Regulated Secretion in Vascular Endothelium

  • Bruce M. Ewenstein
  • Brian C. Jacobson
  • Kimberly A. Birch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)


Eukaryotic cells secrete proteins through both regulated and constitutive pathways (1). In the regulated pathway, exocytosis of stored material is coupled to an external stimulus which produces transient elevations in [Ca2+]i, cAMP or other secondary messengers (2, 3). Secretion is ultimately accomplished by the translocation of the exocytotic granule to the subcortical regions of the cell and the fusion of the cellular plasma membrane with the membranes of the secretory organelle. The process of regulated secretion has at least two distinct consequences. First, the rapid release of the contents of the storage granule generates locally high concentrations of peptides, proteins and other bioactive compounds in the vicinity of the secretory cell. These products may promote cell-cell interaction through the activation of target cells or the crosslinking of surface receptors. Second, the translocation of secretory granule membrane proteins to the plasma membrane of the secretory cell may provide new or additional binding sites for cellular adhesion.


Human Umbilical Vein Endothelial Cell Human Endothelial Cell Cell BioI Constitutive Pathway High Molecular Weight Multimers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Burgess and R.B. Kelly, Constitutive and regulated secretion of proteins, Annu. Rev. Cell Biol. 3: 243 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    J.F. Harper, Stimulus-secretion coupling: Second messenger-regulated exocytosis, Advances in Second Messenger and Phosohoprotein Research, 22: 193 (1988).Google Scholar
  3. 3.
    T.J. Rink and D.E. Knight, Stimulus-secretion coupling: A perspective highlighting the contributions of Peter Baker, J. Exp. Biol. 139: 1 (1988).PubMedGoogle Scholar
  4. 4.
    M.A. Gimbrone Jr. and M.P. Bevilacqua, 1988, Vascular endothelium: Functional modulation at the blood interface, in: “Endothelial Cell Biology,” N. Simionescu and M. Simionescu, eds., Plenum Press, New York.Google Scholar
  5. 5.
    J.M. Harlan, P.J. Thompson, R.R. Ross, and D.F. Bowen-Pope, Alpha-thrombin induces release of platelet-derived growth factor-like molecule(s) by cultured human endothelial cells, J. Cell. Biol. 103:1129(1986).Google Scholar
  6. 6.
    D.M. Stern, J. Brett, K. Harris, and P. Nawroth, Participation of endothelial cells in the protein C-protein S anticoagulant pathway: the synthesis and release of protein S, J. Cell Biol. 102: 1971 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    E.A. Jaffe, L.W. Hoyer, R.L. Nachman, Synthesis of antihemophilic factor antigen by cultured human endothelial cells, J. Clin. Invest. 52: 2757 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    R.L. Nachman, R. Levine, and E.A. Jaffe, Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes, J. Clin. Invest. 60:914, (1977).Google Scholar
  9. 9.
    R.I. Handin and D.D. Wagner, 1989, Molecular and cellular biology of von Willebrand factor, in: “Progress in Hemostasis and Thrombosis,” Vol. 9, B.S. Coller, ed., Saunders, Philadelphia.Google Scholar
  10. 10.
    T.S. Zimmerman and Z.M. Ruggeri, von Willebrand disease, Hum. Pathol. 18: 140 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Titani, S. Kumar, K. Takio, L.H. Ericsson, R.D. Wade, K. Ashida, K.A. Walsh, Michael W. Chopek, J.E. Sadler, and K. Fujikawa, Amino acid sequence of human von Willebrand factor, Biochemistry 25: 3171 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Ginsburg, R.I. Handin, D.T. Bonthron, T.A. Donlon, G.A.P. Bruns, S.A. Latt, and S.H. Orkin, Human von Willebrand factor (vWf): Isolation of complementary DNA (cDNA) clones and chromosomal localization, Science 228: 1401 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    D.C. Lynch, T.S. Zimmerman, C.J. Collins, M. Brown, M.J. Morin, E.H. Ling, and D.M. Livingston, Molecular cloning of cDNA for human von Willebrand factor: Authentication by a new method, Cell 41: 49 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J.E. Sadler, B.B. Shelton-Inloes, J.M. Sorace, J.M. Harlan, K. Titani, and E.W. Davie, Cloning and characterization of two cDNAs coding for human von Willebrand factor, Proc. Natl. Acad. Sci. USA 82: 6394 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    C.L. Verweij, C.J.M. deVries, B. Distel, A.-J. van Zonneveld, A.G. van Kessel, J.A. van Mourik, and H. Pannekoek, Construction of cDNA coding for human von Willebrand factor using antibody probes for colony screening and mapping of the chromosomal gene, Nucleic Acids Res. 13: 4699 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    D.D. Wagner, Cell biology of von Willebrand factor, Annu. Rev. Cell Biol. 6: 217 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    D.D. Wagner, S.O. Lawrence, B.M. Ohlsson-Wilhelm, P.J. Fay, and V.J. Marder, Topology and order of formation of interchain disulfide bonds in von Willebrand factor, Blood 69: 27 (1987).PubMedGoogle Scholar
  18. 18.
    D.D. Wagner and V.J. Marder, Biosynthesis of von Willebrand protein by human endothelial cells: Processing steps and their intracellular localization, J. Cell Biol. 99: 2123 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    D.D. Wagner, T. Mayadas, M. Urban-Pickering, B.H. Lewis, and V.J. Marder, Inhibition of disulfide bonding of von Willebrand protein by monensin results in small, functionally defective multimers, J. Cell Biol. 101: 112 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    M.C. Roarke, D.D. Wagner, V.J. Marder, and L.A. Sporn, Temperature-sensitive steps in the secretory pathway for von Willebrand factor in endothelial cells, Eur. J. Cell Biol. 48: 337 (1989).PubMedGoogle Scholar
  21. 21.
    B.M. Ewenstein, M.J. Warhol, R.I. Handin, and J.S. Pober, Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells, J. Cell Biol. 104: 1423 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    C.L. Verweij, M. Hart and H. Pannekoek, Expression of variant von Willebrand factor (vWf) cDNA in heterologous cells: Requirement of the propolypeptide in vWF multimer formation, EMBO J. 6: 2885 (1987).PubMedGoogle Scholar
  23. 23.
    R.J. Wise, D.D. Pittman, R.I. Handin, R.J. Kaufman, and S.H. Orkin, The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers, Cell 52: 229 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    D.D. Wagner, T. Mayadas, and V.J. Marder, Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor, J. Cell Biol. 102: 1320 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Mayadas and D.D. Wagner, In vitro multimerization of von Willebrand factor is triggered by low pH: Importance of the propolypeptide and free sulfhydryls, J. Biol. Chem. 264: 13497 (1989).PubMedGoogle Scholar
  26. 26.
    D.R. McCarroll, E.G. Levin, and R.R. Montgomery, Endothelial cell synthesis of von Willebrand antigen II, von Willebrand factor and von Willebrand factor/von Willebrand antigen II complex, J. Clin. Invest. 75: 1089 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    R.R. Montgomery and T.S. Zimmerman, von Willebrand’s disease antigen II. A new plasma and platelet antigen deficient in severe von Willebrand’s disease, J. Clin. Invest. 61: 1498 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    P.J. Fay, Y. Kawai, D.D. Wagner, D. Ginsburg, D. Bontron, B.M. Ohlsson-Wilhelm, S.I. Charin, G.N. Abraham, R.I. Handin, S.H. Orkin, R.R. Montgomery, and V.J. Marder, Propolypeptide of von Willebrand factor circulates in blood and is identical to von Willebrand factor antigen II, Science 232: 995 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    D.D. Wagner, P.J. Fay, L.A. Sporn, S. Sinha, S.O. Lawrence, and V.J. Marder, Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen II) after secretion from endothelial cells, Proc. Natl. Acad. Sci. USA 84: 1955 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Loesberg, M.D. Gonsalves, J. Zandbergen, C. Willems, W.G. van Aken, H.V. Stel, J.A. van Mourik, and P.G. deGroot, The effect of calcium on the secretion of factor VIII-related antigen by cultured human endothelial cells, Biochim. Biophys. Acta. 763: 160 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    L.A. Sporn, V.J. Marder, and D.D. Wagner, Inducible secretion of large biologically potent von Willebrand factor multimers, Cell 46: 185 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    P.K. Nguyen and P.L. Bockensted, Induction of von Willebrand factor synthesis in human umbilical vein endothelial cells by sodium butyrate, Blood 76;431a (1990).Google Scholar
  33. 33.
    H.M. Tsai, R.L. Nagel, V.B. Hatcher, and I.I. Sussman, Multimeric composition of endothelial cell-derived von Willebrand factor, Blood 73: 2074 (1989).PubMedGoogle Scholar
  34. 34.
    C.R.M. Prentice, C.D. Forbes, and S.M. Smith, Rise of factor VIII after exercise and adrenalin infusion measured by immunological and biological techniques, Thromb. Res. 1: 493 (1972).CrossRefGoogle Scholar
  35. 35.
    Z.M. Ruggeri, P.M. Mannucci, R. Lombardi, A.B. Federici, and T.S. Zimmerman, Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: Implications for pathophysiology and therapy of von Willebrand’s disease subtypes, Blood 59: 1272 (1982).PubMedGoogle Scholar
  36. 36.
    P.M. Mannucci, 1986, Desmopressin (DDAVP) for treatment of disorders of hemostasis, in: “Progress in Hemostasis and Thrombosis”, Vol. 8, B.S. Coller, ed., Grune & Stratton, New York.Google Scholar
  37. 37.
    J.D. Levine, J.M. Harlan, L.A. Harker, M.L. Joseph, and R.B. Counts, Thrombin-mediated release of factor VIII antigen from human umbilical vein endothelial cells in culture, Blood 60: 531 (1982).PubMedGoogle Scholar
  38. 38.
    P.G. deGroot, M.D. Gonsalves, C. Loesberg, M.R. van Buul-Wortelboer, W.G. van Aken, and J.A. van Mourik, Thrombin-induced release of von Willebrand factor from endothelial cells is mediated by phospholipid methylation, J. Biol. Chem. 259: 13329 (1984).PubMedGoogle Scholar
  39. 39.
    K.K. Hamilton and P.J. Sims, Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. J. Clin. Invest. 79: 600 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    T.A. Brock, H.F. Dvorak, and D.R. Senger, Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells, Am. J. Pathol. 138:213(1991).Google Scholar
  41. 41.
    J.A. Ribes, C.W. Francis, and D.D. Wagner, Fibrin induces release of von Willebrand factor from endothelial cells, J. Clin. Invest. 79: 117 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    J.A. Ribes, F. Ni, D.D. Wagner, and C.W. Francis, Mediation of fibrin-induced release of von Willebrand factor from cultured endothelial cells by the fibrin beta chain. J. Clin. Invest. 84: 435 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Hattori, K.K. Hamilton, R.P. McEver, and P.J. Sims, Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface, J. Biol. Chem. 264: 9053 (1989).PubMedGoogle Scholar
  44. 44.
    B.J. Awbrey, J.C. Hoak, and W.G. Owen, Binding of human thrombin to cultured human endothelial cells, J. Biol. Chem. 254: 4092 (1979).PubMedGoogle Scholar
  45. 45.
    P. Lollar and W.B. Owen, Evidence that the effects of thrombin on arachidonate metabolism in cultured human endothelial cells are not mediated by a high affinity receptor, J. Biol. Chem. 255: 8031 (1980).PubMedGoogle Scholar
  46. 46.
    D. Rotrosen and J.I. Gallin, Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers, J. Cell Biol. 103: 2379 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    F.M Booyse, A.J. Quarfoot, J. Chediak, M.B. Stemerman, and T. Maciag, Characterization and properties of cultured human von Willebrand umbilical vein endothelial cells, Blood 58: 788 (1981).PubMedGoogle Scholar
  48. 48.
    E.G.D. Tuddenham, J. Lazarchich, and L.W. Hoyer, Synthesis and release of factor VIII by cultured human endothelial cells, Brit. J. Haematol. 47: 617 (1981).CrossRefGoogle Scholar
  49. 49.
    J.H. Reinders, R. C. Vervoorn, C.L. Verweij, J.A. van Mourik, and P.G. deGroot, Perturbation of cultured human vascular endothelial cells by phorbol ester or thrombin alters the cellular von Willebrand factor distribution, J. Cell Phvsiol. 133: 79 (1987).CrossRefGoogle Scholar
  50. 50.
    T. Mayadas, D.D. Wagner, and P.J. Simpson, von Willebrand factor biosynthesis and partititoning between constitutive and regulated pathways of secretion after thrombin stimulation, Blood 73: 706 (1989).PubMedGoogle Scholar
  51. 51.
    E.R. Weibel and G.E. Palade, New cytoplasmic components in arterial endothelia, J. Cell Biol. 23: 101 (1964).PubMedCrossRefGoogle Scholar
  52. 52.
    A.A. Trillo and R.W. Prichard, Early endothelial changes in experimental primate atherosclerosis, Lab. Invest. 41: 294 (1979).PubMedGoogle Scholar
  53. 53.
    P. Kumar, A. Erroi, A. Sattar, and S. Kumar, Weibel-Palade bodies as a marker for neovascularization induced by tumor and rheumatoid angiogenesis factors, Cancer Res. 45: 4339 (1985).PubMedGoogle Scholar
  54. 54.
    A. Sengel and P. Stoebner, Golgi origin of tubular inclusions in endothelial cells, J. Cell Biol. 44: 223 (1970).PubMedCrossRefGoogle Scholar
  55. 55.
    D.D. Wagner, J.B. Olmsted, and V.J. Marder, Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells, J. Cell Biol. 95: 355 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    M. Hormia, V.P. Lehto, and I. Virtanen, Intracellular localization of factor VIII-related antigen and fibronectin in cultured human endothelial cells: Evidence for divergent routes of intracellular translocation, Eur. J. Cell Biol. 33: 217 (1984).PubMedGoogle Scholar
  57. 57.
    M.J. Warhol and J.M. Sweet, The ultrastructural localization of von Willebrand factor in endothelial cells, Am. J. Pathol. 117: 310 (1984).PubMedGoogle Scholar
  58. 58.
    H. Kagawa, S. Fujimoto, H. Ueda, and K. Hamasaki, Immunocytochemical localization of factor VHI-related antigen in human umbilical vein, J. VOEH 7: 365 (1985).Google Scholar
  59. 59.
    J.H. Reinders, P.G. de Groot, M.D. Gonsalves, J. Zandbergen, C. Loesberg, and J.A. van Mourik, Isolation of a storage and secretory organelle containing von Willebrand protein from cultured human endothelial cells, Biochim. Biophys. Acta 804: 361 (1984).PubMedCrossRefGoogle Scholar
  60. 60.
    J.H. Reinders, P.G. de Groot, J. Dawes, N.R. Hunter, H.A.A. van Heugten, J. Zandbergen, M.D. Gonsalves, and J.A. van Mourik, Composition of secretion and subcellular localization of von Willebrand protein with that of thrombospondin and fibronectin in cultured human vascular endothelial cells, Biochim. Biophys. Acta 884: 306 (1985).CrossRefGoogle Scholar
  61. 61.
    J. Loscalzo, M. Fisch, and R.I. Handin, Solution studies of the quaternary structure and assembly of human von Willebrand factor, Biochemistry 24: 4468 (1985).PubMedCrossRefGoogle Scholar
  62. 62.
    R.P. McEver and M.N. Martin, A monoclonal antibody to a membrane glycoprotein binds only to activated platelets, J. Biol. Chem. 259: 9799 (1984).PubMedGoogle Scholar
  63. 63.
    S. Hsu-Lin, C.L. Berman, B.C. Furie, D. August, B. Furie, A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets, J. Biol. Chem. 259: 9121 (1984).PubMedGoogle Scholar
  64. 64.
    R.P. McEver, J.H. Beckstead, K.L. Moore, L. Marshall-Carlson, and D.F. Bainton, GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endotheial cells and is localized in Weibel-Palade bodies, J. Clin. Invest. 84: 92 (1989).PubMedCrossRefGoogle Scholar
  65. 65.
    R. Bonfanti, B.C. Furie, B. Furie, and D.D. Wagner, PADGEM (GMP-140) is a component of Weibel-Palade bodies of human endothelial cells, Blood 73: 1109 (1989).PubMedGoogle Scholar
  66. 66.
    G.I. Johnston, R.G. Cook, and R.P. McEver, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56: 1033 (1989).PubMedCrossRefGoogle Scholar
  67. 67.
    M.P. Bevilacqua, S. Stengelin, M.A. Gimbrone, Jr, and B. Seed, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243: 1160 (1989).PubMedCrossRefGoogle Scholar
  68. 68.
    L.A. Lasky, M.S. Singer, T.A. Yednock, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S.D. Rosen, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56: 1045 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    J.M. McNiff and J. Gil, Secretion of Weibel-Palade bodies observed in extra-alveolar vessels of rabbit lung, J. Appl. Phvsiol. 54: 1284 (1983).CrossRefGoogle Scholar
  70. 70.
    R. Hattori, K.K. Hamilton, R.D. Fugate, R.P. McEver, and P.J. Sims, Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140, J. Biol. Chem. 264: 7768 (1989).PubMedGoogle Scholar
  71. 71.
    L.A. Fitzgerald, I.F. Charo, and D.R. Phillips, Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa, J. Biol. Chem. 260: 10893 (1985).PubMedGoogle Scholar
  72. 72.
    L.A. Sporn, V.J. Marder, and D.D. Wagner, Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells, J. Cell. Biol. 108: 1283 (1989).PubMedCrossRefGoogle Scholar
  73. 73.
    S.H. Tannenbaum, M.E. Rick, B. Shafer, and H.R. Gralnick, Subendothelial matrix of cultured endothelial cells contains fully processed high molecular weight von Willebrand factor, J. Lab. Clin. Med. 113:372(1989).Google Scholar
  74. 74.
    M.J. Berridge, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345 (1984).PubMedGoogle Scholar
  75. 75.
    E.A. Jaffe, J. Grulich, B.B. Weksler, G. Hampel, and K. Watanabe, Correlation between thrombin-induced prostacylin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells, J. Biol. Chem. 262: 8557 (1987).PubMedGoogle Scholar
  76. 76.
    T.A. Brock and E.A. Capasso, Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway, J. Cell Phvsiol. 136: 54 (1988).CrossRefGoogle Scholar
  77. 77.
    D.M. Stern, P.P. Nawroth, W. Kisiel, D. Handley, M. Drillings, and J. Bartos, A cogulation pathway on bovine aortic segments leading to the generation of Factor Xa and thrombin, J. Clin. Invest. 74:1910(1984).Google Scholar
  78. 78.
    D.M. Stern, P.P. Nawroth, D. Handley, and W. Kisiel, An endothelial cell-dependent pathway of coagulation, Proc. Natl. Acad. Sci. USA 82: 2523 (1985).PubMedCrossRefGoogle Scholar
  79. 79.
    T.J. Hallam, R. Jacob, and J.E. Merritt, Evidence that agonists stimulate bivalent-cation influx into human endothelial cells, Biochem. J. 255: 179 (1988).PubMedGoogle Scholar
  80. 80.
    K.A. Birch, G.B. Zavoico, J.S. Pober, and B.M. Ewenstein, A direct role of calcium and a regulatory role of protein kinase C (PKC) in thrombin-stimulated von Willebrand factor (vWF) secretion by human umbilical vein endothelial cells (EC), FASEB J. 4:481 A (1990).Google Scholar
  81. 81.
    K.E. Kamm and J.T. Stull, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol. 25: 593 (1985).CrossRefGoogle Scholar
  82. 82.
    M. Inagaki, S. Kawamoto, and H. Hidaka, Serotonin secretion from human platelets may be modified by Ca2+-activated phospholipid-dependent myosin phosphorylation, J. Biol. Chem. 259: 14321 (1984).PubMedGoogle Scholar
  83. 83.
    M. Saitoh, M. Naka, and H. Hidaka, The modulatory role of myosin light chain phosphorylation in human platelet activation, Biochem. Biophys. Res. Commun. 140: 280 (1986).PubMedCrossRefGoogle Scholar
  84. 84.
    R.B. Wysolmerski and D. Lagunoff, Involvement of myosin light-chain kinase in endothelial cell retraction, Proc. Natl. Acad. Sci. USA 87: 16 (1990).PubMedCrossRefGoogle Scholar
  85. 85.
    J.J. Lynch, T.J. Ferro, F.A. Blumenstock, A.M. Brockenauer, and A.B. Malik, Increased endothelial albumin permeability mediated by protein kinase C activation, J. Clin. Invest. 85: 1991 (1990).PubMedCrossRefGoogle Scholar
  86. 86.
    J.E. Niedel and P.J. Blackshear, 1986, Protein kinase C, in: “Phosphoinositides and Receptor Mechanisms,” J.W. Putney, ed., Alan R. Liss.Google Scholar
  87. 87.
    B.C. Jacobson, J.S. Pober, J.W. Fenton, and B.M. Ewenstein, Thrombin and Histamine rapidly stimulate the phosphorylation of the Myristoylated alanine-rich C kinase substrate (MARCKS) in human umbilical vein endothelial cells: Evidence for distinct patterns of protein kinase activation, submitted.Google Scholar
  88. 88.
    S. Sinha and D.D. Wagner, Intact microtubules are necessary for complete processing, storage and regulated secretion of von Willebrand factor by endothelial cells, Eur. J. Cell Biol. 43: 377 (1987).PubMedGoogle Scholar
  89. 89.
    D. Aunis and M.-F. Bader, The cytoskeleton as a barrier to exocytosis in secretory cells, J. Exp. Biol. 139: 253 (1988).PubMedGoogle Scholar
  90. 90.
    A.B. Federici, R. Bader, S. Pagani, M.L. Colibretti, L. De Marco, and P.M. Mannucci, Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size, Brit. J. Haematol. 73: 93 (1989).CrossRefGoogle Scholar
  91. 91.
    L.A. Sporn, V.J. Marder, and D.D. Wagner, von Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively, Blood 69: 1531 (1987).PubMedGoogle Scholar
  92. 92.
    J.L. Moake, N.A. Turner, N.A. Stathopoulos, L.H. Nolasco, and J.D. Heliums, Involvement of large plasma von Willebrand factor multimers and unusually large von Willebrand factor multimers and unusually large von Willebrand factor forms derived from endothelial cells in shear-stress induced platelet aggregation, J. Clin. Invest. 78: 1456 (1986).PubMedCrossRefGoogle Scholar
  93. 93.
    J.-G. Geng, M.P. Bevilacqua, K.L. Moore, T.M. Mclntyre, S.M. Prescott, J.M. Kim, G.A. Bliss, G.A. Zimmerman, and R.P. McEver, Rapid neutrophil adhesion to activated endothelium mediated by GMP-140, Nature 343: 757 (1990).PubMedCrossRefGoogle Scholar
  94. 94.
    J.R. Gamble, M.P. Skinner, M.C. Berndt, and M.A. Vadas, Prevention of activated neutrophil adhesion to endothelium by soluble adhesion proteins GMP140, Science 249: 414 (1990).PubMedCrossRefGoogle Scholar
  95. 95.
    K.L. Moore, A. Varki, and R.P. McEver, GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction, J. Cell. Biol. 112: 491 (1991).PubMedCrossRefGoogle Scholar
  96. 96.
    L. Osborn, Leukocyte adhesion to endothelium in inflammation, Cell 62: 3 (1990).PubMedCrossRefGoogle Scholar
  97. 97.
    G.A. Zimmerman, T.M. Mclntyre, M. Mehra, and S.M. Prescott, Endothelial cellassociated platelet-activating factor: a novel mechanism for signaling intercellular adhesion, J. Cell Biol. 110:529(1990).Google Scholar
  98. 98.
    M.A. Boogaerts, G. Vercelotti, C. Roelant, S. Malbrain, R.L. Verwilghen, and H.S. Jacob, Platelets augment granulocyte aggregation and cytotoxicity: Uncovering of their effects by improved cell separation techniques using Percoll gradients, Scand. J. Haematol. 37: 229 (1986).PubMedCrossRefGoogle Scholar
  99. 99.
    A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, C.N. Serhan, L.E. Rutherford, H.M. Korchak, and G. Weissmann, Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro, Biochem. Biophys. Res. Commun. 109: 130 (1982).PubMedCrossRefGoogle Scholar
  100. 100.
    J.A. Maclouf and R.C. Murphy, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4, J. Biol. Chem. 263: 174 (1988).PubMedGoogle Scholar
  101. 101.
    E. Larsen, A. Celi, G.E. Gilbert, B.C. Furie, J.K. Erban, R. Bonfanti, D.D. Wagner, and B. Furie, PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes, Cell 59: 305 (1989).PubMedCrossRefGoogle Scholar
  102. 102.
    S.A. Hamburger and R.P. McEver, GMP-140 mediates adhesion of stimulated platelets to neutrophils, Blood 75: 550 (1990).PubMedGoogle Scholar
  103. 103.
    K.D. Patel, G.A. Zimmerman, S.M. Prescott, R.P. McEver, and T.M. Mclntyre, Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils, J. Cell Biol. 112:749(1991).Google Scholar
  104. 104.
    R.P. Hebbel, M.A.B. Boogaerts, J.W. Eaton, and M.H. Steinberg, Erythrocyte adherence to endothelium in sickle-cell anemia: A possible determinant of disease severity, N. Engl. J. Med. 302: 992 (1980).PubMedCrossRefGoogle Scholar
  105. 105.
    N. Mohandas and E. Evans, Sickle erythrocyte adherence to vascular endothelium: Morphologic correlates and the requirement for divalent cations and collagen-binding proteins, J. Clin. Invest. 76: 1605 (1985).PubMedCrossRefGoogle Scholar
  106. 106.
    G.A. Barabino, L.V. McIntire, S.G. Eskin, D.A. Sears, and M. Udden, Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow, Blood 70: 152 (1987).PubMedGoogle Scholar
  107. 107.
    D.K. Kaul, M.E. Fabry, and R.L. Nagel, Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications. Proc. Natl. Acad. Sci. USA 86: 3356 (1989).PubMedCrossRefGoogle Scholar
  108. 108.
    T.M. Wick, J.L. Moake, M.M. Udden, S.G. Eskin, D.A. Sears, and L.V. Mclntire, Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow, J. Clin. Invest. 80: 905 (1987).PubMedCrossRefGoogle Scholar
  109. 109.
    H.M. Tsai, I.I. Sussman, R.L. Nagel, and D.K. Kaul, Desmopressin induces adhesion of normal human erythrocytes to the endothelial surfaces of a perfused microvascular preparation, Blood 75: 251 (1990).Google Scholar
  110. 110.
    T.M. Wick, J.L. Moake, M.M. Udden, and L.V. Mclntyre, Unusually large (UL) vWF multimers bind to GPIb-like and integrin receptors on sickle and young non-sickle RBC and on endothelial cells (EC): A mechanism for sickle and other young RBC adhesion to EC, Blood 72:76a (1988).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bruce M. Ewenstein
    • 1
  • Brian C. Jacobson
    • 1
  • Kimberly A. Birch
    • 2
  1. 1.Division of Hematology and MedicineBrigham & Women’s HospitalBostonUSA
  2. 2.Departments of PathologyHarvard Medical SchoolBostonUSA

Personalised recommendations