Mol. Biol. Evol.5:345–365.Google Scholar
  80. Smith, M.J., J.D. G. Boom, and R.A. Raff. 1990. Single copy DNA distance between two congeneric sea urchin species exhibiting radically different modes of development. Mol. Biol. Evol.7:315–326.PubMedGoogle Scholar
  81. Stern, C. 1990. The evolution of segmental patterns. Semin. Dev. Biol.1:75–145.Google Scholar
  82. Sternberg, P.W. and H.R. Horvitz. 1984. The genetic control of cell lineage during nematode development. Annu. Rev. Genet.18:489–524.PubMedCrossRefGoogle Scholar
  83. Sternberg, P.W. and H.R. Horvitz. 1981. Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by modification of cell lineage. Dev. Biol.88:147–166.PubMedCrossRefGoogle Scholar
  84. Sternberg, P.W. and H.R. Horvitz. 1982. Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: Description and comparison with those of Caenorhabditis elegans. Dev. Biol.93:181–205.PubMedCrossRefGoogle Scholar
  85. Strathmann, M.F. 1987. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. University Washington Press, Seattle.Google Scholar
  86. Strathmann, R.R. 1978. The evolution and loss of larval feeding stages of marine invertebrates. Evolution. 32:894–906.CrossRefGoogle Scholar
  87. Sulston, J.E., E. Schierenberg, J.G. White, and J.N. Thomason. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100:64–119.PubMedCrossRefGoogle Scholar
  88. van den Biggelaar, JAM. and P. Guerrier. 1979. Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusc Patella vulgata. Dev. Biol.68:462–471.PubMedCrossRefGoogle Scholar
  89. Waugh, D.S., C.J. Green, and N.R. Pace. 1989. The design and catalytic properties of a simplified ribonuclease P RNA. Science244:1569–1571.PubMedCrossRefGoogle Scholar
  90. Williams, D.H.C. and D.T. Anderson. 1975. The reproductive system, embryonic development, larval development, and metamorphosis of the sea urchin Heliocidaris erythrogramma (Val.) (Echinoidea: Echinometridae). Aust. J. Zool.23:371–403.CrossRefGoogle Scholar
  91. Woese, C.R., R. Gutell, R. Gupta, and H.F. Noller. 1983. Detailed analysis of higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev.47:621–699.PubMedGoogle Scholar
  92. Wray, G.A. and R.A. Raff. 1989. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Dev. Biol.132:458–470.PubMedCrossRefGoogle Scholar
  93. Wray, G.A. and R.A. Raff. 1990. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. Dev. Biol.141:41–54.PubMedCrossRefGoogle Scholar
  94. Wray, G.A. and R.A. Raff. 1991a. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol.6:45–50.CrossRefGoogle Scholar
  95. Wray, G.A. and R.A. Raff. 1991b. Rapid evolution of gastrulation mechanisms in a direct-developing sea urchin. Evolution, In press.Google Scholar
  96. Yang, Q., L.M. Angerer, and R.C. Angerer. 1989. Unusual pattern of accumulation of mRNA encoding EGF-related protein in sea urchin embryos. Science246:806–808.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Rudolf A. Raff
    • 1
  • Jonathan J. Henry
    • 1
  • Gregory A. Wray
    • 1
  1. 1.Institute for Molecular and Cellular Biology, and Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations