Advertisement

Leukocyte Adhesion: Molecular Basis and Relevance in Inflammation

  • Manuel Patarroyo
  • Lennart Lindbom
  • Claes Lundberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)

Abstract

Leukocytes interact with one another, with other cell types such as vascular endothelial cells, and with extracellular matrices to traffic to extravascular tissues, and to generate immune and inflammatory responses. Although some of these interactions are mediated by soluble molecules such as cytokines, others require firm leukocyte-cell or leukocyte-matrix stickiness, a process refered to as adhesion. This adhesiveness is transient and usually subsequent to cell activation. It has a molecular basis and a profound biological relevance in host defense and tissue injury. The present article will summarize our studies on the biology and molecular basis of leukocyte adhesion, and its central role in leukocyte functions and inflammatory responses. Comprehensive reviews have been recently published by us1–4 and by other scientists5–7.

Keywords

Bacterial Meningitis Phorbol Ester Leukocyte Adhesion Neural Cell Adhesion Molecule Cell Surface Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Patarroyo and W. Makgoba, Leukocyte adhesion to cells: Molecular basis, physiological relevance and abnormalities, Scand J Immunol 30: 129 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Patarroyo and W. Makgoba, Leukocyte adhesion to cells in immmune and inflammatory responses, The Lancet ii 1139 (1989).Google Scholar
  3. 3.
    M. Patarroyo, J. Prieto, J. Rincon, T. Timonen, C. Lundberg, L. Lindbom, B. Asjö and C. Gahmberg, Leukocyte-cell adhesion: A molecular process fundamental in leukocyte physiology, Immunol Rev 114: 67 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Patarroyo, Leukocyte adhesion in host defense and tissue injury, Clin Immunol Immunopath, 60: 333 (1991).CrossRefGoogle Scholar
  5. 5.
    A. Arnaout, Structure and function of the leukocyte adhesion molecules CD11/CD18, Blood 75: 1037 (1990).PubMedGoogle Scholar
  6. 6.
    T. Springer, Adhesion receptors of the immune system, Nature 346: 425 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    T. M. Carlos and J. Harlan, Membrane proteins involved in phagocyte adherance to endothelium, Immunol Rev 114: 5 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    M Patarroyo, G. Yogeeswaran, P. Biberfeld, E. Klein and G. Klein, Morphological changes, cell aggregation and cell membrane alterations caused by phorbol 12, 13-dibutyrate in human blood lymphocytes, Int J Cancer 30: 707 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Patarroyo, Effects of Epstein Barr virus infection and phorbol ester treatment on the lytic and binding interactions between human lymphoid cells, PhD Thesis, Karolinska Institutet, Stockholm (1982).Google Scholar
  10. 10.
    M. Patarroyo, P. Beatty, J. Fabre and C. Gahmberg, Identification of a cell surface protein complex mediating phorbol ester-induced adhesion (binding) among human mononuclear leukocytes, Scand J Immunol 22: 171 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Beatty, J. Ledbetter, P. Martin, T. Price and J. Hansen, Definition of a common leukocyte cell surface antigen (Lp95-150) associated with diverse eel 1-mediated immune functons, J Immunol 131: 2913 (1983).PubMedGoogle Scholar
  12. 12.
    M. Patarroyo, P. Beatty, C. Serhan and C. Gahmberg, Identification of a cell surface glycoprotein mediating adhesion in granulocytes, Scand J Immunol 22: 619 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Patarroyo, P. Beatty, K. Nisson and C. Gahmberg, Identification of a cell-surface glycoprotein mediating cel1-adhesion in EBV-immortalized normal B cells, Int J Cancer 38: 539 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Patarroyo, J. Prieto, P. Beatty, E. Clark and C. Gahmberg, Adhesion-mediating molecules of human monocytes, Cell Immunol 113: 278 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Prieto, P. Beatty, E. Clark and M. Patarroyo, Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells, Immunol 63: 631 (1988).Google Scholar
  16. 16.
    M. Patarroyo, E. Clark, J. Prieto, C. Kantor and C. Gahmberg, Identification of a novel adhesion molecule in human leukocytes by monoclonal antibody LB-2, FEBS Lett 210: 127 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Clark and T. Yokochi, Human B cell and B cell blast-associated surface molecules defined with monoclonal antibodies, in: “Leukocyte typing”, A. Bernard et al. eds., Springer-Verlag, Berlin, p. 339 (1984).Google Scholar
  18. 18.
    E. Clark, J. Ledbetter, R. Holly, P. Dinndorf and G. Shu, Polypeptides on human B cell lymphocytes associated with cell activation, Hum Immunol 16: 100 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Takei, Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2), J Immunol 134: 1403 (1985).PubMedGoogle Scholar
  20. 20.
    J. Prieto, F. Takei, R. Gendelman, B. Christenson, P. Biberfeld and M. Patarroyo, MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54), Eur J Immunol 19: 1551 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Nortamo, R. Salcedo, T. Timonen, M. Patarroyo and C. Gahmberg, A monoclonal antibody to the human leukocyte adhesion molecule ICAM-2. Cellular distribution and characterization of the antigen, J Immunol, 146: 2530 (1991).PubMedGoogle Scholar
  22. 22.
    B. Schleiffenbaun, R. Moser, M. Patarroyo and J. Fehr, The cell surface glycoprotein Mac-1 (CDllb/CD18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression, J Immunol 142: 4100 (1989).Google Scholar
  23. 23.
    G. Skoglund, I. Cotgreave, J. Rincon, M. Patarroyo and M. Ingelman-Sundberg, H2O2 activates CDllb/CD18-dependent cell adhesion, Biochem Biophys Res Comm 157: 443 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Lindström, R. Lerner, J. Palmblad and M. Patarroyo, Rapid adhesive responses of endothelial cells and of neutrophils induced by LTB4 are mediated by leukocytic adhesion protein CD18, Scand J Immunol 31: 737 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Timonen, C. Gahmberg and M. Patarroyo, Participation of CDlla-c/CD18, CD2 and RGD-binding receptors in endogenous and interleukine-2-stimulated NK activity of CD3-negative large granular lymphocytes, Int J Cancer 46: 1035 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Lindqvist, M. Patarroyo, P. Beatty and H. Wigzell, A monoclonal antibody inhibiting leukocyte adhesion blocks induction of IL-2 production but not IL-2 receptor expression, Immunol 60: 579 (1987).Google Scholar
  27. 27.
    S. Shappell, C. Toman, D. Anderson, A. Taylor, M. Entman and W. Smith, Mac-1 (CDllb/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils, J Immunol 144: 2702 (1990).PubMedGoogle Scholar
  28. 28.
    J. Richter, J. Ng-Sikorski, I. Olsson and T. Andersson, Tumor necrosis factor-induced degranulation in adherent human neutrophils is dependent on CDllb/CD18-integrin-triggered oscillations of cytosolic free Ca++, Proc Natl Acad Sci USA 87: 9472 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Arfors, C. Lundberg, L. Lindbom, K. Lundberg, P. Beatty and J. Harlan, A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338 (1987).PubMedGoogle Scholar
  30. 30.
    L. Lindbom, C. Lundberg, J. Prieto, J. Raud, P. Nortamo, C. Gahmberg and M. Patarroyo, Rabbit leukocyte adhesion molecules CD11/CD18 and their participation in acute and delayed inflammatory responses and leukocyte distribution in vivo, Clin Immunol Immunopath 57: 105 (1990).CrossRefGoogle Scholar
  31. 31.
    C. Lundberg and S. Wright, Relation of the CD11/CD18 family of leukocyte antigens to the transient neutropenia caused by chemoattractants, Blood 76: 1240 (1990).PubMedGoogle Scholar
  32. 32.
    J. Ng-Sikorski, R. Andersson, M. Patarroyo and T. Andersson, Calcium signalling capacity of the CDllb/CD18 integrin on human neutrophils, EXP Cell Res 195: 504 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Fradin, J. Zirrolli, J. Maclouf, L. Vausbinder, P. Henson and R. Murphy, Platelet-activating factor and leukotriene biosynthesis in whole blood. A model for the study of transcellular arachidonate metabolism, J Immunol 143: 3680 (1989).PubMedGoogle Scholar
  34. 34.
    F. Grimminger, B. Kreusler, U. Schneider, G. Becker and W. Seeger, Influence of microvascular adherence on neutrophil leukotriene generation. Evidence for cooperative eicosanoid synthesis, J Immunol 144: 1866 (1990).PubMedGoogle Scholar
  35. 35.
    S. Fiore and C. Serhan, Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils, J Exp Med 172: 1451 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Manuel Patarroyo
    • 1
    • 2
  • Lennart Lindbom
    • 1
    • 2
  • Claes Lundberg
    • 1
    • 2
  1. 1.Depts. of Immunology and PhysiologyKarolinska InstitutetStockholmSweden
  2. 2.Inflammation Res.PharmaciaUppsalaSweden

Personalised recommendations