Advertisement

Metabolism of Arachidonic Acid by Isolated Lung Cells and Transcellular Biosynthesis of Thromboxanes

  • Karim Maghni
  • Chantal Robidoux
  • Johanne Laporte
  • Annie Hallée
  • Johanne Carrier
  • Pierre Borgeat
  • Pierre Sirois
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)

Abstract

Harkavy1 was the first to report that an alcohol-soluble extract of sputum from allergic asthmatic patients contained an agent which provoked spasms of cat and rabbit intestines in vitro. Few years later, von Euler2 and Goldblatt3 showed that extracts from human prostate gland and seminal vesicles decreased the blood pressure and stimulated the smooth muscles of the uterus. The compounds were designated as prostaglandins2. A new area of research on arachidonic acid metabolism started by the characterization of prostaglandins E and F by Bergström and Sjövall4,5. The final structures of PGE1 PGF and PGF were elucidated later6. The thromboxanes were first described as the rabbit aorta contracting substance (RCS) by Piper and Vane7. Hamberg et al.8 showed that RCS corresponded to the unstable thromboxane A2. Another line of investigations focused on the nature of substances causing a slowly developing and long-lasting contraction of guinea pig jejunum in vitro9. This substance called slow reacting substance (SRS) was shown to be released during the antigen-antibody reaction in guinea pig anaphylaxis and later designated as slow reacting substances of anaphylaxis (SRS-A). SRS-A were purified and characterized for the first time by Morris et al.10. The first product of the SRS-A has been identified as leukotriene C by Murphy et al.11 and Morris et al.12. The two other components of SRS-A were demonstrated to be the leukotriene D4 (LTD4) formed through cleavage of the γ-glutamyl moiety of the gluthathione side chain of LTC4 13,15 and the leukotriene E4 (LTE4) formed through the cleavage of the glycine residue from the peptide chain of LTD4 14,16. Leukotriene B4 (LTB4) was originally isolated by Borgeat and Samuelsson, in incubates of rabbit PMNL17 or human PMNL18 stimulated with arachidonic acid and calcium ionophore.

Keywords

Arachidonic Acid Alveolar Macrophage Reverse Phase High Performance Liquid Chromatography Arachidonic Acid Metabolism Clara Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Harkavy, Spasm-producing substance in the sputum of patients with bronchial asthma, Arch. Int. Med., 45: 641 (1930).CrossRefGoogle Scholar
  2. 2.
    U.S. Von Euler, On the specific vaso-dilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin), J. Physiol., 88: 213 (1936).Google Scholar
  3. 3.
    M.W. Goldblatt, Properties of human seminal plasma, J. Physiol. (London), 84: 208 (1935).Google Scholar
  4. 4.
    S. Bergström, and J. Sjövall, The isolation of prostaglandin E from sheep prostate glands, Acta Chem. Scand., 14: 1701 (1960).CrossRefGoogle Scholar
  5. 5.
    S. Bergström, and J. Sjövall, The isolation of prostaglandin F from sheep prostate glands, Acta Chem. Scand., 14: 1693 (1960).CrossRefGoogle Scholar
  6. 6.
    S. Bergström, R. Ryhage, B. Samuelsson, and J. Sjövall, Prostaglandins and related factors. The structures of prostaglandins El, F and F, J. Biol. Chem., 238: 3555 (1963).Google Scholar
  7. 7.
    P.J. Piper, and J.R. Vane, Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs, Nature (London), 223: 29 (1969).CrossRefGoogle Scholar
  8. 8.
    M. Hamberg, J. Svensson and B. Samuelsson, Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Natl. Acad. Sci. USA, 71: 345 (1975).CrossRefGoogle Scholar
  9. 9.
    W. Feldberg, and C.H. Kellaway, Liberation of histamine and formation of lysocithinlike substances by cobra venom, J. Physiol., 94: 187 (1938).PubMedGoogle Scholar
  10. 10.
    H.R. Morris, G.W. Taylor, P.J. Piper, P. Sirois, and J.R. Tippins, Slow-reacting substance of anaphylaxis: purification and characterization, FEBS Lett., 87: 203 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    R.C. Murphy, S. Hammarström, and B. Samuelsson, Leukotriene C: a slow-reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. USA, 76: 4275 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    H.R. Morris, G.W. Taylor, P.J. Piper, M.N. Samhoun, and J.R. Tippins, Slow reacting substances (SRSS): the structure identification of SRSS from rat basophilic leukemia (RBL-1) cells, Prostaglandins, 19: 185 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Örning, S. Harmmarström, and B. Samuelsson, Leukotriene D4: A slow reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci. USA, 77: 2014 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    C.W. Parker, S.F. Falkenhein, and M.M. Huber, Sequential conversion of the gluthationyl side chain of slow reacting substance (SRS) to cysteinyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A23187, Prostaglandins, 20: 863 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    H.R. Morris, G.W. Taylor, P.J. Piper, and J.R. Tippins, Structure of slow-reacting substance of anaphylaxis from guinea-pig lung, Nature, 285: 104 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    L. Örning, Bernström, K., and S. Harmmarström, Formation of leukotrienes E3, E4 and E5 in rat basophilic leukemia cells. Eur. J. Biochem., 120: 41 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Borgeat, and B. Samuelsson, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxy acid, Proc. Natl. Acad. Sci. USA, 76: 3213 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Borgeat, and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187, Proc. Natl. Acad. Sci. USA, 76: 2148 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    J.M. Drazen, Inhalation challenge with sulfidopeptide leukotrienes in human subjects, Chest, 89: 414 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Griffin, J.W. Weiss, A.G. Leitch, E.R.J. McFadden, E.J. Corey, K.F. Austen and J.M. Drazen, Effects of leukotriene D on the airways in asthma, N. Engl. J. Med., 308: 436 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    S.E. Dahlén, B. Dahlén, E. Eliasson, H. Johansson, T. Björck, M. Kumlin, K. Boo, J. Whitney, S. Binks, B. King, R. Stark, and O. Zetterström, Inhibition of allergic bronchoconstriction in asthmatics by the leukotriene-antagonist ICI-204, 219, Adv. Prostaglandin Thromboxane Leukotriene Res., 21: 461 (1990).Google Scholar
  22. 22.
    A.W. Ford-Hutchinson, Leukotriene B4 in inflammation, Immunology, 10: 1 (1990).Google Scholar
  23. 23.
    P. Sirois, P. Borgeat, A. Jeanson, S. Roy, and G. Girard, The action of leukotriene B4 (LTB4) on the lung, Prostaglandins Med., 5: 429 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Sirois, S. Roy, P. Borgeat, S. Picard, and P. Vallerand, Evidence for a mediator role of thromboxane A2 in the mytropic action of leukotriene B4 on the guinea pig lung, Prostaglandins Med., 8: 157 (1982).CrossRefGoogle Scholar
  25. 25.
    P.J. Piper, and M.N. Samhoun, Stimulation of arachidonic acid metabolism and generation of thromboxane A2 by leukotrienes B4, C4 and D4 in guinea-pig lung in vitro, Br. J. Pharmacol., 77: 267 (1982).PubMedGoogle Scholar
  26. 26.
    T. Ishisaka, and K. Ishisaka, Activation of mast cells for mediator release through IgE receptors, Prog. Allergy, 34: 188 (1984).Google Scholar
  27. 27.
    E. Frigas, and G.J. Gleich, The eosinophil and the pathophysiology of asthma, J. Allergy Clin. Immunol., 77: 527 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    J. McGee, and F.A. Fitzpatrick, Erythrocyte-neutrophil interactions: Formation of leukotriene B4 by transcellular biosynthesis, Proc. Natl. Acad. Sci. USA, 83: 1349 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    H.E. Claesson, and J. Haeggström, Human endothelial cells stimulate leukotriene synthesis and convert granulocyte released leukotriene A4 into leukotriene B4, C4, D4 and E4, Eur. J. Biochem., 173: 93 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    A.J. Marcus, M.J. Brockman, B. Safier, H.L. Ullman, K.J. Islam, C.N. Serhan, L.E. Rutherford, H.M. Korchak, and G. Weissman, Formation of leukotrienes and other hydroxy acids during platelet-neutrophils interaction in vivo, Biochem. Biophys. Res. Commun., 109: 130 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    J.P. Pelé, C. Robidoux, and P. Sirois, Guinea pig lung cells. Method of isolation and partial purification, identification, ultrastructure and cell count, Inflammation, 13: 103 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Maghni, C. Robidoux, J. Laporte, A. Hallée, and P. Sirois, Release of prostaglandins and thromboxanes by guinea pig isolated type II pneumocytes, Prostaglandins, 40: 217 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    J. Laporte, A. Hallée, K. Maghni, C. Robidoux, P. Borgeat, and P. Sirois, Metabolism of arachidonic acid by guinea pig Clara cells, Prostaglandins, 41: 263, (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Maghni, C. Robidoux, J. Laporte, A. Hallée, P. Borgeat, and P. Sirois, Purification of natural killer-like Kurloff cells and arachidonic acid metabolism, (submitted).Google Scholar
  35. 35.
    L.G. Dobbs, R. Gonzalez, and M.C. Williams, An improved method for isolating type II cells in high yield and purity, Am. Rev. Respir. Dis., 134: 141, (1986).PubMedGoogle Scholar
  36. 36.
    K. Hirata, K. Maghni, P. Borgeat, and P. Sirois, Guinea pig alveolar eosinophils and macrophages produce leukotriene B4 but no peptido-leukotriene, J. Immunol., 144: 1880, (1990).PubMedGoogle Scholar
  37. 37.
    P. Borgeat, S. Picard, P. Vallerand, S. Bourgoin, A. Odeimat, P. Sirois, and P.E. Poubelle, 1990, Automated on-line extraction and profiling of lipoxygenae products of arachidonic acid by high performance liquid chromatography, in: “Methods in Enzymology. Arachidonate related lipid mediators”, R.C. Murphy and F. Fitzpatrick eds, Academic Press, New York.Google Scholar
  38. 38.
    P. Pradelles, J. Grassi, and J. Maclouf, Enzyme immunoassay of eicosanoids using acetylcholine esterase as label: An alternative to radioimmunoassay, Anal. Chem., 57: 1170,(1985).PubMedCrossRefGoogle Scholar
  39. 39.
    V. Castronova, G.S. Jones, and P.R. Miles, Transmembrane potential of isolated rat alveolar type II cells, J. Appl. Physiol., 54: 1511, (1983).Google Scholar
  40. 40.
    T.R. Devereux, and J.R. Fouts, Xenobiotic metabolism by alveolar type II isolated from rabbit lung, Biochem. Pharmacol., 30: 1231 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    J.D. Edelson, J.M. Shannon, and R.J. Mason, alkaline phosphatase: a marker of alveolar type II cell differentiation, Am. Rev. Respir. Dis., 138: 1268 (1988).PubMedGoogle Scholar
  42. 42.
    T.R. Devereux, and J.R. Fouts, Isolation and identification of Clara cells from rabbit lung, In vitro, 16: 958 (1980).PubMedCrossRefGoogle Scholar
  43. 43.
    T.E. Massey, B.A. Geddes, and P.G. Forkert, Isolation of non ciliated bronchiolar epithelial (Clara) cells and alveolar type II cells from mouse lungs, Can. J. Phvsiol. Pharmacol., 65: 2368 (1987).CrossRefGoogle Scholar
  44. 44.
    J.E. Myles, B.A. Geddes, and T.E. Massey, Biotransformation activities in Clara and alveolar type II cells isolated from hamster lungs, Res. Commun. Chem. Path. Pharmacol 66: 297 (1989).Google Scholar
  45. 45.
    M.F. Dean, and H. Muir, The characterization of a protein-polysaccharide isolated from Kurloff cells of the guinea pig, Biochem. J., 118: 783 (1970).PubMedGoogle Scholar
  46. 46.
    G. Landemore, S.E. Letaïef, J. Bocquet, and J. Izard, Kurloff cell proteoglycans. Evidence de novo synthesis of chondroitin sulfate proteoglycans by purified Kurloff cell, Febs Letters, 209: 299 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    P.A. Rewell, The Kurloff cell, Intern. Rev. Cvtol., 51: 275 (1977).CrossRefGoogle Scholar
  48. 48.
    O. Eremin, R.R.A. Coombs, J. Ashby, and D. Plumb, Natural cytotoxicity in the guinea-pig: the natural killer cell activity of the Kurloff cell. Immunology, 41: 367 (1980).PubMedGoogle Scholar
  49. 49.
    C. Debout, M. Quillec, and J. Izard, Natural killer activity of Kurloff cell: a direct demonstration on purified cell suspensions, Cell. Immunol., 87: 674 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    N. Pouliot, K. Maghni, P. Sirois, and M. Rola-Pleszczynski, The cytotoxic activity of the Foà-Kurloff cell, FASEB J., 4: A1892 (1990).Google Scholar
  51. 51.
    A. Attman, and M.J. Rapp, Natural cell-mediated cytotoxicity in guinea pigs: properties and specificity of natural killer cells, J. Immunol., 121: 2244 (1978).Google Scholar
  52. 52.
    H.F. Sewell, L.S. Steward, C.A. McPhee, I.H. Mathie, and A.W. Thomson, Enhanced production and immunophenotypic analysis of Kurloff cells in immunized guinea pigs treated with cyclophosphamide and cyclosporine A: correlation with increased large granular lymphocyte production in rat, Transpl Proc., 20 (suppl 2): 196 (1988).Google Scholar
  53. 53.
    G. Landemore, C. Debout, M. Quillec, and J. Izard, Isolation of Kurloff cells by Percoll density-gradient centrifugation. Protein labelling with 35S-methionine of these cells, Biol. Cell., 50: 121 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    W.B. Davis, G.A. Fells, X.H. Wum, J.E. Fradek, A. Venet, and R.G. Crystal, Eosinophil-mediated injury possible role for eosinophils in chronic inflammatory disorders of the lower respiratory tract, J. Clin. Invest., 74: 269 (1984).PubMedCrossRefGoogle Scholar
  55. 55.
    J.G.R.D. Moncky, H.F. Kauffman, P. Venge, G.H. Koeter, HL.M. Jansen, H.J. Shelter, and K.D. Vries, Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions, Am. Rev. Respir. Dis., 131: 373 (1985).Google Scholar
  56. 56.
    L. Taylor, P. Polgar, J.A. McAteer, and W.H.J. Douglas, Prostaglandin production by type II alveolar epithelial cells, Biochem. Biophys. Acta, 572: 502 (1979).PubMedGoogle Scholar
  57. 57.
    J.E. Graeber, R.W. Walenga, R.E. Ulane, and M.J. Stuart, Metabolism of 14C-arachidonic acid by type II alveolar epithelial cells in primary culture, Pediat. Res., 16: 350A (1982).CrossRefGoogle Scholar
  58. 58.
    G.L. Xu, K. Sivarajak, R. Wu, P. Nettesheim, and T. Eling, Biosynthesis of prostaglandins by isolated and cultured airway epithelial cells, Exp. Lung Res., 10: 101 (1986).PubMedCrossRefGoogle Scholar
  59. 59.
    J.B. Chauncey, M. Peters-Golden, and R.H. Simon, Arachidonic acid metabolism by rat alveolar epithelial cells, Lab. Invest., 58: 133 (1988).PubMedGoogle Scholar
  60. 60.
    M.R. Van Scott, M.R. Mclntire, and D.C. Henke, Arachidonic acid metabolism and regulation of ion transport in rabbit Clara cells, Am. J. Phvsiol., 259: L213 (1990).Google Scholar
  61. 61.
    A.M. Gilifillan, and S.A. Rooney, Arachidonic acid metabolites stimulate phosphophatidylcholine secretion in primary culture of type II pneumocytes, Biochem. Biophys. Acta, 833: 336 (1985).Google Scholar
  62. 62.
    M.J. Oyrazun, and J. A. Clements, Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit, Am. Rev. Respir. Dis., 117: 879 (1978).Google Scholar
  63. 63.
    J. Nowak, Eicosanoids and the lungs, Ann. Clin. Res., 16: 269 (1984).PubMedGoogle Scholar
  64. 64.
    M.J. Droller, M.V. Schneider, and P.A. Perlinau, A possible role of prostaglandins in the inhibition of natural and antibody-dependent cell-mediated cytotoxicity against tumor cells, Cell. Immunol., 39: 165 (1978).PubMedCrossRefGoogle Scholar
  65. 65.
    MJ. Brunda, R.B. Herberman, and M.T. Holden, Inhibition of murine natural killer cell activity by prostaglandins, J. Immunol, 124: 2682 (1980).PubMedGoogle Scholar
  66. 66.
    B. Hacker-Shahin, and W. Droge, Augmentation of cytotoxic responses by prostaglandin E2, Cell. Immunol., 91: 43 (1985).PubMedCrossRefGoogle Scholar
  67. 67.
    W.R. Henderson, Eicosanoids and lung inflammation, Am. Rev. Respir. Pis., 135: 1176(1987).Google Scholar
  68. 68.
    P.K. Miller, J.W. Gillard, P.J. Vickers, S. Sadowski, C. Léveillé, J.A. Mancini, P. Charleson, R.A.F. Pixon, A.W. Ford-Hutchinson, R. Fortin, J.Y. Gauthier, J. Rodkey, R. Rosen, C. Rouzer, I.S. Sigal, C.D. Starder, and J.F. Evans, Identification and isolation of a membrane protein necessary for leukotriene production, Nature, 343: 278 (1990).PubMedCrossRefGoogle Scholar
  69. 69.
    R.A.F. Pixon, R.E. Piehl, E. Opas, E. Rands, P.J. Vickers, J.F. Evans, J.W. Gillard and P.K. Miller, Requirement of 5-lipoxygenase-activating protein for leukotriene synthesis, Nature, 343: 282, (1990).CrossRefGoogle Scholar
  70. 70.
    J.J. Feinmark, and J.J. Cannon, Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes, J. Biol. Chem., 261: 16466 (1986).PubMedGoogle Scholar
  71. 71.
    A.W. Ford-Hutchinson, M.A. Bray, M.V. Poig, M.E. Shipley, and MJ.H. Smith, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature, 286: 264 (1980).PubMedCrossRefGoogle Scholar
  72. 72.
    M. Rola-Pleszczynski, P. Borgeat, and P. Sirois, Leukotriene B4, induces human suppressor lymphocytes, Biochem. Biophys. Res. Commun., 108: 1531 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Rola-Pleszczynski, L. Gagnon, and P. Sirois, Leukotriene B4 augments human natural cytotoxic cell activity, Biochem. Biophys. Res. Commun., 113: 531 (1983).PubMedCrossRefGoogle Scholar
  74. 74.
    M. Laviolette, S. Picard, P. Braquet, and P. Borgeat, Comparison of 5-and 15-lipoxygenase activities in blood and alveolar leukocyte preparations from normal subjects and patients with eosinophilia, Prostaglandins Leukotrienes Med., 23: 191 (1986).CrossRefGoogle Scholar
  75. 75.
    A.J. Marcus, B.B. Weksler, and E.A. Jaffe, Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells, J. Clin. Invest., 66: 979 (1980).PubMedCrossRefGoogle Scholar
  76. 76.
    A.I. Schafer, P.P. Crawford, and M.A. Jr. Gimbrone, Unidirectional transfer of prostaglandin endoperoxides between platelets and endothelial cells, J. Clin. Invest., 73: 1105 (1984).PubMedCrossRefGoogle Scholar
  77. 77.
    B.A. Burall, and E.J. Goetzl, Navigating the sea of eicosanoids (Editorial), West. J. Med., 143: 516 (1985).Google Scholar
  78. 78.
    A.J. Marcus, Transcellular metabolism of eicosanoids, Prog. Hemost. Thrombo., 28: 124 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Karim Maghni
    • 1
  • Chantal Robidoux
    • 1
  • Johanne Laporte
    • 1
  • Annie Hallée
    • 1
  • Johanne Carrier
    • 1
  • Pierre Borgeat
    • 2
  • Pierre Sirois
    • 1
  1. 1.Department of Pharmacology Faculty of MedicineUniversity of SherbrookeSherbrooke (P.Q.)Canada
  2. 2.Inflammation et Immunologie-Rhumatologie CHULQuebecCanada

Personalised recommendations