Advertisement

Hepoxilins Modulate Second Messenger Systems in the Human Neutrophil

  • Cecil R. Pace-Asciak
  • Santosh Nigam
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)

Summary

In this chapter, we will review recent findings which implicate the hepoxilins as modulators of second messenger systems in the human neutrophil. We have shown that the hepoxilins affect calcium homeostasis in the cell and that they stimulate the release of arachidonic acid and diradylglycerol but not inositol phosphate indicating a mode of action for these 12-lipoxygenase metabolites that is independent of phospholipase C activation. In fact lipid analyses indicate that the phospholipid affected by the hepoxilins is phosphatidyl choline, and that this phospholipid is hydrolyzed by a phospholipase D. These findings indicate that the hepoxilins, which are formed by the platelet as well as the neutrophil, may affect neutrophil activation through a potential cell-cell interaction in the circulation or at pathologic sites to initiate or potentiate the inflammatory process.

Keywords

Arachidonic Acid Phosphatidyl Choline Human Neutrophil Phosphatidic Acid Inositol Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R. Pace-Asciak, E. Granstrom, and B. Samuelsson, Arachidonicacid epoxides: Isolation and structure of two hydroxy epoxide intermediates in the formation of 8 11 12 trihydroxy eicosatrienoic acid and 10 11 12 Trihydroxy eicosatrienoic acid, J. Biol. Chem., 258: 6835 (1983).PubMedGoogle Scholar
  2. 2.
    C.R. Pace-Asciak, Hemoglobin-and hemin-catalyzed transformation of 12L-hydroperoxy-5, 8, 10, 14-eicosatetraenoic acid, Biochim. Biophys. Acta., 793: 485 (1984).PubMedGoogle Scholar
  3. 3.
    C.R. Pace-Asciak, Arachidonic acid epoxides: demonstration through oxygen-18 labeled oxygen gas studies of an intramolecular transfer of the terminal hydroxyl group of 12s hydroperoxy eicosa-5 8 10 14-tetraenoic-acid to form hydroxy epoxides, J. Biol. Chem., 259: 8332 (1984).PubMedGoogle Scholar
  4. 4.
    C.R. Pace-Asciak, and J. M. Martin, Hepoxilin, A new family of Insulin secretagogues formed by intact rat pancreatic islets, Prostagl. Leukotriene and Med., 16: 173 (1984).CrossRefGoogle Scholar
  5. 5.
    R. L. Jones, P. J. Kerry, N. L. Poyser, I. C Walker, and N.H. Wilson, The identification of trihydroxy eicosatrienoic acids as products from the incubation of arachidonic acid with washed blood platelets, Prostaglandins, 16: 583 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    I. C Walker, R. L. Jones, P. J. Kerry, and N. H. Wilson, An epoxy-hydroxy product from arachidonate, Adv. Prostagl. Thromb. Res., 6: 107 (1980).Google Scholar
  7. 7.
    C.R. Pace-Asciak, J. M. Martin, E. J. Corey, and W.-G. Su, Endogenous release of hepoxilin A3 from isolated perifused pancreatic islets of Langerhans, Biochem. Biophys. Res. Commun., 128: 942 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    C R. Pace-Asciak, O. Laneuville, M. Chang, C. C. Reddy, W.-G. Su, and E. J. Corey, New products in the hepoxilin pathway: isolation of 11-glutathionyl hepoxilin A3 through reaction of hepoxilin A3 with glutathione S-transferase, Biochem. Biophys. Res. Commun., 163: 1230 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    C.R. Pace-Asciak, Formation and metabolism of hepoxilin A3 by the rat brain, Biochem. Biophys. Res. Commun., 151: 493–498 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Piomelli, E. Shapiro, R. Zipkin, J. H. Schwartz, and S. J. Feinmark, Formation and action of 8-hydroxy-ll, 12-epoxy-5, 9, 14-icosatetraenoic acid in Aplysia: A possible second messenger in neurons, Proc. Natl. Acad. Sci. (USA. 86: 1721 (1989).CrossRefGoogle Scholar
  11. 11.
    S. Dho, S. Grinstein, E. J. Corey, W. G. Su, and C. R. Pace-Asciak, Hepoxilin A3 induces changes in cytosolic calcium, intracellular pH and membrane potential in human neutrophils, Biochem. J., 266: 63 (1990).PubMedGoogle Scholar
  12. 12.
    O. Laneuville, E. J. Corey, R. Couture, and C. R. Pace-Asciak, Hepoxilin A3 (HXA3) is formed by the rat aorta and is metabolized into HXA3-C, a glutathione conjugate, Biochim. Biophys. Acta. 1991, in press.Google Scholar
  13. 13.
    C. R. Pace-Asciak, unpublished.Google Scholar
  14. 14.
    M. F. Moghaddam, W. H. Gerwick, and D. L. Ballantine, Discovery of the mammalian insulin release modulator, hepoxilin B3, from the tropical red algae Platysiphonia miniata and Cottoniella filamentosa, J. Biol. Chem., 265: 6126 (1990).PubMedGoogle Scholar
  15. 15.
    C. R. Pace-Asciak, and W.-S. Lee, Purification of hepoxilin epoxide hydrolase from rat liver, J. Biol. Chem., 264: 9310 (1989).PubMedGoogle Scholar
  16. 16.
    O. Laneuville, M. Chang, C. C. Reddy, E. J. Corey, and C. R. Pace-Asciak, Isozyme specificity in the conversion of hepoxilin A3 into a glutathionyl hepoxilin (HXA3-C) by the Yb2 subunit of rat liver glutathione S-transferase. J. Biol. Chem., 1991, in press.Google Scholar
  17. 17.
    C. R. Pace-Asciak, O. Laneuville, W.-G. Su, E. J. Corey, N. Gurevich, P. Wu, and P. L. Carlen, A glutathione conjugate of hepoxilin A3: Formation and action in the rat central nervous system, Proc. Natl. Acad. Sci. USA., 87: 3037 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    L. O. Derewlany, C. R. Pace-Asciak and I. C. Radde, Hepoxilin A, hydroxyepoxide metabolite of arachidonic acid stimulates transport of calcium-45 across the guinea-pig visceral yolk sac, Can. J. Physiol. Pharmacol., 62: 1466 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    P. L. Carlen, N. Gurevich, P. H. Wu, E. J. Corey, and C. R. Pace-Asciak, Actions of arachidonic acid and hepoxilin A3 on mammalian CA1 neurons. Brain Res., 497: 171 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    C. R. Pace-Asciak, L. Wong, and E. J. Corey, Hepoxilin A3 blocks the release of norepinephrine from rat hippocampal slices, Biochem. Biophys. Res. Commun., 1990, in press.Google Scholar
  21. 21.
    F. Belardetti, W. B. Campbell, J. R. Falck, G. Demontis, and M. Rosolowsky, Products of heme-catalyzed transformation of the arachidonate derivative 12-HPETE open S-type K+ channels in Aplysia, Neuron. 3: 497 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Nigam, S. Nodes, G. Cichon, E. J. Corey, and C. R. Pace-Asciak, Receptor-mediated action of hepoxilin A3 releases diacylglycerol and arachidonic acid from human neutrophils, Biochem. Biophys. Res. Commun., 171: 944 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    M. J. Berridge, and R. F. Irvine, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    M. M. Billah, S. Eckel, T. J. Mullman, R. W. Egan, and M. I. Siegel, Phosphatidyl choline hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils, J. Biol. Chem., 264: 17069 (1989).PubMedGoogle Scholar
  25. 25.
    J. Exton, Signaling through phosphatidyl choline breakdown, J. Biol. Chem., 265: 1, (1990).Google Scholar
  26. 26.
    S. Nakashima, K. Nagata, K. Ueda, Y. Nozawa, Stimulation of arachidonic acid release by guanine nucleotide in saponin-permeabilized neutrophils: evidence for involvement of CTP-binding protein in phospholipase A2 activation, Arch. Biochem. Biophys., 261: 375 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    W. Tao, F.P. Molski, and R. I. Sh’afi, Arachidonic acid rlease in rabbit neutrophils, Biochem. J., 257: 633 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Cecil R. Pace-Asciak
    • 1
  • Santosh Nigam
    • 2
  1. 1.Research Institute, Hospital for Sick ChildrenTorontoCanada
  2. 2.Eicosanoid Research, Department of Gynaecological EndocrinologyFree University of BerlinGermany

Personalised recommendations