Properties of Atoms and Chemical Nature of Bonds in Molecules, Clusters and Solids as Derived from a Topological Analysis of Theoretical or (and) Experimental Charge Densities

  • C. Gatti
Part of the NATO ASI Series book series (NSSB, volume 283)


In the last decade the quantum theory of atoms in molecules1 (QTAM) has been increasingly used to highlight many facets of molecular structure, and of chemical reactivity, and to rationalize observed thermochemical or spectroscopical molecular properties. By using only information contained in the molecular charge distribution p(r) and in its associated gradient vector Vp(r) and Laplacian V p(r) fields, the QTAM allows to define the structure of a molecule, its structural stability and the properties of its constituting atoms. It is worth emphasizing that the charge density, which plays a key role in QTAM, is a fundamental quantity in density functional theory, being the ground state wavefunction and energy a unique functional of ρ(r).2 Furthermore ρ(r) is just the three-dimensional single-particle density evinced in diffraction experiments.


Charge Density Lithium Atom Experimental Density Bond Path Charge Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. W. Bader, “Atoms in Molecules: a quantum theory”, International Series of Monograph on Chemistry 22, Oxford University Press, Oxford (1990).Google Scholar
  2. 2.
    P. Hohenberg and W. Kohn, Phys. Rev. 136:B864 (1964).CrossRefGoogle Scholar
  3. 3.
    A. W. Castleman Jr., J. of Cluster Science 1:3 (1990).CrossRefGoogle Scholar
  4. 4.
    J. Schwinger, Phys. Rev. 82:914 (1951).CrossRefGoogle Scholar
  5. 5.
    R. F. W. Bader and T.T Nguyen-Dang, Adv. Quantum. Chem. 14:63 (1981).CrossRefGoogle Scholar
  6. 6.
    C. Gatti, P. Fantucci an G. Pacchioni, Theor. Chim. Acta 72:433 (1987).CrossRefGoogle Scholar
  7. 7.
    W. L. Cao, C. Gatti, P. J. MacDougall and R. F. W. Bader, Chem. Phys. Lett. 141:380 (1987).CrossRefGoogle Scholar
  8. 8.
    J. C. Slater, J. Chem. Phys. 1:687 (1933).CrossRefGoogle Scholar
  9. 9.
    R. F. W. Bader, H. J.T. Preston, Int. J. Quantum. Chem. 3:327 (1969).CrossRefGoogle Scholar
  10. 10.
    J. Palis and S. Smale, Pure Math. 14:223 (1970).Google Scholar
  11. 11.
    R. F. W. Bader and H. Essen, J. Chem. Phys. 80:1943 (1984).CrossRefGoogle Scholar
  12. 12.
    R.’ F. W. Bader, T. S. Slee, D. Cremer and E. Kraka, J. Am. Chem. Soc. 105:5061 (1983).CrossRefGoogle Scholar
  13. 13.
    C. Gatti, M. Barzaghi, L. Bonati and D. Pitea, in “Quantum Chemistry Basic Aspects, Actual Trends”, R. Carbó, ed., Studies in Physical and Theoretical Chemistry 62:401 (1989), Elsevier, Amsterdam.Google Scholar
  14. 14.
    R. F. W. Bader, J. Chem. Phys. 73:2871 (1980).CrossRefGoogle Scholar
  15. 15.
    R. J. Gillespie, “Molecular Geometry”, Van Nostrand Reinhold, London (1972).Google Scholar
  16. 16.
    R. F. W. Bader, P. J. MacDougall, J. Am. Chem. Soc. 107:6788 (1985).CrossRefGoogle Scholar
  17. 17.
    K. Fukui, Acc. Chem. Res. 4:57 (1971).CrossRefGoogle Scholar
  18. 18.
    R. F. Stewart, Acta Cryst. A32:565 (1976).Google Scholar
  19. 19.
    B. T. M. Willis, A. W. Pryor, “Thermal Vibrations in Cristallography”, Cambridge University Press, Cambridge (1975).Google Scholar
  20. 20.
    C. Möller and M. S. Plesset, Phys. Rev. 46:618 (1934).CrossRefGoogle Scholar
  21. 21.
    C. Gatti, P. J. MacDougall and R. F. W. Bader, J. Chem. Phys. 88:3792 (1988).CrossRefGoogle Scholar
  22. 22.
    R. F. Stewart, private communication.Google Scholar
  23. 23.
    R. F. Stewart and M. A. Spackman, Valray System 1983, Carnegie Mellon University, Pittsburgh.Google Scholar
  24. 24.
    R. McWeeney, “Methods of Molecular Quantum Mechanics”, II edition, Academic Press, London (1989).Google Scholar
  25. 25.
    F. W. Biegler-König, R. F. W. Bader and T. Tang, J. Comp. Chem. 13:317 (1982).CrossRefGoogle Scholar
  26. 26.
    R. Bianchi, T. Pilati and M. Simonetta, J. Am. Chem. Soc. 103:6426 (1981) and references therein.CrossRefGoogle Scholar
  27. 27.
    C. Gatti, M. Barzaghi and M. Simonetta, J. Am. Chem. Soc. 107:878 (1985).CrossRefGoogle Scholar
  28. 28.
    M. Simonetta, M. Barzaghi and C. Gatti, J. Mol. Struct. (THEOCHEM), 138:39 (1986).CrossRefGoogle Scholar
  29. 29.
    M. J. S. Dewar, S. Olivella and J. J. P. Stewart, J. Am. Chem. Soc., 108:5771 (1986).CrossRefGoogle Scholar
  30. 30.
    Y. Tal, R. F. W. Bader and J. Erkku, Phys. Rev. A21:1 (1980).Google Scholar
  31. 31.
    C. Gatti, P. Fantucci and G. Pacchioni, Proceedings of the 10th Canadian Symposium on Theoretical Chemistry, Banff (Canada), August 1989.Google Scholar
  32. 32.
    R. Destro, R. E. Marsh and R. Bianchi, J. Phys. Chem., 92:966 (1988).CrossRefGoogle Scholar
  33. 33.
    R. Destro, R. Bianchi and G. Morosi, J. Phys. Chem. 93:4447 (1989).CrossRefGoogle Scholar
  34. 34.
    R. Bianchi, R. Destro, C. Gatti and F. Merati, in “The Application of Charge Density Research to Chemistry and Drug Design”, G. A. Jeffrey, ed., 371 (1991), Plenum Press, New York.Google Scholar
  35. 35.
    C. Gatti, R. Bianchi, R. Destro and F. Merati, submitted to J. Mol. Struct. (THEOCHEM).Google Scholar
  36. 36.
    D. L. Cooper, Nature, 346:796 (1990).CrossRefGoogle Scholar
  37. 37.
    R. F. Stewart, Chem. Phys. Lett. 65:335 (1979).CrossRefGoogle Scholar
  38. 38.
    A. A. Low, K. L. Kunze, P. J. MacDougall and M. B. Hall, Inorg. Chem. 30:1079 (1991).CrossRefGoogle Scholar
  39. 39.
    P. C. Leung, P. Coppens, Acta Cryst B39:535 (1983).Google Scholar
  40. 40.
    M. Martin, B. Rees and A. Mitschler, Acta Cryst B38:6 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • C. Gatti
    • 1
  1. 1.Centro CNR per lo Studio delle Relazioni tra Struttura e Reattivita’ ChimicaMilanoItaly

Personalised recommendations