The Lipoxin Biosynthetic Circuit and their Actions with Human Neutrophils

  • Stefano Fiore
  • Mark E. Brezinski
  • Kelly-Ann Sheppard
  • Charles N. Serhan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)

Abstract

Signal transduction in inflammatory cells is associated with the release and oxygenation of arachidonic acid by lipoxygenases (1, 2). The lipoxins (LX) are a recent addition to the family of biologically active products generated from arachidonic acid collectively termed eicosanoids. Members of the LX series contain a conjugated tetraene structure (3) and display a unique spectrum of bioactivities which distinguish them from other eicosanoids (3, 4). Along these lines, recent results from several laboratories (5–9) indicate that LXA4** blocks some of the “proinflammatory” actions of leukotrienes. Taken together they suggest that LX may serve as chalones in inflammatory responses. Therefore, complete knowledge of their biosynthesis, temporal association of formation and relationship to other eicosanoids is essential to unraveling the functions of these tetraene-containing eicosanoids in inflammation as well as other physiologic events.

Keywords

Arachidonic Acid Human Neutrophil Phosphatidic Acid Pertussis Toxin Phospholipid Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Samuelsson, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Samuelsson, S.-E. Dahlén, J.Å. Lindgren, C.A. Rouzer, and C.N. Serhan, Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects, Science 237: 1171 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    C.N. Serhan, Lipoxins: eicosanoids carrying intra-and intercellular messages, J. Bioenereet. Biomembr. 23: 105 (1991).Google Scholar
  4. 4.
    S. Nigam, S. Fiore, F.W. Luscinskas, and C.N. Serhan, Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion, J. Cell. Phvsiol. 143: 512 (1990).CrossRefGoogle Scholar
  5. 5.
    K.F. Badr, D.K. DeBoer, M. Schwartzberg, and C.N. Serhan, Lipoxin A4 antagonizes cellular and in vivo action of leukotriene D4 in rat glomerular mesangial cells: Evidence for competition at a common receptor, Proc. Natl. Acad. Sci. USA 86: 3438 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Hedqvist, J. Raud, U. Palmertz, J. Haeggström, K.C. Nicolaou, and S.-E. Dahlén, Lipoxin A4 inhibits leukotriene B4-induced inflammation in the hamster cheek pouch, Acta Phvsiol. Scand. 137: 571 (1989).CrossRefGoogle Scholar
  7. 7.
    T.H. Lee, C.E. Horton, U. Kyan-Aung, D. Haskard, A.E.G. Crea, and B.W. Spur, Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine, Clin. Sci. 77: 195 (1989).PubMedGoogle Scholar
  8. 8.
    T.H. Lee, A.E.G. Crea, V. Gant, B.W. Spur, B.E. Marron, K.C. Nicolaou, E. Reardon, M. Brezinski, and C.N. Serhan, Identification of lipoxin A4 in the bronchoalveolar lavage fluid obtained from patients with pulmonary disease, Am. Rev. Respir. Pis. 141: 1453 (1990).Google Scholar
  9. 9.
    B.M. Grandordy, H. Lacroix, E. Mavoungou, S. Krilis, A.E.G. Crea, B.W. Spur, and T.H. Lee, Lipoxin A4 inhibits phosphoinositide hydrolysis in human neutrophils, Biochem. Biophys. Res. Commun. 167: 1022 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, C.N. Serhan, L.E. Rutherford, H.M. Korchak, and G. Weissmann, Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro, Biochem. Biophys. Res. Commun. 109:130(1982).Google Scholar
  11. 11.
    C.N. Serhan and K.-A. Sheppard, Lipoxin formation during human neutrophil-platelet interactions: evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro, J. Clin. Invest. 85: 772 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Edenius, J. Haeggström, and J.A. Lindgren, Transcellular conversion of endogenous arachidonic acid to lipoxins in mixed human platelet-granulocyte suspensions, Biochem. Biophys. Res. Commun. 157: 801 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    J.A. Maclouf and R.C. Murphy, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets: a potential cellular source of leukotriene C4, J. Biol. Chem. 263: 174 (1988).PubMedGoogle Scholar
  14. 14.
    C. Edenius, K. Heidvall, and J.A. Lindgren, Novel transcellular interaction: conversion of granulocyte-derived leukotriene A4 to cysteinyl-containing leukotrienes by human platelets, Eur. J. Biochem. 178: 81 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    C.N. Serhan, M. Hamberg, and B. Samuelsson, Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes, Proc. Natl. Acad. Sci. USA 81: 5335 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    C.N. Serhan, K.C. Nicolaou, S.E. Webber, C.A. Veale, S.-E. Dahlén, T.J. Puustinen, and B. Samuelsson, Lipoxin A: stereochemistry and biosynthesis, J. Biol. Chem. 261: 16340 (1986).PubMedGoogle Scholar
  17. 17.
    M. Brezinski and C.N. Serhan, Selective incorporation of 15-HETE in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids, Proc. Natl. Acad. Sci. USA 87: 6248 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    K.-A. Sheppard, S. Greenberg, C Funk, M. Romano, and C.N. Serhan, Lipoxin generation by human megakaryocyte-induced 12-lipoxygenase, Biochim. Biophys. Acta, in press.Google Scholar
  19. 19.
    T. Puustinen, S.E. Webber, K.C. Nicolaou, J. Haeggström, C.N. Serhan, and B. Samuelsson, Evidence for a 5(6)-epoxytetraene intermediate in the biosynthesis of lipoxins in human leukocytes: Conversion into lipoxin A by cytosolic epoxide hydrolase, FEBS Lett. 207: 127 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    J.A. Maclouf, B.F. de Laclos, and P. Borgeat, Stimulation of leukotrienes biosynthesis in human blood leukocyte by platelet-derived 12-hydroperoxy-icosatetraenoic acid, Proc. Natl. Acad. Sci. USA 79: 6042 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    A.J. Marcus, L.B. Safier, H.L. Ullman, M.J. Broekman, N. Islam, T.D. Oglesby, and R.R. Gorman, 12S, 20-Dihydroxyicosatetraenoic acid: A new icosanoid synthesized by neutrophils from 12S-hydroxyicosatetraenoic acid produced by thrombin-or collagen-stimulated platelets, Proc. Natl. Acad. Sci. USA 81: 903 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    C.A. Dahinden, J. Zingg, F.E. Maly, and A.L. de Weck, Leukotriene production in human neutrophils primed by recombinant human granulocyte/macrophage colony-stimulating factor and stimulated with the complement component C5a and fMLP as second signals, J. EXP. Med. 167: 1281 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    S.R. McColl, E. Krump, P.H. Naccache, and P. Borgeat, Enhancement of human neutrophil leukotriene synthesis by human granulocyte-macrophage colony-stimulating factor, Agents Actions 27: 465 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    D.A. Brezinski, and C.N. Serhan, Characterization of lipoxins by combined gas chromatography and electron-capture negative ion chemical ionization mass spectrometry: formation of lipoxin A4 by stimulated human whole blood, Biol. Mass Soectrom. 20: 45 (1991).CrossRefGoogle Scholar
  25. 25.
    C.N. Serhan, On the relationship between leukotriene and lipoxin production by human neutrophils: evidence for differential metabolism of 15-HETE and 5-HETE, Biochim. Biophys. Acta 1004: 158 (1989).PubMedGoogle Scholar
  26. 26.
    C.N. Serhan, U. Hirsch, J. Palmblad, and B. Samuelsson, Formation of lipoxin A by granulocytes from eosinophilic donors. FEBS Lett. 217: 242 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Fiore and C.N. Serhan, Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils, J. Exp. Med. 172: 1451 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    A.A. Spector, J.A. Gordon, and S.A. Moore, Hydroxyeicosatetraenoic acids (HETES), Prog. Lipid Res. 27: 271 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Fogh, H. Søgaard, T. Herlin, and K. Kragballe, Improvement of psoriasis vulgaris after intralesional injections of 15-hydroxyeicosatetraenoic acid (15-HETE), J. Am. Acad. Dermatol. 18:279(1988).Google Scholar
  30. 30.
    K. Fogh, E.S. Hansen, T. Herlin, V. Knudsen, T.B. Henriksen, H. Ewald, C. Bünger, and K. Kragballe, 15-Hydroxy-eicosatetraenoic acid (15-HETE) inhibits carrgeenan-induced experimental arthritis and reduces synovial fluid leukotriene B4 (LTB4), Prostaglandins 37: 213 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    J.Y. Vanderhoek, R.W. Bryant, and J.M. Bailey, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid, J.Biol.Chem. 255: 10064 (1980).PubMedGoogle Scholar
  32. 32.
    B.N.Y. Setty and M.J. Stuart, 15-Hydroxy-5, 8, 11, 13-eicosatetraenoic acid inhibits human vascular cyclooxygenase: potential role in diabetic vascular disease, J. Clin. Invest. 77: 202 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    C.N. Serhan, On the relationship between leukotriene and lipoxin production by human neutrophils: Evidence for differential metabolism of 15-HETE and 5-HETE, Biochim. Biophys. Acta 1004: 158 (1989).PubMedGoogle Scholar
  34. 34.
    S.-E. Dahlén and C.N. Serhan, 1991, Lipoxins: Bioactive lipoxygenase interaction products, in: “Lipoxygenases and Their Products,” A. Wong and S. Crooke, eds., Academic Press, San Diego.Google Scholar
  35. 35.
    W.F. Stenson and C.W. Parker, 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid, a chemotactic fatty acid, is incorporated into neutrophil phospholipids and triglyceride, Prostaglandins 18: 285 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    E.L. Becker, J.C. Kermode, P.H. Naccache, R. Yassin, J.J. Munoz, M.L. Marsh, C.-K. Huang, and R.I. Sha’afi, Pertussis toxin as a probe of neutrophil activation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 45, 2151 (1986).Google Scholar
  37. 37.
    J.J. Murray, A.B. Tonnel, A.R. Brash, L.J. Roberts II, P. Gosset, R. Workman, A. Capron, and J.A. Oates, Release of prostaglandin D2 into human airways during acute antigen challenge, N. Engl. J. Med. 315: 800 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    M.J. Holtzman, A. Pentland, N.L. Baenziger, and J.R. Hansbrough, Heterogeneity of cellular expression of arachidonate 15-lipoxygenase: implications of biological activity, Biochim. Biophys. Acta 1003: 204 (1989).PubMedGoogle Scholar
  39. 39.
    W.F. Stenson and C.W. Parker, Metabolism of arachidonic acid in ionophore-stimulated neutrophils: esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64: 1457 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Stenke, B. Näsman-Glaser, C. Edenius, J. Samuelsson, J. Palmblad and J.A. Lindgren, 1990, Lipoxygenase products in myeloproliferative disorders: increased leukotriene C4 and decreased lipoxin formation in chronic myeloid leukemia, in: “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” Vol. 21, B. Samuelsson et al., eds, Raven Press, New York.Google Scholar
  41. 41.
    T.D. Hill, J.G. White, and G.H.R. Rao, The influence of glutathione depleting agents on human platelet function, Thromb. Res. 53: 457 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    T.D. Hill, J.G. White, and G.H.R. Rao, Role of glutathione and glutathione peroxidase in human platelet arachidonic acid metabolism, Prostaglandins 38: 21 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Abe and T.E. Hugli, Characterization of leukotriene C4 synthetase in mouse peritoneal exudate cells, Biochim. Biophys. Acta 959: 386 (1988).PubMedGoogle Scholar
  44. 44.
    R.O. Morgan and A.C. Newby, Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets, Biochem. J. 258: 447 (1989).PubMedGoogle Scholar
  45. 45.
    J. Palmblad, H. Gyllenhammar, B. Ringertz, C.N. Serhan, B. Samuelsson, and K.C. Nicolaou, The effects of lipoxin A and lipoxin B on functional responses of human granulocytes, Biochem. Biophys. Res. Commun. 145: 168 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Fiore, M. Romano, and C.N. Serhan, 1990, Lipoxin and leukotriene production during receptor-activated interactions between human platelets and cytokine-primed neutrophils, in: “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” Vol. 21, B. Samuelsson et al., eds, Raven Press, New York.Google Scholar
  47. 47.
    G.M. Bokoch and A.G. Gilman, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin, Cell 39: 301 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    C.N. Serhan, M.J. Broekman, H.M. Korchak, A.J. Marcus, and G. Weissmann, Endogenous phospholipid metabolism in stimulated neutrophils. Differential activation by fMLP and PMA, Biochem. Biophys. Res. Commun. 107: 951 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    E.M. Wynkoop, M.J. Broekman, H.M. Korchak, A.J. Marcus, and G. Weissmann, Phospholipid metabolism in human neutrophils activated by N-formyl-methionyl-leucyl-phenylalanine, Biochem. J. 236: 829 (1986).PubMedGoogle Scholar
  50. 50.
    A. Sellmayer, Th. Strasser, and P.C. Weber, Differences in arachidonic acid release, metabolism and leukotriene B4 synthesis in human polymorphonuclear leukocytes activated by different stimuli, Biochim. Biophys. Acta 927: 417 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Nigam, S. Nodes, G. Cichon, E.J. Corey, and C.R. Pace-Asciak, Receptor-mediated action of hepoxilin A3 releases diacylglycerol and arachidonic acid from human neutrophils, Biochem. Biophys. Res. Commun. 171: 944 (1990).PubMedCrossRefGoogle Scholar
  52. 52.
    CE. Walsh, B.M. Waite, M.J. Thomas, and L.R. DeChatelet, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256: 7228 (1981).PubMedGoogle Scholar
  53. 53.
    F.H. Chilton and R.C Murphy, Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil, J. Biol. Chem. 261: 7771 (1986).PubMedGoogle Scholar
  54. 54.
    N. Okamura, M. Uchida, T. Ohtsuka, M. Kawanishi, and S. Ishibashi, Diverse involvements of Ni protein in superoxide anion production in polymorphonuclear leukocytes depending on the type of membrane stimulants, Biochem. Biophys. Res. Commun. 130: 939 (1985).PubMedCrossRefGoogle Scholar
  55. 55.
    D.E. Feltner, R.H. Smith, and W.A. Marasco, Characterization of the plasma membrane bound GTPase from rabbit neutrophils. I. Evidence for an Ni-like protein coupled to the formyl peptide, C5a, and leukotriene B4 Chemotaxis receptors, J. Immunol. 137: 1961 (1986).PubMedGoogle Scholar
  56. 56.
    S. Mong, G. Chi-Rosso, J. Miller, K. Hoffman, K.A. Razgaitis, P. Bender, and S.T. Crooke, Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes, Molec. Pharmacol. 30: 235 (1986).Google Scholar
  57. 57.
    P. Borgeat and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23, 187, Proc. Natl. Acad. Sci. USA 76: 2148 (1979).PubMedCrossRefGoogle Scholar
  58. 58.
    A.H. Lin, P.L. Ruppel, and R.R. Gorman, Leukotriene B4 binding to human neutrophils, Prostaglandins 28: 837 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    S. Mong, G. Chi-Rosso, J. Miller, K. Hoffman, K.A. Razgaitis, P. Bender, and S.T. Crooke, Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes, Mol. Pharmacol. 30: 235 (1986).PubMedGoogle Scholar
  60. 60.
    D.W. Goldman and E.J. Goetzl, Selective transduction of human polymorphonuclear leukocyte functions by subsets of receptors for leukotriene B4, J. Allergy Clin. Immunol. 74: 373 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    B. Spur, C. Jacques, A.E. Crea, and T.H. Lee, 1988, Lipoxins of the 5-series derived from eicosapentaenoic acid, in: “Lipoxins: Biosynthesis, Chemistry, and Biological Activities, P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.Google Scholar
  62. 62.
    J. Palmblad, H. Gyllenhammar, and B. Ringertz, 1988, Effects of lipoxins A and B on functional responses of human granulocytes, in: “Lipoxins: Biosynthesis, Chemistry, and Biological Activities,” P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.Google Scholar
  63. 63.
    C.N. Serhan and B. Samuelsson, 1988, Lipoxins: A new series of eicosanoids (biosynthesis, stereochemistry, and biological activities), in “Lipoxins: Biosynthesis, Chemistry, and Biological Activities,”, P.Y.-K. Wong and C.N. Serhan, eds, Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.Google Scholar
  64. 64.
    D.E. Agwu, L.C. McPhail, R.L. Wykle, and C.E. McCall, Mass determination of receptor-mediated accumulation of phosphatidate and diglycerides in human neutrophils measured by Coomassie blue staining and densitometry, Biochem. Biophys. Res. Commun. 159: 79 (1989).PubMedCrossRefGoogle Scholar
  65. 65.
    M.E. Brezinski, M.A. Gimbrone, Jr., K.C. Nicolaou, and C.N. Serhan, Lipoxins stimulate prostacyclin generation by human endothelial cells, FEBS Lett. 245: 167 (1989).PubMedCrossRefGoogle Scholar
  66. 66.
    E. Wikström, P. Westlund, K.C. Nicolaou, and S.-E. Dahlén, Lipoxin A4 causes generation of thromboxane A2 in the guinea-pig lung, Agents Actions 26: 90 (1989).PubMedCrossRefGoogle Scholar
  67. 67.
    S.-E. Dahlén, Biological activities of lipoxins, in: “New Trends Lipid Mediators Research,” Vol. 3, U. Zor, Z. Naor, and A. Danon, eds., Karger, Basel, in press.Google Scholar
  68. 68.
    C.A. Rouzer and B. Samuelsson, Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 84: 7393 (1987).PubMedCrossRefGoogle Scholar
  69. 69.
    T. Puustinen, M.M. Scheffer, and B. Samuelsson, Regulation of the human leukocyte 5-lipoxygenase: Stimulation by micromolar Ca2+ levels and phosphatidylcholine vesicles, Biochim. Biophys. Acta 960: 261 (1988).PubMedGoogle Scholar
  70. 70.
    C.N. Serhan, A. Radin, J.E. Smolen, H. Korchak, B. Samuelsson, and G. Weissmann, Leukotriene B4 is a complete secretagogue in human neutrophils: A kinetic analysis, Biochem. Biophys. Res. Commun. 107: 1006 (1982).PubMedCrossRefGoogle Scholar
  71. 71.
    J.T. O’Flaherty and J. Nishihira, 5-hydroxyicosatetraenoate promotes Ca2+ and protein kinase C mobilization in neutrophils, Biochem. Biophys. Res. Commun. 148: 575 (1987).PubMedCrossRefGoogle Scholar
  72. 72.
    R. Snyderman and E.J. Goetzl, Molecular and cellular mechanisms of leukocyte Chemotaxis, Science 213: 830 (1981).PubMedCrossRefGoogle Scholar
  73. 73.
    W.L. Smith, The eicosanoids and their biochemical mechanisms of action, Biochem. J. 259:315(1989).Google Scholar
  74. 74.
    S.-E. Dahlén, L. Franzén, J. Raud, C.N. Serhan, P. Westlund, E. Wikström, T. Björck, H. Matsuda, S.E. Webber, C.A. Veale, T. Puustinen, J. Haeggström, K.C. Nicolaou, and B. Samuelsson, 1988, Actions of lipoxin A4 and related compounds in smooth muscle preparations and on the microcirculation in vivo, in: “Lipoxins: Biosynthesis, Chemistry and Biological Activities,” P.Y.-K. Wong and C.N. Serhan, eds., Plenum Press, New York, Vol. 229 in Advances in Experimental Medicine and Biology.Google Scholar
  75. 75.
    J. Balsinde, E. Diez, and F. Mollinedo, Phosphatidylinositol-specific phospholipase D: A pathway for generation of a second messenger, Biochem. Biophys. Res. Commun. 154: 502 (1988).PubMedCrossRefGoogle Scholar
  76. 76.
    C.N. Serhan, Components of the arachidonic acid signalling cascade: a brief update and hypothesis, in: “Advances in Rheumatology and Inflammation,” Eular Verlag, Basel, in press.Google Scholar
  77. 77.
    D.A. Brezinski, R.A. Nesto, and C.N. Serhan, Angioplasty triggers intracoronary release of leukotrienes and lipoxin A4: impact of aspirin therapy, submitted.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Stefano Fiore
    • 1
  • Mark E. Brezinski
    • 1
  • Kelly-Ann Sheppard
    • 1
  • Charles N. Serhan
    • 1
  1. 1.Hematology DivisionBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations