Granulocyte-Macrophage Colony-Stimulating Factor and the Neutrophil: Mechanisms of Action

  • Julian Gomez-Cambronero
  • Ramadan I. Sha’afi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)


The granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hemopoietic growth factor that regulates the production and functional activity of granulocytes and macrophages. GM-CSF is part of the complex cytokine/interleukine network. This complex network is composed of mediator molecules that participate in the immune system (see Table I). GM-CSF is also a member of the colony-stimulating factors (CSF’s) family. It has been known for a long time that CSF’s are humoral factors necessary for the control and induction of hemopoiesis (1, 2). Its name was derived from the observation that when GM-CSF is added to a semisolid culture of human bone marrow cells it stimulates the formation of pure colonies of both macrophages and neutrophils (3). GM-CSF plays a crucial role in the commitment of bone marrow stem cells, directing the proliferation and differentiation into specific precursors of the different lineages, and enhancing the survival of both progenitors and mature cells (4, 5). This cytokine is also able to potentiate the activation of mature phagocytes (neutrophils, eosinophils and macrophages) and in certain cases, it can activate directly mature phagocytes (6). Thus, GM-CSF plays an important role in host defense (7).


Tyrosine Phosphorylation Aplastic Anemia Human Neutrophil Pertussis Toxin Bone Marrow Stem Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Metcalf, The granulocyte-macrophage colony-stimulating factors, Science 229: 16–22 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    E.R. Stanley, Hematopoietic growth factors. In:Hema-topoiesis: Methods in hematology. Edited by D.W. Golde, pp. 319–332. Churchill Livingstone, New York (1984).Google Scholar
  3. 3.
    D.W. Golde and Gasson, J.C., Hormones that stimulate the growth of blood cells, Scientific American July 1988, 62–70 (1988).Google Scholar
  4. 4.
    N.A. Nicola, Hemopoietic cell growth factors and their receptors, Annu. Rev. Biochem. 58: 45–77 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    S.C. Clark, and R. Kamen, Human hematopoietic colony-stimulating factors, Science 236: 1229–1237 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    D.W. Golde, and J.C. Gasson, Cytokines: Myeloid growth factors, In: Inflammation: Basic Principles and Clinical Correlates, ed. J.I. Gallin, I.M. Goldstein, and R. Snyderman, Raven Press, Ltd., New York, pp. 253–261 (1988).Google Scholar
  7. 7.
    K.-I. Arai, F. Lee, A. Miyajima, S. Miyatake, N. Arai, and T. Yokota, Cytokines: Coordinators of immune and inflammatory responses, Annu. Rev. Biochem., 59: 783–836 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    M.A. Cantrell, D. Anderson, D.P. Cerretti, V. Price, K. McKereghan, R.J. Tushinski, D.Y. Mochizuki, A. Larsen, K. Grabstein, S. Gillis, and D. Cosman, Cloning, sequence, and expression of a human granulocyte-macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. U.S.A., 82: 6250–6254 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    A.W. Burgess, C.G., Begley, G.R. Johnson, A.F. Lopez, D.J. Williamson, J.J. Mermod, R.J. Simpson, A. Schmitz, and J.F. DeLamarter, Purification and properties of bacterially synthesized human granulocyte-macrophage colony-stimulating fac-tor, Blood, 69: 43–51 (1987).PubMedGoogle Scholar
  10. 10.
    F. Lee, T. Yokota, T. Otsuka, L. Gemmell, N. Larson, J. Luh, K.I. Arai, and D. Rennick, Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by a functional expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A., 82: 4360–4364 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    G.G. Wong, J.S. Witek, P.A. Temple, K.M. Wilkens, A.C. Leary, D.P. Lusenburg, S.S. Jones, E.L. Brown, R.M. Kay, E.C. Orr, C. Shoemaker, D.W. Golde, R.J. Kaufman, R.M. Hewick, E.A. Wang, and S.C. Clark, Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science, 228: 810–815 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    J.C. Gasson, R.H. Weisbart, S.E. Kaufman, S.C. Clark, R.M. Hewick, G.G. Wong, and D.W. Golde, Purified human granulocyte-macrophage colony-stimulaing factor: Direct action on neutrophils, Science, 226: 1339–1342 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    E.P. Cronkite, Analytical review of structure and regulation of hemopoiesis. Blood Cells 14: 313–328 (1988).PubMedGoogle Scholar
  14. 14.
    W. Oster, A. Lindermann, R. Mertelsmann and F. Herrmann, Regulation of gene expression of M−, G−, GM−, and multi-CSF in normal and malignant hematopoietic cells, Blood Cells, 14: 443–462 (1988).PubMedGoogle Scholar
  15. 15.
    C.A. Sieff, C.M. Niemeyer, S.J. Mentzer and D.V. Faller, Interleukin-1, tumor necrosis factor, and the production of colony-stimulating factors by cultured mesenchymal cells, Blood, 72: 1316–1323 (1988).PubMedGoogle Scholar
  16. 16.
    T.J. Ernst, A.R. Ritchie, G.D. Demetri and J.D. Griffin, Regulation of granulocyte-and monocyte-colony stimulating factor mRNA levels in human monocytes is mediated primarily at a post-transcriptional level, J. Biol. Chem., 264: 5700–5703 (1989).PubMedGoogle Scholar
  17. 17.
    D. Ridgway, M.S. Borzy, and G.C. Bagby, Granulocyte macrophage colony-stimulating activity production by cultured human thymic nonlymphoid cells is regulated by endogenous interleukin-1, Blood, 72: 1230–1236 (1988).PubMedGoogle Scholar
  18. 18.
    H. Quill, A. Gaur, and R.P. Phipps, Prostaglandin E2-dependent induction of granulocyte-macrophage colony-stimulating factor secretion by cloned murine helper T cells J. Immunol., 142: 813–818 (1989).PubMedGoogle Scholar
  19. 19.
    H.P. Koeffler, J. Gasson, and A. Tobler, Transcriptional and posttranscriptional modulation of myeloid colony-stimulating factor expression by tumor necrosis factor and other agents, Molec. & Cell. Biol., 8: 3432–3438 (1988)Google Scholar
  20. 20.
    K.M. Zsebo, V.N. Yuschenkoff, S. Schiffer, D. Chang, E. McCall, C.A. Dinarello, M.A., Brown, B. Altrock, and G.C. Bagby Jr., Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF, Blood, 71: 99–103 (1988).PubMedGoogle Scholar
  21. 21.
    J.R. Zucali, C.A. Dianrello, D.J. Oblon, M.A. Gross, L. Anderson and R.S. Weiner, Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J. Clin. Invest., 77: 1857–1863 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    W.E. Fibbe, J. Van Damme, A. Billiau, H.M. Goselink, P.J. Voogt, G. VanEeden, P. Ralph, B.W. Altrock and F. Falkenburg, Interleukin 1 induces human marrow stromal cells in longterm culture to produce granulocyte colony-stimulating factor and Macrophage Colony-Stimulating Factor, Blood, 71: 430–435 (1988).PubMedGoogle Scholar
  23. 23.
    T.S. Kupper, F. Lee, N. Birchall, S. Clark, and S. Dower, Interleukin 1 binds to specific receptors on human keratinocytes and induces granulocyte macrophage colony-stimulating factor mRNA and protein. A potential autocrine role for inter-leukin 1 in epidermis, J. Clin. Invest., 82: 1787–1792 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    T.S. Kupper, D. Coleman, J. McGuire, D. Goldminz and M. Horowitz, Keranocyte derived T cell growth factor: a T cell growth factor functionally distinct from interleukin-2, Proc. Natl. Acad. Sci. U.S.A, 83: 4451–4455 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    T.S. Kupper, F. Lee, D. Coleman, J. Chodakewitz, P. Flood and M. Horowitz, Keratinocyte derived T-cell growth factor (KTGF) is identical to granulocyte macrophage colony stimulating factor (GM-CSF), J. Investigative Dermatol, 91: 185–188 (1988).CrossRefGoogle Scholar
  26. 26.
    S. Okamura, S. Hayashi, Y. Asano, T. Shibuya, T. Otsuka and Y. Niho, Expression of the granulocyte-macrophage colony-stimulating factor gene in leukemic blast cells from patients with acute non-lymphocytic leukemia, Biomedicine & Pharmacotherapy, 42: 65–67 (1988).Google Scholar
  27. 27.
    Y. Tsuchiya, M. Igarashi, R. Suzuki and K. Kumagai, Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells, J. Immunol., 141: 699–708 (1988).PubMedGoogle Scholar
  28. 28.
    M.Y. Gordon, G.P. Riley, S.M. Watt and M.F. Greaves, Compart-mentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment, Nature, 326: 403–405 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Roberts, J. Gallagher, E. Spooncer, T.D. Allen, F. Bloomfield and T.M. Dexter, Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis, Nature, 332: 376–378 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Mayer, C. Lam, H. Obenaus, E. Liehl and J. Besemer, Recombinant human GM-CSF induces leukocytosis and activates peripheral blood polymorphonuclear neutrophils in nonhuman primates, Blood, 70: 206–213 (1987).PubMedGoogle Scholar
  31. 31.
    I. Clark-Lewis, A.F. Lopez, L.B. To, M.A. Vadas, J.W. Schrader, L.E. Hood, and S.B.H. Kent, Structure-function studies of human granulocyte-macrophage colony-stimulating factor, J. Immunol., 141: 881–889 (1988).PubMedGoogle Scholar
  32. 32.
    N.M. Gough, D. Grail, D.P. Gearing and D. Metcalf, Mutagenesis of murine granulocyte-macrophage colony-stimulating factor reveals critical residues near the N terminus, Eur. J.Biochem. 169: 353–358 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Kaushansky, S.G. Shoemaker, S. Alfaro, and C. Brown, Hematopoietic activity of granulocyte-macrophage colony-stimulating factor is dependent upon two distinct regions of the molecule: Functional analysis based upon the activities of interspecies hybrid growth factors, Proc. Natl. Acad. Sci. U.S.A., 86: 1213–1217 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    F.E. Cohen, P.A. Kosen, I.D. Kuntz, L.B. Epstein, T.L. Ciardelli and K.A. Smith, Structure-activity studies of interleukin-2, Science,. 234: 349–352 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Miyatake, T. Otsuka, T. Yokota, F. Lee, and K. Arain, Structure of the chromosomal gene for granulocyte-macrophage colony-stimulating factor: comparison of the mouse and human genes, EMBO J. 4: 2561–2568 (1985).PubMedGoogle Scholar
  36. 36.
    E. Stanley, D. Metcalf, P. Sobieszczuk, N.M. Gough, A.R. Dunn, The structure and expression of the murine gene encoding gran-ulocyte-macrophage colony-stimulating factor: evidence for utilisation of alternative promoters, EMBO J. 4: 2569–2573 (1985).PubMedGoogle Scholar
  37. 37.
    M.M. LeBeau, N.D. Epstein, S.J. O’Brien, A.W. Nienhuis, Y.-C. Yang, S.C. Clark and J.D. Rowley, The interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q, Proc. Natl. Acad. Sci. U.S.A., 84: 5913–5917.Google Scholar
  38. 38.
    K. Huebner, M. Isobe, C.M., Croce, D.W. Golde, S.E. Kaufman and J.C. Gasson, The human gene encoding GM-CSF is at 5q21-q32, the chromosome region deleted in the 5q anomaly, Science, 230: 1282–1285 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    D.P. Barlow, M. Bucan, H. Lehrach, B.L. Hogan, and N.M. Gough, Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and Multi-CSF, (IL3) EMBO J., 6: 617–623 (1987).PubMedGoogle Scholar
  40. 40.
    M.F. Shannon, J.R. Gamble and M.A. Vadas, Nuclear proteins interacting with the promoter region of the human granulocyte-macrophage colony-stimulating factor gene, Proc. Natl. Acad. Sci. U.S.A., 85: 674–678 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    J. DiPersio, P. Billing, S. Kaufman, P. Eghtesady, R.E. Williams and J.C. Gasson, Characterization of the human granulocyte-macrophage colony-stimulating factor receptor, J. Biol. Chem., 263: 1834–1841 (1988).Google Scholar
  42. 42.
    L.M. Budel, I.P. Touw, R. Delwel, S.C. Clark and B. Lowenberg, Interleukin-3 and granulocyte-monocyte colony-stimulating factor receptors on human acute myelocytic leukemia cells and relationship to the proliferative response, Blood, 74: 565–571 (1989).PubMedGoogle Scholar
  43. 43.
    H. Uzumaki, T. Okabe, N. Sasaki, K. Hagiwara, F. Takaku, M. Tobita, K. Yasukawa, S. Ito and Y. Umezawa, Identification and characterization of receptors for granulocyte colony-stim-ulating factor on human placenta and trophoblastic cells, Proc. Natl. Acad. Sci. U.S.A. 86: 9323–9326 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    G.C. Baldwin, J.C. Gasson, S.E. Kaufman, S.G. Quan, R.E. Williams, B.R. Avalos, A.F. Gazdar, D.W. Golde and J.F. Di Persio, Nonhematopoietic tumor cells express functional GM-CSF receptors. Blood, 73: 1033–1037 (1989).PubMedGoogle Scholar
  45. 45.
    S. Chiba, K. Shibuya, Y.-F. Piao, A. Tojo, N. Sasaki, S. Matsuki, K. Miyagawa, K., Miyazono and F. Takaku, Identification and cellular distribution of distinct proteins forming human GM-CSF receptor, Cell Regulation, 1: 327–335 (1990).PubMedGoogle Scholar
  46. 46.
    D.P. Gearing, J.A. King, N.M. Gough and N.A. Nicola, Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor, EMBO J., 8: 3667–3676 (1989).PubMedGoogle Scholar
  47. 47.
    S. Chiba, K. Shibuya, K. Miyuazono, A. Tojo, Y. Oka, K. Miyagawa and F. Takaku, Affinity purification of human granulocyte macrophage colony-stimulating factor receptor a-chain, Demonstration of binding by photoaffinity labeling, J. Biol. Chem. 265: 19777–19781 (1990).PubMedGoogle Scholar
  48. 48.
    Y. Yarden, Growth factor receptor tyrosine kinases, Ann. Rev. Biochem. 57: 443–478 (1988).PubMedCrossRefGoogle Scholar
  49. 49.
    C.J. Sherr, M.F. Roussel and C.W. Rettenmier, Colony-stimulating factor-1 receptor (c-fms) J. Cell Biochem. 38: 179–187 (1988)PubMedCrossRefGoogle Scholar
  50. 50.
    G. Carpenter and S. Cohen, Epidermal Growth Factor J. Biol. Chem. 265: 7709–7712 (1990).PubMedGoogle Scholar
  51. 51.
    A.O. Moria, J. Schreurs, A. Miyajima, and J.Y.J. Wang, Hematopoietic growth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3-dependent murine cell lines, Molec. & Cell. Biol., 8: 2214 (1988).Google Scholar
  52. 52.
    A. Khwaja, P.J. Roberts, H.M. Jones, K. Yong, M.S. Jaswon and D.C. Linch, Isoquinolinesulfonamide protein kinase inhibitors H7 and H8 enhance the effects of granulocyte-macrophage colony-stimulaing factor (GM-CSF) on neutrophil function and inhibit GM-CSF receptor internalization, Blood 76: 996–1003 (1990).PubMedGoogle Scholar
  53. 53.
    F. Walker, N.A. Nicola, D. Melcalf and A.W. Burgess, Hierarchial down-modulation of hemopoietic growth factor receptors, Cell, 43: 269–276 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    S.A. Cannistra, M. Koenigsmann, J. DiCarlo, P. Groshek and J.D. Griffin, Differentiation-associated expression of two functionally distinct classes of granulocyte-macrophagecolony-stimulaing factor receptors by human myeloid cells, J. Biol. Chem., 265: 12656–12663 (1990).PubMedGoogle Scholar
  55. 55.
    J. Gomez-Cambronero, C.-K. Huang, M. Yamazaki, E. Wang, T.F.P. Molski, E.L. Becker and R.I. Sha’afi, Phorbol ester inhibits granulocyte-macrophage colony-stimulating factor binding and tyrosine phosphorylation. Am. J. Physiol (Cell Physiol). In press.(1992).Google Scholar
  56. 56.
    N.A. Nicola, M.A., Vadas, and A.F. Lopez, Down-modulation of receptors for granulocyte colony-stimulating factor on human neutrophils by granulocyte-activating agents, J. Cell. Physiol., 128: 501–509 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    R.I. Sha’afi and T.F.P. Molski, Inhibition of stimulated cell responses by phorbol esters and other activators of protein kinase C: Sites of action. Membrane Biochem. 7: 143–152 (1985).CrossRefGoogle Scholar
  58. 58.
    T. Hunter, N. Ling and J.A. Cooper, Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmatic face of the plasma membrane, Nature, 311: 480–483 (1985).CrossRefGoogle Scholar
  59. 59.
    M.I. Wahl, S. Nishibe and G. Carpenter, Cancer cells, Growth factor signaling pathways: phosphoinositide metabolism and phosphorylation of phospholipase C, Cancer Cells, 1: 101–107 (1989).PubMedGoogle Scholar
  60. 60.
    W.S. May, S. Jacobs and P. Cuatrecasas, Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells, Proc. Natl. Acad. Sci. U.S.A. 81: 2016–2020 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    J.R. Downing, M.F. Roussel and C.J. Sherr, Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms, Mol. Cell. Biol. 9: 2890–2896 (1989).PubMedGoogle Scholar
  62. 62.
    E.M. Bonnern and G. Morstyn, Granulocyte macrophage colony stimulating factor (GM-CSF) current status and future development, Seminars in Oncology, 15: 46–51 (1988).Google Scholar
  63. 63.
    D. Caracciolo, S.C. Clark and G. Rovera, Human interleukin-6 supports granulocytic differentiation of hematopoietic progenitor cells and acts synergistically with GM-CSF, Blood, 73: 666–670 (1989).PubMedGoogle Scholar
  64. 64.
    D.J. Warren, and M.A. Moore, Synergism among interleukin 1, interleukin 3, and interleukin 5 in* the production of eosinophils from primitive hemopoietic stem cells, J. Immunol. 140:, 94–99 (1988).PubMedGoogle Scholar
  65. 65.
    H.E. Broxmeyer, D.E. Williams, G. Hangoc, S. Cooper, S. Gillis, R.K. Shadduck and D.C. Bicknell, Synergistic myelopoietic actions in vivo after administrations of purified natural murine colony-stimulating factor 1, recombinant murine interleukin 3, and recombinant murine granulocyte/ macrophage colony-stimulating factor, Proc. Natl. Acad. Sci. U.S.A. 84: 3871–3875 (1987).PubMedCrossRefGoogle Scholar
  66. 66.
    R.E. Donahue, M. Seehra, M. Metzger, D. Lefbvre, B. Rock, S. Carbone, D.G. Nathan, M. Garnick, P.K. Sehgal, and D. Laston, Human IL-3 and GM-CSF act syndergistically in stimulating hematopoiesis in primates, Science 241: 1820–1823 (1988).PubMedCrossRefGoogle Scholar
  67. 67.
    W.P. Peters, The effect of recombinant human colony-stimulating factors on hematopoietic reconstiution following autologous bone marrow transplantation, Seminars in Hematology, 26: 18–23 (1989).PubMedGoogle Scholar
  68. 68.
    G. Morstyn, G.J. Lieschke, W. Sheridan, J. Layton, J. Cebon and R.M. Fox, Clinical experience with recombinant human granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor, Seminars in Hemotology, 26: 9–13 (1989).Google Scholar
  69. 69.
    W.P. Steward, N. Thatcher and S.B. Kaye, Clinical applications of myeloid colony stimulating factors, Cancer Treatment Re-views, 17: 77–87 (1990).CrossRefGoogle Scholar
  70. 70.
    J.L. Abrilove, Introduction and overview of hematopoietic growth factors, Seminars in Hematology 26: 1–4 (1989).Google Scholar
  71. 71.
    J.A. Glaspy and D.W. Golde, Clinical applications of the myeloid growth factors, Seminars in Hematology, 26: 14–17 (1989).PubMedGoogle Scholar
  72. 72.
    F. Herrmann, G. Schulz, A. Lindemann, W. Meyenburg, W. Oster, D. Krumwieh and R. Mertelsmann, Hematopoietic responses in patients with advanced malignancy treated with recombinant human granulocyte-macrophage colony-stimulating factor, J. Clin. Oncology. 7: 159–167 (1989).Google Scholar
  73. 73.
    W.P. Steward, J.H. Scarffe, R. Austin, E. Bonnern, N. Thatcher, G. Morgenstern and D. Crowther, Recombinant human granulocyte macrophage colony stimulating factor (rhGM-CSF) given as daily short infusion. A phase I dose-toxicity study, British J. Cancer, 59: 142–145 (1989).CrossRefGoogle Scholar
  74. 74.
    J.H. Antin, B.R. Smith, W. Holmes, and D.S. Rosenthal, Phase I/II study of recombinant human granulocyte-macrophage colony-stimulating factor in aplastic anemia and myelodysplastic syndrome, Blood, 72: 705–713 (1988).PubMedGoogle Scholar
  75. 75.
    R.E. Champlin, S.D. Nimer, P. Ireland, D.H. Oette and D.W. Golde, Treatment of refractory aplastic anemia with recombinant human granulocyte-macrophage colony-stimulating factor, Blood,. 73: 694–699 (1989).PubMedGoogle Scholar
  76. 76.
    C. Nissen, A. Tichelli, A. Grathwohl, B. Speck, A. Milne, E.C. Gordon-Smith and J. Schaedelin, Failure of recombinant human granulocyte-macrophage colony-stimulating factor therapy in aplastic anemia patients with very severe neutropenia, Blood, 72: 2045–2047 (1988).PubMedGoogle Scholar
  77. 77.
    S. Vadhan-Raj, M. Keating, A. LeMaistre, W.M. Hittelman, K. McCredie, J.M. Trujillo, H.E. Broxmeyer, H.E., C. Henney and J.U. Gutterman, Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes, New England J. Med., 317: 1545–1552 (1987).CrossRefGoogle Scholar
  78. 78.
    K.S. Antman, J.D. Griffin, A. Elias, M.A. Socinski, L. Ryan, S.A. Cannistra, D. Oette, M. Whitley, E. Frei and L.E. Schnipper, Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. New England J. Med., 319: 593–598 (1988).CrossRefGoogle Scholar
  79. 79.
    J.H. Edmonson, H.J. Long, J.A. Jeffries, J.C. Buckner, G. Culen-Otero, T.R. Fitch, Amelioration of chemotherapy-induced thrombocytopenia by GM-CSF: apparent dose and schedule dependency, J. Natl. Cancer Inst., 81: 1510–1512 (1989).PubMedGoogle Scholar
  80. 80.
    B.R. Blazar, J.H. Kersey, P.B. McGlave, D.A. Vallera, L.C. Lasky, R.J. Haake, B. Bostrom, D.R. Weisdorf, C. Epstein and N.K. Ramsay, In vivo administration of recombinant human granulocyte-macrophage colony-stimulating factor in acute lymphoblastic leukemia patients receiving purged autografts, Blood, 73: 849–857 (1989).PubMedGoogle Scholar
  81. 81.
    S.J. Brandt, W.P. Peters, S.K. Atwater, J. Kurtzberg, M.J. Borowitz, R.B. Jones, E.J. Shpall, R.C. Bast, C.J. Gilbert and D.H. Oette, Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstituion after high-dose chemotherapy and autologous bone marrow transplantion. New England J. Med 318: 869–876 (1988).CrossRefGoogle Scholar
  82. 82.
    J. Nemunaitis, J.W. Singer, C.D. Buckner, R. Hill, R. Storb, E.D. Thomas, and F.R. Appelbaum, Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies, Blood, 72: 834–836 (1988).PubMedGoogle Scholar
  83. 83.
    M.A. Socinski, S.A. Cannistra, A. Elias, K.H. Antman, L. Schnipper and J.D. Griffin, Granulocyte-macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man, Lancet, 1: 1194–1198 (1988).PubMedCrossRefGoogle Scholar
  84. 84.
    K.H. Grabstein, D.L. Urdal, R.J. Tushinski, D.Y. Mochizuki, V.L. Price, M.A. Cantrell, S. Gillis and P.J. Conlon, Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor, Science: 232: 506–508 (1986).PubMedCrossRefGoogle Scholar
  85. 85.
    K. Miyagawa, S. Chiba, S., Shibuyak, Y.-F. Piao, S. Matsuki, J. Yokota, M. Terada, K. Miyazono and F. Takaku, F., Frequent expression of receptors for granulocyte-macrophage colony-stimulating factor of human nonhematopoietic tumor cell lines. J. Cell Physiol. 143: 483–487 (1990).PubMedCrossRefGoogle Scholar
  86. 86.
    S. Dedhar, L. Gaboury, P. Galloway and C. Eaves, Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin, Proc. Natl. Acad. Sci. U.S.A, 85: 9253–9257 (1988).PubMedCrossRefGoogle Scholar
  87. 87.
    C. Laker, C. Stocking, U. Bergholz, N. Hess, J.F. De Lamarter and W. Ostertag, Autocrine Stimulation after transfer of the granulocyte-macrophage colony-stimulating factor gene and au-tonomous growth are distinct but interdependent Steps in the oncogenic pathway, Proc. Natl. Acad. Sci. U.S.A., 84: 8458–8462 (1987).PubMedCrossRefGoogle Scholar
  88. 88.
    G.Y. Cheng, C.A. Kelleher, J. Miyauchi, C. Wang, G. Wong, S.C. Clark, E.A. McCulloch and M.D. Minden, Structure and expression of genes of GM-CSF and G-CSF in blast cells from patients with acute myeloblastic leukemia, Blood, 71: 204–208 (1988).PubMedGoogle Scholar
  89. 89.
    R.H. Weisbart, D.W. Golde, S.C. Clark, G.G. Wong and J.C. Gasson, 1 Human granulocyte-macrophage colony-stimulaing factor is a neutrophil activator, Nature, 314: 361–363 (1985).PubMedCrossRefGoogle Scholar
  90. 90.
    R.H. Weisbart, L. Kwan, D.W. Golde and J.C. Gasson, Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants, Blood, 69: 18–21 (1987).PubMedGoogle Scholar
  91. 91.
    M. Klausmann, K.H. Pfluger, D. Krumwieh, F.R. Seiler and K. Havemann, Influence of recombinant human granulocyte-macrophage colony-stimulating factor on granulocyte functions, Behring Institute Mitteilungen 83: 265–269 (1988).PubMedGoogle Scholar
  92. 92.
    M. Klausmann, K.H. Pfluger, D. Krumwieh, F.R. Seiler and K. Havemann, Modulation of functions of granulocytes by recombinant human GM-CSF and possible complications of GM-CSF therapy, Leukemia, 2: 63S–72S (1988).PubMedGoogle Scholar
  93. 93.
    A.F. Lopez, D.J. Williamson, J.R. Gamble, C.G. Begley, J.M. Harlan, S.J. Klebanoff, A. Waltersdorph, G. Wong, S.C. Clark and M.A. Vadas, Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival, J. Clin. Invest., 78: 1220–1228 (1986).PubMedCrossRefGoogle Scholar
  94. 94.
    A. Yuo, S. Kitagawa, A. Ohsaka, M. Ohta, K. Miyazono, T. Okabe, A. Urabe, M. Saito and F. Takaku, Recombinant human granulocyte colony-stimulating factor as an activator of human granulocytes: Potentiation of responses triggered by receptor-mediated agonists and stimulation of C3bi receptor expression and adherence, B1ood, 74: 2144–2149 (1989).Google Scholar
  95. 95.
    J.L. Mege, J. Gomez-Cambronero, T.F. Molski, E.L. Becker and R.I. Sha’afi, Effect of granulocyte-macrophage colony-stimulating factor on superoxide production in cytoplasts and intact human neutrophils: Role of protein kinase and G-proteins, J. Leukocyte Biol., 46: 161–168 (1989).PubMedGoogle Scholar
  96. 96.
    R. Sullivan, J.P. Fredette, J.L. Leavitt, A.S. Gadenne, J.D. Griffin and E.R. Simons, Effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSFrh) on transmembrane electrical potentials in granulocytes: Relationship between enhancement of ligand-mediated depolarization and augmentation of superoxide anion O22212 production. J. Cell. Physiol., 139: 361–369 (1989).PubMedCrossRefGoogle Scholar
  97. 97.
    R. Sullivan, J.P. Fredette, M. Socinski, A. Elias, K. Antman, L. Schnipper, and J.D. Griffin, Enhancement of superoxide anion release by granulocytes harvested from patients receiving granulocyte-macrophage colony-stimulaing factor, Br, J. Haematol., 71: 475–479 (1989).CrossRefGoogle Scholar
  98. 98.
    R.I. Sha’afi, J. Gomez-Cambronero, M. Yamazaki, M. Durstin, T.F.P. Molski and C.-K. Huang, Activation of human neutrophils by granulocyte-macrophage colony-stimulating factor: Role of guanine-nucleotide binding proteins, In:Bioloay of Cellular Transducing Signals eds. Vanderhoek, J.Y., Axelrod, J., Jelesma, C. and Moody, T.W., Plenum Press, NY, pp. 153–162.Google Scholar
  99. 99.
    A. Kharazmi, H. Nielsen and K. Bendtzen, Modulation of human neutrophil and monocyte Chemotaxis and superoxide responses by recombinant TNFα and GM-CSF, Immunobiol., 177: 363–370 (1988).CrossRefGoogle Scholar
  100. 100.
    J.F. DiPersio, P. Billing, R. Williams and J.C. Gasson, Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced archidonic acid release and leukotriene B4 synthesis, J. Immunol., 140: 4315–4322 (1988).Google Scholar
  101. 101.
    D.S. Silberstein, W.F. Owen, J.C. Gasson, J.F. DiPersio, D.W. Golde, J.C. Bina, R. Soberman, K.F. Austen and J.R. David, Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor, J. Immunol., 137: 3290–3294 (1986).PubMedGoogle Scholar
  102. 102.
    J.F. DiPersio, P.H. Naccache, P. Borgeat, J.C. Gasson, M.H. Nguyen and S.R. McColl, Characterization of the priming effects of human granulocyte-macrophage colony-stimulating factor on human neutrophil leukotriene synthesis, Prostaglandins, 36: 673–691 (1988).CrossRefGoogle Scholar
  103. 103.
    C.A. Dahinden, J. Zingg, F.E. Maly and A.L. de Weck, Leukotriene production in human neutrophils primed by recombinant human granulocyte-macrophage colony-stimulaing factor and stimulated with the complement component C5A and FMLP as second signals, J. Exper. Med., 167: 1281–1295 (1988).CrossRefGoogle Scholar
  104. 104.
    S. Fiore and C.N. Serhan, Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils, J. Exp. Med. 172: 1451–1457 (1990).PubMedCrossRefGoogle Scholar
  105. 105.
    S.R. Tyagi, E.F. Winton and J.D. Lambeth, Granulocyte-macrophage colony-stimulating factor primes human neutrophils for increased diacylglycerol generation in response to chemoattractant, FEBS Lett., 257: 188–190 (1989).PubMedCrossRefGoogle Scholar
  106. 106.
    S.J. Corey and P.M. Rosoff, Granulocyte-macrophage colony-stimulating factor primes neutrophils by activating a pertussis toxin-sensitive G protein not associated with phosphatidyl-inositol turnover, J. Biol. Chem., 264: 14165–14171 (1989).PubMedGoogle Scholar
  107. 107.
    U. Wirthmueller, A.L. De Weck and C.A. Dahinden, Platelet-activating factor production in human neutrophils by sequential stimulation with granulocyte-macrophage colony-stimulating factor and the chemotactic factors C5A or formyl-methionyl-leucyl-phenylalanine, J. Immunol., 142: 3213–3218 (1989).PubMedGoogle Scholar
  108. 108.
    M. Aglietta, C. Monzeglio, F. Apr’a, C. Mossetti, A.C. Stern, G. Giribaldi and F. Bussolino, In vivo priming of human normal neutrophils by granulocyte-macrophage colony stimulating factor: Effect on the production of platelet activating factor, Br. J. Haematoloay, 75: 333–339 (1990).CrossRefGoogle Scholar
  109. 109.
    U. Wirthmueller, A.L. de Weck and C.A. Dahinden, Studies on the mechanism of platelet-activating factor production in GM-CSF primed neutrophils: Involvement of protein synthesis and phospholipase A2 activation, Biocem. Biophys. Res. Commun., 170: 556–562 (1990).CrossRefGoogle Scholar
  110. 110.
    M. Yamazaki, J. Gomez-Cambronero, M. Durstin, T.F.P. Molski, E.L. Becker and R.I. Sha’afi, Phorbol 12-myristate 13-acetate inhibits binding of leukotriene B4 and platelet-activating factor and the responses they induce in neutrophils: Site of action, Proc. Natl. Acad. Sci. U.S.A. 86: 5791–5794 (1989).PubMedCrossRefGoogle Scholar
  111. 111.
    J. Gomez-Cambronero, M. Durstin, T.F.P. Molski, P.H. Naccache and R.I. Sha’afi, Calcium is necessary but not sufficient for the platelet-activating factor release in human neutrophils stimulated by physiological stimuli, J. Biol. Chem. 264: 21699–21704 (1989).Google Scholar
  112. 112.
    R.H. Weisbart, D.W. Golde, L. Spolter, P. Eggena and H. Rinderknecht, Neutrophil migration inhibition factor from T-lymphocytes (NIF-T): a new lymphokine. Clin. Immunol. Immunopathol., 14: 441–448 (1979).PubMedCrossRefGoogle Scholar
  113. 113.
    R.H. Weisbart, D.W. Golde and J.C. Gasson, Biosynthetic human GM-CSF modulates the number and affinity of neutrophil fMet-Leu-Phe receptors, J. Immunol., 137: 3584–3587 (1986).PubMedGoogle Scholar
  114. 114.
    F. Busssolino, J.M. Wang, P. Defilipii, F. Turrini, F., Sanavio, C.J. Edgell, M. Aglietta, P. Arese and A. Mantonavi, Granulocyte and granulocyte-macrophage colony-stimulating factors induce human endothelial cells to migrate and proliferate, Nature, 337: 471–473 (1989).CrossRefGoogle Scholar
  115. 115.
    E. Kownatzki, E. Liehl, H. Aschauer and S. Uhrich, Inhibition of chemotactic migration of human neutrophilic granulocytes by recombinant human granulocyte-macrophage colony-stimulating factor. Immunopharm., 19: 139–143 (1990).CrossRefGoogle Scholar
  116. 116.
    W.P. Peters, A. Stuart, M.L. Affronti, C.S. Kim and R.E. Coleman, Neutrophil migration is defective during recombinant human granulocyte-macrophage colony-stimulating factor infusion after autologous bone marrow transplantation in humans, Blood, 72: 1310–1315 (1988).PubMedGoogle Scholar
  117. 117.
    I.E. Addison, B. Johnson, S. Devereux, A.H. Goldstone and D.C Linch, Granulocyte-macrophage colony-stimulating factor may inhibit neutrophils migration in vivo, Clin. & Sxper. Immunol., 76: 149–153 (1989).Google Scholar
  118. 118.
    Y. Kletter, I. Bleiberg, D.W. Golde and I. Fabian, Antibody to Mol abrogates the increase in neutrophil phagocytosis and degranulation induced by granulocyte-macrophage colony-stimulating factor, Eur. J. Haematology, 43: 389–396 (1989)CrossRefGoogle Scholar
  119. 119.
    J. Richter, T. Anderssson and I. Olsson, Effect of tumor necrosis factor and granulocyte-macrophage colony-stimulating factor on neutrophil degranulation, J. Immunol., 142: 3199–3205 (1989).PubMedGoogle Scholar
  120. 120.
    S.E. Kaufman, J.F. DiPersio and J.C. Gasson, Effects of human GM-CSF on neutrophil degranulation in vitro, Exper. Hematol., 17: 800–804 (1989).Google Scholar
  121. 121.
    R.J. Smith, J.S. Justen and L.M. Sam, Recombinant human granulocyte-macrophage colony-stimulating factor induces granule exocytosis from human polymorphonuclear neutrophils, Inflammation, 14: 83–92 (1990).PubMedCrossRefGoogle Scholar
  122. 122.
    S. Devereux, J.B. Porter, K.P. Hoyes, R.D. Abeysinghe, R., Saib and D.C. Linch, Secretion of neutrophil secondary granules occurs during granulocyte-macrophage colony stimulating factor induced margination, Br. J. Haematol., 74: 17–23 (1990).PubMedCrossRefGoogle Scholar
  123. 123.
    B.H. Kushner and N.K. Cheung, GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma, Blood, 73: 1926–1941 (1989).Google Scholar
  124. 124.
    J. Fleischmann, D.W. Golde, R.H. Weisbart and J.C. Gasson, Granuloctye-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils, Blood, 68: 708–711 (1986).PubMedGoogle Scholar
  125. 125.
    A. Kapp, G. Zeck-Kapp, M. Danner and T.A. Luger, Human granulocyte-macrophage colony-stimulating factor: An effective direct activator of human polymorphonuclear neutrophilic granulocytes. J. Invest. Dermatol. 91: 49–55 (1988).PubMedCrossRefGoogle Scholar
  126. 126.
    C.F. Nathan, Respiratory burst in adherent human neutrophils: Triggering by colony-stimulating factors CSF-GM and CSF-G, Blood, 73: 301–306 (1989).PubMedGoogle Scholar
  127. 127.
    C.F. Nathan, Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxice in response to products of macrophages and lymphocytes. J. Clin. Invest. 80: 1550–1560 (1987).PubMedCrossRefGoogle Scholar
  128. 128.
    A.M. Buckle, Y. Jayaram and N. Hogg, Colony-stimulating factors and interferon-γ differentially affect cell surface molecules shared by monocytes and neutrophils, Clin. & Exp. Immunol., 81: 339–345 (1990).CrossRefGoogle Scholar
  129. 129.
    M.A. Socinski, S.A. Cannistra, R. Sullivan, A. Elias, K. Antman, L. Schnipper and J.D. Griffin, Granulocyte-macrophage colony-stimulating factor induces the expression of the CDllb surface adhesion molecule on human granulocytes in vivo, Blood, 72: 691–697 (1988).PubMedGoogle Scholar
  130. 130.
    M.A. Arnaout, E.A. Wang, S.C. Clark and C.A. Sieff, Human recombinant granuloctye-macrophage colony-stimulating factor increases cell-to-cell adhesion and surface expression of adhesion-promoting surface glycoproteins on mature granulocytes. J. Clin. Invest. 78: 597–601 (1986).PubMedCrossRefGoogle Scholar
  131. 131.
    S. Devereux, H.A. Bull, D. Campos-Costa, R. Saib and D.C. Linch, Granulocyte macrophage colony stimulating factor induced changes in cellular adhesion molecule expression and adhesion to endothelium: in vitro and in vivo studies in man, Br. J. Haematoloay, 71: 323–330 (1989).CrossRefGoogle Scholar
  132. 132.
    J.R. Gamble, T.H. Rand, A.F. Lopez, I. Clark-Lewis and M.A. Vadas, Heterogeneity of recombinant granulocyte-macrophage colony-stimulating factor-mediated enhancement of neutrophil adherence to endothelium, Exper. Hematology, 18: 897–902 (1990).Google Scholar
  133. 133.
    S. Yamaga, S. Okamura, T. Otsuka and Y. Niho, Effect of granulocyte-macrophage colony-stimulating factor on chemiluminescence of human neutrophils, Intl. J. Cell Cloning 7: 50–58 (1989).CrossRefGoogle Scholar
  134. 134.
    R.I. Sha’afi and T.F.P. Molski, Effects of neutrophil and platelet activators. In:Na +/H+ exchange. Ed. S. Grinstein, CRC Press Boca Raton, Florida (1988).Google Scholar
  135. 135.
    R.I. Sha’afi and T.F.P. Molski, Activation of the neutrophil. ProgreSs in Allergy 42: 1–64 (1988).Google Scholar
  136. 136.
    R. Sullivan, J.D. Griffin, J. Wright, D.A. Melnick, J.L. Leavitt, J.P. Fredette, J.H. Home, C.A. Lyman, K.G. Lazzari and E.R. Simons, Effects of recombinant human granulocyte-macrophage colony-stimulating factor on intracellular pH in mature granulocytes, Blood, 72: 1665–1673 (1988).PubMedGoogle Scholar
  137. 137.
    J. Gomez-Cambronero, M. Yamazaki, F. Metwally, T.F.P. Molski, V.A. Bonak, C.-K. Huang, E.L. Becker and R.I. Sha’afi, Granulocyte-macrophage colony-stimulating factor and human neutrophils: Role of guanine nucleotide regulatory proteins, Proc. Natl. Acad. Sci.U.S.A, 86: 3569–3573 (1989).PubMedCrossRefGoogle Scholar
  138. 138.
    P.H. Naccache, N. Faucher, P. Borgeat, J.C. Gasson and J.F. DiPersio, Granulocyte-macrophage colony-stimulating factor modulates the excitation-response coupling sequence in human neutrophils, J. Immunol., 140: 3541–3546 (1988).PubMedGoogle Scholar
  139. 139.
    F. Bussolino, J.M. Wang, F. Turrini, D. Alessi, D. Ghigo, C. Costamagna, G. Perscarmona, A. Mantovani and A. Bosia, Stimulation of the Na+/H+ exchanger in human endothelial cells activated by granulocyte-and granulocyte-macrophage colony-stimulating factor, J. Biol. Chem. 264: 18284–18287 (1989).PubMedGoogle Scholar
  140. 140.
    C. Sardet, L. Counillon, A. Franchi and J. Pouyssegur, Growth factors induce phosphorylation of the N+a/H+ antiporter, a glycoprotein of 110 kD, Science 247: 723–726, (1990).PubMedCrossRefGoogle Scholar
  141. 141.
    J. Gomez-Cambronero, C.-K. Huang, V.A. Bonak, E. Wang, J.E. Casnellie, T. Shiraishi and R.I. Sha’afi, Tyrosine phosphorylation in human npntrnphi1, Bionhem. Biophys. Res. Commun. 162: 1478–1485 (1989).CrossRefGoogle Scholar
  142. 142.
    J.P.M. Evans, A.R. Mire-Sluis, A.V. Hoffbrand and R.G. Wick-remasinghe, Binding of G-CSF, GM-CSF, tumor necrosis factor-α, and γ-interferon to cell surface receptors on human myeloid leukemia cells triggers rapid tyrosine and serine phosphorylation of a 75-Kd protein, Blood, 75: 88–95 (1990).PubMedGoogle Scholar
  143. 143.
    P.H. Sorensen, A.L. Mui, S.C. Murthy and G. Krystal, Interleukin-3, GM-CSF, and TPA induce distinct phophorylation events in an interleukin 3-dependent multipotential cell line, Blood, 73: 406–418 (1989).PubMedGoogle Scholar
  144. 144.
    J. Gomez-Cambronero, E. Wang, G. Johnson, C.-K. Huang and R.I. Sha’afi, Platelet activating factor induces tyrosine phosphorylation in human neutrophils, J. Biol. Chem. 266: 6240–6245 (1991).PubMedGoogle Scholar
  145. 145.
    A.J. Rossomando, D.M. Payne, M.J. Weber and T.W. Sturgill, Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase, Proc. Natl. Acad. Sci. U.S.A, 86: 6940–6943 (1989).PubMedCrossRefGoogle Scholar
  146. 146.
    E. Erikson, D. Stefanovic, J. Blenis, R.L. Erikson and J.L. Mailer, Antibodies to Xenopus egg S6 kinase II recognize S6 kinase from progesterone-and insulin-stimulated Xenopus oocytes and from proliferating chicken embryo fibroblasts. Mol. Cell. Biol. 7: 3147–3155 (1987).PubMedGoogle Scholar
  147. 147.
    L.B. Ray and T.W. Sturgill, Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. U.S.A. 84: 1502–1506 (1987).PubMedCrossRefGoogle Scholar
  148. 148.
    K.F. Balazovich and E.L. McEwen, Purification and characterization of a soluble 42 kilodalton protein kinase from human neutrophils. J. Cell. Biol. III, 49a (abstract) (1990).Google Scholar
  149. 149.
    C.M. Ely, K.M. Oddie, J.S. Litz, A.J. Rossomando, S.B. Kanner, T.W. Sturgill and S.J. Parsons, A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42 kD mitogen-stimulated protein in fibroblasts, J. Cell Biol., 110: 731–742 (1990).PubMedCrossRefGoogle Scholar
  150. 150.
    T. Hunter and J.A. Cooper, Protein tyrosine kinases Ann. Rev. Biochem. 54: 897–930 (1985).PubMedCrossRefGoogle Scholar
  151. 151.
    C.E. Gee, J. Griffin, L. Sastre, L.J. Miller, T.A., Springer, H. Piwnica-Worms and T.M. Roberts, Differentiation of myeloid cells is accompanied by increased levels of pp60c-src. protein and kinase activity. Proc. Natl. Acad. Sci. U.S.A. 83: 5131–5135 (1986).PubMedCrossRefGoogle Scholar
  152. 152.
    S.F. Ziegler, C.B. Wilson and R.M. Perlmutter, Augmented ex-pression of a myeloid-specific protein tyrosine kinase gene (hck) after macrophage activation. J Exp. Med. 168: 1801–1810 (1988).PubMedCrossRefGoogle Scholar
  153. 153.
    G. Yu, T.E. Smithgall and R.I. Glazer, K562 leukemia cells transfected with human c-fes gene acquire the ability to undergo myeloid differentiation. J. Biol. Chem. 264: 10276–10281 (1989).PubMedGoogle Scholar
  154. 154.
    J.S. Gutkind and K.C. Robins, Translocation of the FGR protein-tyrosine kinase as a consequence on neutrophil activation. Proc. Natl. Acad. Sci. U.S.A. 86: 8783–8787 (1989).PubMedCrossRefGoogle Scholar
  155. 155.
    A.S. Kraft and R.L. Berkow, Tyrosine kinase and phosphotyrosine phosphatase activity in human promyelocytic leukemia cells and human polymorphonuclear leucocytes. Blood, 70: 356–362 (1987).PubMedGoogle Scholar
  156. 156.
    R.L. Berkow, R.W. Dodson and A.S. Kraft, Human neutrophils contain distinct cytosolic and particulate tyrosine kinase activities: Possible role in neutrophil activation. Biochem. Biophys. Acta. 997: 292–301 (1989).CrossRefGoogle Scholar
  157. 157.
    R.L. Berkow and R.W. Dodson, Tyrosine-specific protein phosphorylation during activation of human neutrophils, Blood, 75: 2445–2452 (1990).PubMedGoogle Scholar
  158. 158.
    C.-K. Huang, V. Bonak, G.R. Laramee and J.E. Casnellie, Protein tyrosine phosphorylation in rabbit peritoneal neutrophils, Biochem. J. 269: 431–436 (1990).PubMedGoogle Scholar
  159. 159.
    C.-K. Huang, G.R. Laramee and J.E. Casnellie, Chemotactic factor induced tyrosine phosphorylation of membrane associated proteins in rabbit peritoneal neutrophils. Biochem. Biophys. Res. Commun. 151: 794–801 (1988).PubMedCrossRefGoogle Scholar
  160. 160.
    P.H. Naccache, C. Gilbert, A.C. Caon, M. Gaudry, C.-K. Huang, V.A. Bonak, K. Umezawa and S.R. McColl, Selective inhibition of human neutrophil functional responsiveness by Erbstatin, an inhibitor of tyrosine protein kinase, Blood, 76: 2098–2104 (1990).PubMedGoogle Scholar
  161. 161.
    P.E. Nasmith, G.B. Mills and S. Grinstein, Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem. J. 257: 893–897 (1989).PubMedGoogle Scholar
  162. 162.
    T.C. Wright, M.J. Karnovsky and J.M. Robinson, Tyrosine phosphorylation of 43 Kd and 41 Kd proteins occurs during PMN activation, J. Cell. Biol. 107: 57a (1988).Google Scholar
  163. 163.
    M. Katan and P.J. Parker, Oncogenes and cell control Nature 32: 203 (1988).CrossRefGoogle Scholar
  164. 164.
    J.R. Downing, C.W. Rettenmier and C.J. Sherr, Ligand-induced tyrosine kinase activity of the colony-stimulating factor 1 receptor in a murine macrophage cell line Mol. Cell. Biol. 8: 1795–1799 (1988).PubMedGoogle Scholar
  165. 165.
    F. Colotta, J.M. Wang, N. Polentaruttim and A. Mantovani, Expression of c-fos proto-oncogene in normal human peripheral blood granulocytes, J. Exp. Med., 165: 1224–1229 (1987).PubMedCrossRefGoogle Scholar
  166. 166.
    S.R. McColl, C. Kreis, J.F. DiPersio, P. Borgeat and P.H. Naccache, Involvement of guanine nucleotide binding proteins in neutrophil activation and priming by GM-CSF, Blood, 73: 588–591 (1989).PubMedGoogle Scholar
  167. 167.
    B.C. Varnum, R.W. Lim, D.A. Kujubu, S.J. Luner, S.E. Kaufman, J.S. Greenberger, J.C. Gasson and H.R. Herschman, Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary response TIS genes in both proliferating and terminally differentiated myeloid cells, Molec. & Cell. Biol., 9: 3580–3583 (1989).Google Scholar
  168. 168.
    G.G. Choudhury, V.L. Sylvia, A. Pfeifer, L.-M. Wang, E.Z. Smith and A.Y. Sakaguchi, Human colony stimulating factor-1 receptor activates the C-raf-1 proto-oncogene kinase, Biochem. Biophys. Res. Commun. 172: 154–159 (1990).PubMedCrossRefGoogle Scholar
  169. 169.
    M.P. Carroll, I. Clark-Lewis U.R. Rapp and W.S. May, Interleukin-3 and granulocte-macrophage colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf. J. Biol. Chem. 265: 19812–19817 (1990).PubMedGoogle Scholar
  170. 170.
    A. Lindemann, D. Riedel, W. Oster, S.C. Meuer, D. Blohm, R.H. Mertelsmann, and F. Herrmann, Granulocyte/macrophage colony-stimulating factor induces interleukin 1 production by human polymorphonuclear neutrophils, J. Immunol., 140: 837–839 (1988).PubMedGoogle Scholar
  171. 171.
    A. Lindenmann, D. Riedel, W. Oster, H.W. Ziegler-Heitbrock, R. Mertelsmann and F. Herrmann, Granulocyte-macrophage colony-stimulating factor induces cytokine secretion by human polymorphonuclear leukocytes. J. Clin. Invest., 83: 1308–1312 (1989).CrossRefGoogle Scholar
  172. 172.
    S.W. Edwards, C.S. Holden, J.M. Humphreys and C.A. Hart, Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes the respiratory burst and stimulates protein biosynthesis in human neutrophils, FEBS Lett., 256: 62–69 (1989).PubMedCrossRefGoogle Scholar
  173. 173.
    I.J. Stanley and A.W. Burgess, Granulocyte macrophage-colony stimulating factor stimulates the synthesis of membrane and nuclear proteins in murine neutrophils, J. Cell. Biochem., 23: 241–258 (1983).PubMedCrossRefGoogle Scholar
  174. 174.
    S.R. McColl, R. Paquin and A.D. Beaulieu, Selective synthesis and secretion of a 23 Kd protein by neutrophils following stimulation with granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha, Biochem. Biophys. Res, Commun. 172: 1209–1216 (1990).CrossRefGoogle Scholar
  175. 175.
    E. Neuman, J.W. Huleatt and R.M. Jack, Granulocyte-macrophage colony-stimulaing factor increase synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils, J. Immunol., 145: 3325–3332 (1990).PubMedGoogle Scholar
  176. 176.
    R.M. Jack and D.T. Fearon, Selective synthesis of mRNA and proteins by human peripheral blood neutrophils. J. Immunol. 140: 4286–4293 (1988).PubMedGoogle Scholar
  177. 177.
    Y. He, E. Hewlett, D. Temeles and P. Quesenberry, Inhibition of interleukin 3 and colony-stimulating factor 1-stimulated marrow cell proliferation by pertussis toxin, Blood. 71: 1187–1195 (1988).PubMedGoogle Scholar
  178. 178.
    K. Imamura and D. Kufe, Colony-stimulating factor 1-induced Na+ influx into human monocytes involves activation of a pertussis toxin-sensitive GTP-binding protein, J. Biol. Chem., 263: 14093–14098 (1988).PubMedGoogle Scholar
  179. 179.
    M. Yamazaki, T.F.P. Molski, T. Stevens, C.-K. Huang, E.L. Becker and R.I. Sha’afi, Binding of leukotriene Band platelet-activating factor to neutrophils: Effects of granulocyte-macrophage colony-stimulating factor, phorbol 12-myristate 13-acetate and fMet-Leu-Phe, Am. J. Physiol (Cell Physiol). In Press (1991).Google Scholar
  180. 180.
    J.F. DiPersio, S. Aggarival, D.W. Golde, GM-CSF directly induces neutrophil platelet activating factor (PAF)Google Scholar
  181. 181.
    R. Sullivan, J.D. Griffin, E.R. Simons, A.I. Schafer, T. Meshulam, J.P. Fredette, A.K. Maas, A.-S. Gadenne, J.L. Leavitt and D.A. Melnick, Effects of recombinant human granulocyte and macrophage colony-stimulating factors on signal transduction pathways in-human granulocytes, J. Immunol., 139: 3422–3430 (1987)PubMedGoogle Scholar
  182. 183.
    R.G. Coffey, J.S. Davis, and J.Y. Djeu, Stimulation of guanylate cyclase activity and reduction of adenylate cyclase activity by granulocyte-macrophage colony-stimulating factor in human blood neutrophils, J. Immunol., 140: 2695–2701 (1988).PubMedGoogle Scholar
  183. 184.
    D. English, H.E. Broxmeyer, T.G. Gabig, L.P. Akard, D.E. Williams and R. Hoffman, Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-pheny-lalanine; Acceleration by granulocyte-macrophage colony-stimulating factor J. Immunol., 141: 2400–2406 (1988).PubMedGoogle Scholar
  184. 185.
    R. Sullivan, J.P. Fredette, J.D., Griffin, J.L. Leavitt, E.R. Simons and D.A. Melnick, An elevation in the concentration of free cytosolic calcium is sufficient to activate the oxidative burst of granulocytes primed with recombinant human granulocyte-macrophage colony-stimulating factor. J.Biol. Chem. 264: 6302–6309 (1989).PubMedGoogle Scholar
  185. 186.
    S.H. Zuckerman and R.D. Schreiber, Up-regulation of gamma interferon receptors on the human monocytic cell line U937 by 1,25-dihydroxyvitamin D3 and granulocyte-macrophage colony-stimulating factor, J. Leukocyte Biol. 44: 187–191 (1988).PubMedGoogle Scholar
  186. 187.
    Y.H. Atkinson, A.F. Lopez, W.A. Marasco, C.M. Lucas, G.G., Wong, G.F. Burns and M.A. Vadas, Recombinant human granulocyte-macrophage colony-stimulating factor (rH GM-CSF) regulates fMet-Leu-Phe receptors on human neutrophils, Immunology, 64: 519–525 (1988).PubMedGoogle Scholar
  187. 188.
    S.R. McColl, D. Beauseigle, C. Gilbert and P.H. Naccache, Priming of the human neutrophil respiratory burst by granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-a involves regulation at a post-cell surface receptor level, J. Immunol., 145: 3047–3053 (1990).PubMedGoogle Scholar
  188. 189.
    A.F. Lopez, J.M. Eglinton, D. Gillis, L.S. Park, S. Clark and M.A. Vadas, Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils, Proc. Natl. Acad. Sci. U.S.A., 86: 7022–7026 (1989).PubMedCrossRefGoogle Scholar
  189. 190.
    W.W. Hancock, M.E. Pleau and L. Kobzik, Recombinant granulocyte-macrophage colony-stimulating factor down-regulates expression of IL-2 receptor on human mononuclear phagocytes by induction of prostaglandin E., J. Immunol., 140: 3021–3025 (1988).PubMedGoogle Scholar
  190. 191.
    L.S. Park, D. Friend, V. Price, D. Anderson, J. Singer, K.S. Prickett and D.L. Urdal, Heterogeneity in human interleukin-3 receptors. A subclass that binds human granulocyte-macrophage colony-stimulating factor, J. Biol. Chem., 264: 5420–5427 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Julian Gomez-Cambronero
    • 1
  • Ramadan I. Sha’afi
    • 1
  1. 1.Department of PhysiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations