Gastrulation pp 169-184 | Cite as

Amphibian Gastrulation: The Molecular Bases of Mesodermal Cell Migration in Urodele Embryos

  • Jean-Claude Boucaut
  • Thierry Darribère
  • De Li Shi
  • Jean-Francois Riou
  • Kurt E. Johnson
  • Michel Delarue
Part of the Bodega Marine Laboratory Marine Science Series book series (BMSS)


During the early developmental period of the vertebrate embryo, called gastrulation, changes in cell shape, cell number, and cell-cell associations produce fundamental changes in embryonic morphology. Selected populations of cells are designated to perform particular ensembles of cell movements. Typically, morphogenetic cell movements are regulated in a repeatable pattern from embryo to embryo. These morphogenetic cell movements lead to the organization of an embryo with three primary germ layers: ectoderm, mesoderm, and endoderm. It is difficult enough to understand how cells move from one location to another inside the embryo but even more mysterious why they choose one particular pathway for this locomotion from among the large number of pathways theoretically available to them.


Mesodermal Cell Animal Pole Amphibian Embryo Convergent Extension Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P.C. 1965. Fine structure and morphogenic movements in the gastrula of the tree frog, Hyla regilla. J. Cell Biol. 24:95–116.CrossRefGoogle Scholar
  2. Beetschen, J.C. and M. Fernandez. 1979. Studies on the maternal effect of the semi-lethal factor ac in the salamander Pleurodeles waltlii. p. 269–286. In: Maternal Effects in Development. D.R. Newth and M. Balls (Eds.). Cambridge University Press, Cambridge.Google Scholar
  3. Boucaut, J.-C. and T. Darribère. 1983a. Fibronectin in early amphibian embryos: Migrating mesodermal cells are in contact with a fibronectin-rich fibrillar matrix established prior to gastrulation. Cell Tissue Res. 234:135–145.PubMedCrossRefGoogle Scholar
  4. Boucaut, J.-C. and T. Darribère. 1983b. Presence of fibronectin during early embryogenesis in the amphibian Pleurodeles waltlii.Cell Differ. 12:77–83.PubMedCrossRefGoogle Scholar
  5. Boucaut, J.-C, T. Darribère, H. Boulekbache, and J.P. Thiery. 1984a. Prevention of gastrulation but not neurulation by antibody to fibronectin in amphibian embryos. Nature 307:364–367.PubMedCrossRefGoogle Scholar
  6. Boucaut, J.-C, T. Darribère, T.J. Poole, H. Aoyama, K.M. Yamada, and J.P. Thiery. 1984b. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99:1822–1830.PubMedCrossRefGoogle Scholar
  7. Boucaut, J.-C, T. Darribère, D.L. Shi, H. Boulekbache, K.M. Yamada, and J.P. Thiery. 1985. Evidence for the role of fibronectin in amphibian gastrulation. J. Embryol. Exp. Morphol. 89 (Suppl.):211–227.PubMedGoogle Scholar
  8. Boucaut, J.-C, K.E. Johnson, T. Darribère, D.-L. Shi, K.-F. Riou, H. Boulekbache, and M. Delarue. 1990. Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation. Int. J. Dev. Biol. 34:139–147.PubMedGoogle Scholar
  9. Chiquet, M. and D.M. Fambrough. 1984a. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol. 98:1926–1936.PubMedCrossRefGoogle Scholar
  10. Chiquet, M. and D.M. Fambrough. 1984b Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J. Cell Biol. 98:1937–1947.PubMedCrossRefGoogle Scholar
  11. Chiquet-Ehrismann, R., P. Kalla, C.A. Pearson, K. Beck, and M. Chiquet. 1988. Tenascin interferes with fibronectin action. Cell 53:383–390.PubMedCrossRefGoogle Scholar
  12. Chiquet-Ehrismann, R., E.J. Makie, C.A. Pearson, and T. Sakakura. 1986. Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47:131–139.PubMedCrossRefGoogle Scholar
  13. Crossin, K.L., S. Hoffman, M. Grumet, J.P. Thiery, and G.M. Edelman. 1986. Site-restricted expression of cytotactin during development of the chick embryo. J. Cell Biol. 102:1917–1930.PubMedCrossRefGoogle Scholar
  14. Darribère, T., D. Boucher, J.-C. Lacroix, and J.-C. Boucaut. 1984. Fibronectin synthesis during oogenesis and early development of the amphibian Pleurodeles waltlii. Cell Differ. 14:171–177.CrossRefGoogle Scholar
  15. Darribère, T., H. Boulekbache, D.L. Shi, and J.-C. Boucaut. 1985. Immunoelectron microscopic study of fibronectin in gastrulating amphibian embryos. Cell Tissue Res. 239:75–80.CrossRefGoogle Scholar
  16. Darribèdre, T., K. Guida, H. Larjava, K.E. Johnson, K.M. Yamada, J.-P. Thiery, and J.-C. Boucaut. 1990. In vivo analyses of integrin β1subunit function in fibronectin matrix assembly. J. Cell Biol. 110:1813–1823.CrossRefGoogle Scholar
  17. Darribèdre, T., J.-F. Riou, K. Guida, A.-M. Duprat, J.-C. Boucaut, and J.-C. Beetschen 1991. A maternal-effect mutation disturbs extracellular matrix organization in the early Pleurodeles waltl embryo. Cell Tissue Res. 263:507–514.CrossRefGoogle Scholar
  18. Darribèdre, T., J.-F. Riou, D.L. Shi, M. Delarue, and J.-C. Boucaut. 1986. Synthesis and distribution of laminin-related polypeptides in early amphibian embryos. Cell Tissue Res. 246:45–51.Google Scholar
  19. Darribèdre, T., K.M. Yamada, K.E. Johnson, and J.-C. Boucaut. 1988. The 140 kD fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol. 126:182–194.CrossRefGoogle Scholar
  20. Delarue, M., T. Darribèdre, C. Aimar, and J.-C. Boucaut. 1985. Bufonid nucleocytoplasmic hybrids arrested at the early gastrula stage lack a fibronectin-containing fibrillar extracellular matrix. Wilhelm Roux’s Arch. Dev. Biol. 194:275–280.CrossRefGoogle Scholar
  21. DeSimone, D.W. and R.O. Hynes. 1988. Xenopus laevis integrins. Structural and evolutionary divergence of integrin β subunits. J. Biol. Chem. 263:5333–5340.PubMedGoogle Scholar
  22. Johnson, K.E. 1984. Glycoconjugate synthesis during gastrulation in Xenopus laevis. Am. Zool. 24: 605–624.Google Scholar
  23. Johnson, K.E., J.-C. Boucaut, T. Darribèdre, and J.-F. Riou. 1987. Fibronectin in normal and gastrula arrested hybrid frog embryos. Anat. Rec. 218:68A.Google Scholar
  24. Johnson, K.E., T. Darribère, and J.-C. Boucaut. 1990. Cell adhesion to extracellular matrix in normal Rana pipiens gastrulae and in arrested hybrid gastrulae Rana pipiens ♀ × Rana esculenta ♂.Dev. Biol. 137:86–99.PubMedCrossRefGoogle Scholar
  25. Keller, R.E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis I. Prospective areas and morphogenetic movements in the superficial layer. Dev. Biol. 42:222–241.PubMedCrossRefGoogle Scholar
  26. Keller, R.E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis II. Prospective areas and morphogenetic movements in the deep region. Dev. Biol. 51:118–137.PubMedCrossRefGoogle Scholar
  27. Keller, R.E. 1984. The cellular basis of gastrulation in Xenopus laevis: Postinvolutional convergence and extension. Am. Zool. 25:589–602.Google Scholar
  28. Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–327. In:Developmental Biology: A Comprehensive Synthesis. Vol. 2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.Google Scholar
  29. Keller, R.E., M. Danilchik, R. Gimlich, and J. Shin. 1985. Convergent extension by cell intercalation during gastrulation in Xenopus laevis. p. 111–141. In: Molecular Determinants of Animal Form. G.M. Edelman, (Ed.). Alan R. Liss, New York.Google Scholar
  30. Lee, G., R. Hynes, and M. Kirschner 1984. Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740.PubMedCrossRefGoogle Scholar
  31. Lundmark, C. 1986. Role of bilateral zones of ingressing superficial cells during gastrulation ofAmbystoma mexicanum.J. Embrol. Exp. Morphol. 97:47–62.Google Scholar
  32. Mackie, E.J., R.P. Tucker, W. Halfter, R. Chiquet-Ehrismann, and Epperlein, H.H. 1988. The distribution of tenascin coincides with pathways of neural crest cell migration. Development 102:237–250.PubMedGoogle Scholar
  33. Nakatsuji, N. 1984. Cell locomotion and contact guidance in amphibian gastrulation. Am. Zool. 24:615–627.Google Scholar
  34. Nakatsuji, N. 1986. Presumptive mesodermal cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J. Cell Sci. 86:109–118.PubMedGoogle Scholar
  35. Nakatsuji, N., A. Gould, and K.E. Johnson. 1982. Movement and guidance of migrating mesodermal cells in Ambystoma maculatum gastrulae. J. Cell Sci. 56:207–222.PubMedGoogle Scholar
  36. Nakatsuji, N, K. Hashimoto, and M. Hayashi. 1985a. Laminin fibrils in newt gastrulae visualized by immunofluorescent staining. Dev. Growth & Differ. 27:639–643.CrossRefGoogle Scholar
  37. Nakatsuji, N. and K.E. Johnson. 1983a. Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J. Cell Sci. 59:43–60.PubMedGoogle Scholar
  38. Nakatsuji, N. and K.E. Johnson. 1983b. Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species. J. Cell Sci. 59:61–70.PubMedGoogle Scholar
  39. Nakatsuji, N. and K.E. Johnson. 1984a. Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 307:453–455.PubMedCrossRefGoogle Scholar
  40. Nakatsuji, N. and K.E. Johnson. 1984b. Substratum conditioning experiments using normal and hybrid frog embryos. J. Cell Sci. 68:49–67.PubMedGoogle Scholar
  41. Nakatsuji, N, M.A. Smolira, and C.C. Wylie. 1985b. Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrula. Dev. Biol. 107:264–268.PubMedCrossRefGoogle Scholar
  42. Riou, J.-F., D.-L. Shi, M. Chiquet, and J.-C. Boucaut. 1988. Expression of tenascin in response to neural induction in amphibian embryos. Development 104:511–524.Google Scholar
  43. Riou, J.-F., D.-L. Shi, M. Chiquet, and J.-C. Boucaut. 1990. Exogenous tenascin inhibits mesodermal cells migration during amphibian gastrulation. Dev. Biol. 137:305–317.PubMedCrossRefGoogle Scholar
  44. Shi, D.-L., T. Darribère, K.E. Johnson, and J.-C. Boucaut. 1989. Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles waltl gastrulae. Development 105:223–236.Google Scholar
  45. Shi, D.-L., M. Delarue, T. Darribère, J.-F. Riou, J.-C. Boucaut. 1987. Experimental analysis of the extension of the dorsal marginal zone in Pleurodeles waltl gastrulae. Development 100:147–161.PubMedGoogle Scholar
  46. Smith, J.C. and G.M. Malacinski. 1983. The origin of the mesoderm in the anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum. Dev. Biol. 98:250–254.CrossRefGoogle Scholar
  47. Thiery, J.P., J.L. Duband, and A. Delouvée. 1985. The role of cell adhesion in morphogenetic movements during early embryogenesis. p. 169–196. In:The Cell In Contact. G.M. Edelman and J.P. Thiery (Eds.). Wiley, New York.Google Scholar
  48. Vogt, W. 1929. Gestaltungsanalyse am Amphibienkeim mit Ortlicher Vitalfärbung. II. Teil. Gastrulation and Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 120:384–706.CrossRefGoogle Scholar
  49. Weiss, P. 1945. Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization. J. Exp. Zool. 100:353–386.PubMedCrossRefGoogle Scholar
  50. Yamada, K. M. 1983. Cell surface interactions with extracellular materials. Annu. Rev. Biochem. 52:761–799.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jean-Claude Boucaut
    • 1
  • Thierry Darribère
    • 1
  • De Li Shi
    • 1
  • Jean-Francois Riou
    • 1
  • Kurt E. Johnson
    • 2
  • Michel Delarue
    • 1
  1. 1.Centre National de la Recherche ScientifiqueUniversite Pierre et Marie Curie Laboratorie de Biologie Experimentale URA-CNRS-1135 9ParisFrance
  2. 2.Department of AnatomyThe George Washington University Medical CenterUSA

Personalised recommendations